1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_ARM
6
7 #include "src/code-stubs.h"
8 #include "src/api-arguments.h"
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/codegen.h"
12 #include "src/ic/handler-compiler.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 #include "src/isolate.h"
16 #include "src/regexp/jsregexp.h"
17 #include "src/regexp/regexp-macro-assembler.h"
18 #include "src/runtime/runtime.h"
19
20 #include "src/arm/code-stubs-arm.h"
21
22 namespace v8 {
23 namespace internal {
24
25 #define __ ACCESS_MASM(masm)
26
Generate(MacroAssembler * masm)27 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
28 __ lsl(r5, r0, Operand(kPointerSizeLog2));
29 __ str(r1, MemOperand(sp, r5));
30 __ Push(r1);
31 __ Push(r2);
32 __ add(r0, r0, Operand(3));
33 __ TailCallRuntime(Runtime::kNewArray);
34 }
35
36 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
37 Condition cond);
38 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
39 Register lhs,
40 Register rhs,
41 Label* lhs_not_nan,
42 Label* slow,
43 bool strict);
44 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
45 Register lhs,
46 Register rhs);
47
48
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)49 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
50 ExternalReference miss) {
51 // Update the static counter each time a new code stub is generated.
52 isolate()->counters()->code_stubs()->Increment();
53
54 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
55 int param_count = descriptor.GetRegisterParameterCount();
56 {
57 // Call the runtime system in a fresh internal frame.
58 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
59 DCHECK(param_count == 0 ||
60 r0.is(descriptor.GetRegisterParameter(param_count - 1)));
61 // Push arguments
62 for (int i = 0; i < param_count; ++i) {
63 __ push(descriptor.GetRegisterParameter(i));
64 }
65 __ CallExternalReference(miss, param_count);
66 }
67
68 __ Ret();
69 }
70
71
Generate(MacroAssembler * masm)72 void DoubleToIStub::Generate(MacroAssembler* masm) {
73 Label out_of_range, only_low, negate, done;
74 Register input_reg = source();
75 Register result_reg = destination();
76 DCHECK(is_truncating());
77
78 int double_offset = offset();
79 // Account for saved regs if input is sp.
80 if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
81
82 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
83 Register scratch_low =
84 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
85 Register scratch_high =
86 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
87 LowDwVfpRegister double_scratch = kScratchDoubleReg;
88
89 __ Push(scratch_high, scratch_low, scratch);
90
91 if (!skip_fastpath()) {
92 // Load double input.
93 __ vldr(double_scratch, MemOperand(input_reg, double_offset));
94 __ vmov(scratch_low, scratch_high, double_scratch);
95
96 // Do fast-path convert from double to int.
97 __ vcvt_s32_f64(double_scratch.low(), double_scratch);
98 __ vmov(result_reg, double_scratch.low());
99
100 // If result is not saturated (0x7fffffff or 0x80000000), we are done.
101 __ sub(scratch, result_reg, Operand(1));
102 __ cmp(scratch, Operand(0x7ffffffe));
103 __ b(lt, &done);
104 } else {
105 // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
106 // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
107 if (double_offset == 0) {
108 __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
109 } else {
110 __ ldr(scratch_low, MemOperand(input_reg, double_offset));
111 __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
112 }
113 }
114
115 __ Ubfx(scratch, scratch_high,
116 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
117 // Load scratch with exponent - 1. This is faster than loading
118 // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
119 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
120 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
121 // If exponent is greater than or equal to 84, the 32 less significant
122 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
123 // the result is 0.
124 // Compare exponent with 84 (compare exponent - 1 with 83).
125 __ cmp(scratch, Operand(83));
126 __ b(ge, &out_of_range);
127
128 // If we reach this code, 31 <= exponent <= 83.
129 // So, we don't have to handle cases where 0 <= exponent <= 20 for
130 // which we would need to shift right the high part of the mantissa.
131 // Scratch contains exponent - 1.
132 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
133 __ rsb(scratch, scratch, Operand(51), SetCC);
134 __ b(ls, &only_low);
135 // 21 <= exponent <= 51, shift scratch_low and scratch_high
136 // to generate the result.
137 __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
138 // Scratch contains: 52 - exponent.
139 // We needs: exponent - 20.
140 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
141 __ rsb(scratch, scratch, Operand(32));
142 __ Ubfx(result_reg, scratch_high,
143 0, HeapNumber::kMantissaBitsInTopWord);
144 // Set the implicit 1 before the mantissa part in scratch_high.
145 __ orr(result_reg, result_reg,
146 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
147 __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
148 __ b(&negate);
149
150 __ bind(&out_of_range);
151 __ mov(result_reg, Operand::Zero());
152 __ b(&done);
153
154 __ bind(&only_low);
155 // 52 <= exponent <= 83, shift only scratch_low.
156 // On entry, scratch contains: 52 - exponent.
157 __ rsb(scratch, scratch, Operand::Zero());
158 __ mov(result_reg, Operand(scratch_low, LSL, scratch));
159
160 __ bind(&negate);
161 // If input was positive, scratch_high ASR 31 equals 0 and
162 // scratch_high LSR 31 equals zero.
163 // New result = (result eor 0) + 0 = result.
164 // If the input was negative, we have to negate the result.
165 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
166 // New result = (result eor 0xffffffff) + 1 = 0 - result.
167 __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
168 __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
169
170 __ bind(&done);
171
172 __ Pop(scratch_high, scratch_low, scratch);
173 __ Ret();
174 }
175
176
177 // Handle the case where the lhs and rhs are the same object.
178 // Equality is almost reflexive (everything but NaN), so this is a test
179 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cond)180 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
181 Condition cond) {
182 Label not_identical;
183 Label heap_number, return_equal;
184 __ cmp(r0, r1);
185 __ b(ne, ¬_identical);
186
187 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
188 // so we do the second best thing - test it ourselves.
189 // They are both equal and they are not both Smis so both of them are not
190 // Smis. If it's not a heap number, then return equal.
191 if (cond == lt || cond == gt) {
192 // Call runtime on identical JSObjects.
193 __ CompareObjectType(r0, r4, r4, FIRST_JS_RECEIVER_TYPE);
194 __ b(ge, slow);
195 // Call runtime on identical symbols since we need to throw a TypeError.
196 __ cmp(r4, Operand(SYMBOL_TYPE));
197 __ b(eq, slow);
198 } else {
199 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
200 __ b(eq, &heap_number);
201 // Comparing JS objects with <=, >= is complicated.
202 if (cond != eq) {
203 __ cmp(r4, Operand(FIRST_JS_RECEIVER_TYPE));
204 __ b(ge, slow);
205 // Call runtime on identical symbols since we need to throw a TypeError.
206 __ cmp(r4, Operand(SYMBOL_TYPE));
207 __ b(eq, slow);
208 // Normally here we fall through to return_equal, but undefined is
209 // special: (undefined == undefined) == true, but
210 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
211 if (cond == le || cond == ge) {
212 __ cmp(r4, Operand(ODDBALL_TYPE));
213 __ b(ne, &return_equal);
214 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
215 __ cmp(r0, r2);
216 __ b(ne, &return_equal);
217 if (cond == le) {
218 // undefined <= undefined should fail.
219 __ mov(r0, Operand(GREATER));
220 } else {
221 // undefined >= undefined should fail.
222 __ mov(r0, Operand(LESS));
223 }
224 __ Ret();
225 }
226 }
227 }
228
229 __ bind(&return_equal);
230 if (cond == lt) {
231 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
232 } else if (cond == gt) {
233 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
234 } else {
235 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
236 }
237 __ Ret();
238
239 // For less and greater we don't have to check for NaN since the result of
240 // x < x is false regardless. For the others here is some code to check
241 // for NaN.
242 if (cond != lt && cond != gt) {
243 __ bind(&heap_number);
244 // It is a heap number, so return non-equal if it's NaN and equal if it's
245 // not NaN.
246
247 // The representation of NaN values has all exponent bits (52..62) set,
248 // and not all mantissa bits (0..51) clear.
249 // Read top bits of double representation (second word of value).
250 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
251 // Test that exponent bits are all set.
252 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
253 // NaNs have all-one exponents so they sign extend to -1.
254 __ cmp(r3, Operand(-1));
255 __ b(ne, &return_equal);
256
257 // Shift out flag and all exponent bits, retaining only mantissa.
258 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
259 // Or with all low-bits of mantissa.
260 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
261 __ orr(r0, r3, Operand(r2), SetCC);
262 // For equal we already have the right value in r0: Return zero (equal)
263 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
264 // not (it's a NaN). For <= and >= we need to load r0 with the failing
265 // value if it's a NaN.
266 if (cond != eq) {
267 // All-zero means Infinity means equal.
268 __ Ret(eq);
269 if (cond == le) {
270 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
271 } else {
272 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
273 }
274 }
275 __ Ret();
276 }
277 // No fall through here.
278
279 __ bind(¬_identical);
280 }
281
282
283 // See comment at call site.
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * lhs_not_nan,Label * slow,bool strict)284 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
285 Register lhs,
286 Register rhs,
287 Label* lhs_not_nan,
288 Label* slow,
289 bool strict) {
290 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
291 (lhs.is(r1) && rhs.is(r0)));
292
293 Label rhs_is_smi;
294 __ JumpIfSmi(rhs, &rhs_is_smi);
295
296 // Lhs is a Smi. Check whether the rhs is a heap number.
297 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
298 if (strict) {
299 // If rhs is not a number and lhs is a Smi then strict equality cannot
300 // succeed. Return non-equal
301 // If rhs is r0 then there is already a non zero value in it.
302 if (!rhs.is(r0)) {
303 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
304 }
305 __ Ret(ne);
306 } else {
307 // Smi compared non-strictly with a non-Smi non-heap-number. Call
308 // the runtime.
309 __ b(ne, slow);
310 }
311
312 // Lhs is a smi, rhs is a number.
313 // Convert lhs to a double in d7.
314 __ SmiToDouble(d7, lhs);
315 // Load the double from rhs, tagged HeapNumber r0, to d6.
316 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
317
318 // We now have both loaded as doubles but we can skip the lhs nan check
319 // since it's a smi.
320 __ jmp(lhs_not_nan);
321
322 __ bind(&rhs_is_smi);
323 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
324 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
325 if (strict) {
326 // If lhs is not a number and rhs is a smi then strict equality cannot
327 // succeed. Return non-equal.
328 // If lhs is r0 then there is already a non zero value in it.
329 if (!lhs.is(r0)) {
330 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
331 }
332 __ Ret(ne);
333 } else {
334 // Smi compared non-strictly with a non-smi non-heap-number. Call
335 // the runtime.
336 __ b(ne, slow);
337 }
338
339 // Rhs is a smi, lhs is a heap number.
340 // Load the double from lhs, tagged HeapNumber r1, to d7.
341 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
342 // Convert rhs to a double in d6 .
343 __ SmiToDouble(d6, rhs);
344 // Fall through to both_loaded_as_doubles.
345 }
346
347
348 // See comment at call site.
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)349 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
350 Register lhs,
351 Register rhs) {
352 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
353 (lhs.is(r1) && rhs.is(r0)));
354
355 // If either operand is a JS object or an oddball value, then they are
356 // not equal since their pointers are different.
357 // There is no test for undetectability in strict equality.
358 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
359 Label first_non_object;
360 // Get the type of the first operand into r2 and compare it with
361 // FIRST_JS_RECEIVER_TYPE.
362 __ CompareObjectType(rhs, r2, r2, FIRST_JS_RECEIVER_TYPE);
363 __ b(lt, &first_non_object);
364
365 // Return non-zero (r0 is not zero)
366 Label return_not_equal;
367 __ bind(&return_not_equal);
368 __ Ret();
369
370 __ bind(&first_non_object);
371 // Check for oddballs: true, false, null, undefined.
372 __ cmp(r2, Operand(ODDBALL_TYPE));
373 __ b(eq, &return_not_equal);
374
375 __ CompareObjectType(lhs, r3, r3, FIRST_JS_RECEIVER_TYPE);
376 __ b(ge, &return_not_equal);
377
378 // Check for oddballs: true, false, null, undefined.
379 __ cmp(r3, Operand(ODDBALL_TYPE));
380 __ b(eq, &return_not_equal);
381
382 // Now that we have the types we might as well check for
383 // internalized-internalized.
384 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
385 __ orr(r2, r2, Operand(r3));
386 __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
387 __ b(eq, &return_not_equal);
388 }
389
390
391 // See comment at call site.
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)392 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
393 Register lhs,
394 Register rhs,
395 Label* both_loaded_as_doubles,
396 Label* not_heap_numbers,
397 Label* slow) {
398 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
399 (lhs.is(r1) && rhs.is(r0)));
400
401 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
402 __ b(ne, not_heap_numbers);
403 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
404 __ cmp(r2, r3);
405 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
406
407 // Both are heap numbers. Load them up then jump to the code we have
408 // for that.
409 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
410 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
411 __ jmp(both_loaded_as_doubles);
412 }
413
414
415 // Fast negative check for internalized-to-internalized equality or receiver
416 // equality. Also handles the undetectable receiver to null/undefined
417 // comparison.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * runtime_call)418 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
419 Register lhs, Register rhs,
420 Label* possible_strings,
421 Label* runtime_call) {
422 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
423 (lhs.is(r1) && rhs.is(r0)));
424
425 // r2 is object type of rhs.
426 Label object_test, return_equal, return_unequal, undetectable;
427 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
428 __ tst(r2, Operand(kIsNotStringMask));
429 __ b(ne, &object_test);
430 __ tst(r2, Operand(kIsNotInternalizedMask));
431 __ b(ne, possible_strings);
432 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
433 __ b(ge, runtime_call);
434 __ tst(r3, Operand(kIsNotInternalizedMask));
435 __ b(ne, possible_strings);
436
437 // Both are internalized. We already checked they weren't the same pointer so
438 // they are not equal. Return non-equal by returning the non-zero object
439 // pointer in r0.
440 __ Ret();
441
442 __ bind(&object_test);
443 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
444 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
445 __ ldrb(r4, FieldMemOperand(r2, Map::kBitFieldOffset));
446 __ ldrb(r5, FieldMemOperand(r3, Map::kBitFieldOffset));
447 __ tst(r4, Operand(1 << Map::kIsUndetectable));
448 __ b(ne, &undetectable);
449 __ tst(r5, Operand(1 << Map::kIsUndetectable));
450 __ b(ne, &return_unequal);
451
452 __ CompareInstanceType(r2, r2, FIRST_JS_RECEIVER_TYPE);
453 __ b(lt, runtime_call);
454 __ CompareInstanceType(r3, r3, FIRST_JS_RECEIVER_TYPE);
455 __ b(lt, runtime_call);
456
457 __ bind(&return_unequal);
458 // Return non-equal by returning the non-zero object pointer in r0.
459 __ Ret();
460
461 __ bind(&undetectable);
462 __ tst(r5, Operand(1 << Map::kIsUndetectable));
463 __ b(eq, &return_unequal);
464
465 // If both sides are JSReceivers, then the result is false according to
466 // the HTML specification, which says that only comparisons with null or
467 // undefined are affected by special casing for document.all.
468 __ CompareInstanceType(r2, r2, ODDBALL_TYPE);
469 __ b(eq, &return_equal);
470 __ CompareInstanceType(r3, r3, ODDBALL_TYPE);
471 __ b(ne, &return_unequal);
472
473 __ bind(&return_equal);
474 __ mov(r0, Operand(EQUAL));
475 __ Ret();
476 }
477
478
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareICState::State expected,Label * fail)479 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
480 Register scratch,
481 CompareICState::State expected,
482 Label* fail) {
483 Label ok;
484 if (expected == CompareICState::SMI) {
485 __ JumpIfNotSmi(input, fail);
486 } else if (expected == CompareICState::NUMBER) {
487 __ JumpIfSmi(input, &ok);
488 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
489 DONT_DO_SMI_CHECK);
490 }
491 // We could be strict about internalized/non-internalized here, but as long as
492 // hydrogen doesn't care, the stub doesn't have to care either.
493 __ bind(&ok);
494 }
495
496
497 // On entry r1 and r2 are the values to be compared.
498 // On exit r0 is 0, positive or negative to indicate the result of
499 // the comparison.
GenerateGeneric(MacroAssembler * masm)500 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
501 Register lhs = r1;
502 Register rhs = r0;
503 Condition cc = GetCondition();
504
505 Label miss;
506 CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss);
507 CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss);
508
509 Label slow; // Call builtin.
510 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
511
512 Label not_two_smis, smi_done;
513 __ orr(r2, r1, r0);
514 __ JumpIfNotSmi(r2, ¬_two_smis);
515 __ mov(r1, Operand(r1, ASR, 1));
516 __ sub(r0, r1, Operand(r0, ASR, 1));
517 __ Ret();
518 __ bind(¬_two_smis);
519
520 // NOTICE! This code is only reached after a smi-fast-case check, so
521 // it is certain that at least one operand isn't a smi.
522
523 // Handle the case where the objects are identical. Either returns the answer
524 // or goes to slow. Only falls through if the objects were not identical.
525 EmitIdenticalObjectComparison(masm, &slow, cc);
526
527 // If either is a Smi (we know that not both are), then they can only
528 // be strictly equal if the other is a HeapNumber.
529 STATIC_ASSERT(kSmiTag == 0);
530 DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
531 __ and_(r2, lhs, Operand(rhs));
532 __ JumpIfNotSmi(r2, ¬_smis);
533 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
534 // 1) Return the answer.
535 // 2) Go to slow.
536 // 3) Fall through to both_loaded_as_doubles.
537 // 4) Jump to lhs_not_nan.
538 // In cases 3 and 4 we have found out we were dealing with a number-number
539 // comparison. The double values of the numbers have been loaded into d7 (lhs)
540 // and d6 (rhs).
541 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
542
543 __ bind(&both_loaded_as_doubles);
544 // The arguments have been converted to doubles and stored in d6 and d7.
545 __ bind(&lhs_not_nan);
546 Label no_nan;
547 __ VFPCompareAndSetFlags(d7, d6);
548 Label nan;
549 __ b(vs, &nan);
550 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
551 __ mov(r0, Operand(LESS), LeaveCC, lt);
552 __ mov(r0, Operand(GREATER), LeaveCC, gt);
553 __ Ret();
554
555 __ bind(&nan);
556 // If one of the sides was a NaN then the v flag is set. Load r0 with
557 // whatever it takes to make the comparison fail, since comparisons with NaN
558 // always fail.
559 if (cc == lt || cc == le) {
560 __ mov(r0, Operand(GREATER));
561 } else {
562 __ mov(r0, Operand(LESS));
563 }
564 __ Ret();
565
566 __ bind(¬_smis);
567 // At this point we know we are dealing with two different objects,
568 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
569 if (strict()) {
570 // This returns non-equal for some object types, or falls through if it
571 // was not lucky.
572 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
573 }
574
575 Label check_for_internalized_strings;
576 Label flat_string_check;
577 // Check for heap-number-heap-number comparison. Can jump to slow case,
578 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
579 // that case. If the inputs are not doubles then jumps to
580 // check_for_internalized_strings.
581 // In this case r2 will contain the type of rhs_. Never falls through.
582 EmitCheckForTwoHeapNumbers(masm,
583 lhs,
584 rhs,
585 &both_loaded_as_doubles,
586 &check_for_internalized_strings,
587 &flat_string_check);
588
589 __ bind(&check_for_internalized_strings);
590 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
591 // internalized strings.
592 if (cc == eq && !strict()) {
593 // Returns an answer for two internalized strings or two detectable objects.
594 // Otherwise jumps to string case or not both strings case.
595 // Assumes that r2 is the type of rhs_ on entry.
596 EmitCheckForInternalizedStringsOrObjects(
597 masm, lhs, rhs, &flat_string_check, &slow);
598 }
599
600 // Check for both being sequential one-byte strings,
601 // and inline if that is the case.
602 __ bind(&flat_string_check);
603
604 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow);
605
606 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2,
607 r3);
608 if (cc == eq) {
609 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4);
610 } else {
611 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4,
612 r5);
613 }
614 // Never falls through to here.
615
616 __ bind(&slow);
617
618 if (cc == eq) {
619 {
620 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
621 __ Push(cp);
622 __ Call(strict() ? isolate()->builtins()->StrictEqual()
623 : isolate()->builtins()->Equal(),
624 RelocInfo::CODE_TARGET);
625 __ Pop(cp);
626 }
627 // Turn true into 0 and false into some non-zero value.
628 STATIC_ASSERT(EQUAL == 0);
629 __ LoadRoot(r1, Heap::kTrueValueRootIndex);
630 __ sub(r0, r0, r1);
631 __ Ret();
632 } else {
633 __ Push(lhs, rhs);
634 int ncr; // NaN compare result
635 if (cc == lt || cc == le) {
636 ncr = GREATER;
637 } else {
638 DCHECK(cc == gt || cc == ge); // remaining cases
639 ncr = LESS;
640 }
641 __ mov(r0, Operand(Smi::FromInt(ncr)));
642 __ push(r0);
643
644 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
645 // tagged as a small integer.
646 __ TailCallRuntime(Runtime::kCompare);
647 }
648
649 __ bind(&miss);
650 GenerateMiss(masm);
651 }
652
653
Generate(MacroAssembler * masm)654 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
655 // We don't allow a GC during a store buffer overflow so there is no need to
656 // store the registers in any particular way, but we do have to store and
657 // restore them.
658 __ stm(db_w, sp, kCallerSaved | lr.bit());
659
660 const Register scratch = r1;
661
662 if (save_doubles()) {
663 __ SaveFPRegs(sp, scratch);
664 }
665 const int argument_count = 1;
666 const int fp_argument_count = 0;
667
668 AllowExternalCallThatCantCauseGC scope(masm);
669 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
670 __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
671 __ CallCFunction(
672 ExternalReference::store_buffer_overflow_function(isolate()),
673 argument_count);
674 if (save_doubles()) {
675 __ RestoreFPRegs(sp, scratch);
676 }
677 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
678 }
679
Generate(MacroAssembler * masm)680 void MathPowStub::Generate(MacroAssembler* masm) {
681 const Register exponent = MathPowTaggedDescriptor::exponent();
682 DCHECK(exponent.is(r2));
683 const LowDwVfpRegister double_base = d0;
684 const LowDwVfpRegister double_exponent = d1;
685 const LowDwVfpRegister double_result = d2;
686 const LowDwVfpRegister double_scratch = d3;
687 const SwVfpRegister single_scratch = s6;
688 const Register scratch = r9;
689 const Register scratch2 = r4;
690
691 Label call_runtime, done, int_exponent;
692 if (exponent_type() == TAGGED) {
693 // Base is already in double_base.
694 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
695
696 __ vldr(double_exponent,
697 FieldMemOperand(exponent, HeapNumber::kValueOffset));
698 }
699
700 if (exponent_type() != INTEGER) {
701 // Detect integer exponents stored as double.
702 __ TryDoubleToInt32Exact(scratch, double_exponent, double_scratch);
703 __ b(eq, &int_exponent);
704
705 __ push(lr);
706 {
707 AllowExternalCallThatCantCauseGC scope(masm);
708 __ PrepareCallCFunction(0, 2, scratch);
709 __ MovToFloatParameters(double_base, double_exponent);
710 __ CallCFunction(
711 ExternalReference::power_double_double_function(isolate()), 0, 2);
712 }
713 __ pop(lr);
714 __ MovFromFloatResult(double_result);
715 __ b(&done);
716 }
717
718 // Calculate power with integer exponent.
719 __ bind(&int_exponent);
720
721 // Get two copies of exponent in the registers scratch and exponent.
722 if (exponent_type() == INTEGER) {
723 __ mov(scratch, exponent);
724 } else {
725 // Exponent has previously been stored into scratch as untagged integer.
726 __ mov(exponent, scratch);
727 }
728 __ vmov(double_scratch, double_base); // Back up base.
729 __ vmov(double_result, 1.0, scratch2);
730
731 // Get absolute value of exponent.
732 __ cmp(scratch, Operand::Zero());
733 __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, mi);
734
735 Label while_true;
736 __ bind(&while_true);
737 __ mov(scratch, Operand(scratch, LSR, 1), SetCC);
738 __ vmul(double_result, double_result, double_scratch, cs);
739 __ vmul(double_scratch, double_scratch, double_scratch, ne);
740 __ b(ne, &while_true);
741
742 __ cmp(exponent, Operand::Zero());
743 __ b(ge, &done);
744 __ vmov(double_scratch, 1.0, scratch);
745 __ vdiv(double_result, double_scratch, double_result);
746 // Test whether result is zero. Bail out to check for subnormal result.
747 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
748 __ VFPCompareAndSetFlags(double_result, 0.0);
749 __ b(ne, &done);
750 // double_exponent may not containe the exponent value if the input was a
751 // smi. We set it with exponent value before bailing out.
752 __ vmov(single_scratch, exponent);
753 __ vcvt_f64_s32(double_exponent, single_scratch);
754
755 // Returning or bailing out.
756 __ push(lr);
757 {
758 AllowExternalCallThatCantCauseGC scope(masm);
759 __ PrepareCallCFunction(0, 2, scratch);
760 __ MovToFloatParameters(double_base, double_exponent);
761 __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
762 0, 2);
763 }
764 __ pop(lr);
765 __ MovFromFloatResult(double_result);
766
767 __ bind(&done);
768 __ Ret();
769 }
770
NeedsImmovableCode()771 bool CEntryStub::NeedsImmovableCode() {
772 return true;
773 }
774
775
GenerateStubsAheadOfTime(Isolate * isolate)776 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
777 CEntryStub::GenerateAheadOfTime(isolate);
778 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
779 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
780 CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
781 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
782 CreateWeakCellStub::GenerateAheadOfTime(isolate);
783 BinaryOpICStub::GenerateAheadOfTime(isolate);
784 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
785 StoreFastElementStub::GenerateAheadOfTime(isolate);
786 }
787
788
GenerateFPStubs(Isolate * isolate)789 void CodeStub::GenerateFPStubs(Isolate* isolate) {
790 // Generate if not already in cache.
791 SaveFPRegsMode mode = kSaveFPRegs;
792 CEntryStub(isolate, 1, mode).GetCode();
793 StoreBufferOverflowStub(isolate, mode).GetCode();
794 }
795
796
GenerateAheadOfTime(Isolate * isolate)797 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
798 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
799 stub.GetCode();
800 }
801
802
Generate(MacroAssembler * masm)803 void CEntryStub::Generate(MacroAssembler* masm) {
804 // Called from JavaScript; parameters are on stack as if calling JS function.
805 // r0: number of arguments including receiver
806 // r1: pointer to builtin function
807 // fp: frame pointer (restored after C call)
808 // sp: stack pointer (restored as callee's sp after C call)
809 // cp: current context (C callee-saved)
810 //
811 // If argv_in_register():
812 // r2: pointer to the first argument
813 ProfileEntryHookStub::MaybeCallEntryHook(masm);
814
815 __ mov(r5, Operand(r1));
816
817 if (argv_in_register()) {
818 // Move argv into the correct register.
819 __ mov(r1, Operand(r2));
820 } else {
821 // Compute the argv pointer in a callee-saved register.
822 __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
823 __ sub(r1, r1, Operand(kPointerSize));
824 }
825
826 // Enter the exit frame that transitions from JavaScript to C++.
827 FrameScope scope(masm, StackFrame::MANUAL);
828 __ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
829 ? StackFrame::BUILTIN_EXIT
830 : StackFrame::EXIT);
831
832 // Store a copy of argc in callee-saved registers for later.
833 __ mov(r4, Operand(r0));
834
835 // r0, r4: number of arguments including receiver (C callee-saved)
836 // r1: pointer to the first argument (C callee-saved)
837 // r5: pointer to builtin function (C callee-saved)
838
839 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
840 int frame_alignment_mask = frame_alignment - 1;
841 #if V8_HOST_ARCH_ARM
842 if (FLAG_debug_code) {
843 if (frame_alignment > kPointerSize) {
844 Label alignment_as_expected;
845 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
846 __ tst(sp, Operand(frame_alignment_mask));
847 __ b(eq, &alignment_as_expected);
848 // Don't use Check here, as it will call Runtime_Abort re-entering here.
849 __ stop("Unexpected alignment");
850 __ bind(&alignment_as_expected);
851 }
852 }
853 #endif
854
855 // Call C built-in.
856 int result_stack_size;
857 if (result_size() <= 2) {
858 // r0 = argc, r1 = argv, r2 = isolate
859 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
860 result_stack_size = 0;
861 } else {
862 DCHECK_EQ(3, result_size());
863 // Allocate additional space for the result.
864 result_stack_size =
865 ((result_size() * kPointerSize) + frame_alignment_mask) &
866 ~frame_alignment_mask;
867 __ sub(sp, sp, Operand(result_stack_size));
868
869 // r0 = hidden result argument, r1 = argc, r2 = argv, r3 = isolate.
870 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
871 __ mov(r2, Operand(r1));
872 __ mov(r1, Operand(r0));
873 __ mov(r0, Operand(sp));
874 }
875
876 // To let the GC traverse the return address of the exit frames, we need to
877 // know where the return address is. The CEntryStub is unmovable, so
878 // we can store the address on the stack to be able to find it again and
879 // we never have to restore it, because it will not change.
880 // Compute the return address in lr to return to after the jump below. Pc is
881 // already at '+ 8' from the current instruction but return is after three
882 // instructions so add another 4 to pc to get the return address.
883 {
884 // Prevent literal pool emission before return address.
885 Assembler::BlockConstPoolScope block_const_pool(masm);
886 __ add(lr, pc, Operand(4));
887 __ str(lr, MemOperand(sp, result_stack_size));
888 __ Call(r5);
889 }
890 if (result_size() > 2) {
891 DCHECK_EQ(3, result_size());
892 // Read result values stored on stack.
893 __ ldr(r2, MemOperand(sp, 2 * kPointerSize));
894 __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
895 __ ldr(r0, MemOperand(sp, 0 * kPointerSize));
896 }
897 // Result returned in r0, r1:r0 or r2:r1:r0 - do not destroy these registers!
898
899 // Check result for exception sentinel.
900 Label exception_returned;
901 __ CompareRoot(r0, Heap::kExceptionRootIndex);
902 __ b(eq, &exception_returned);
903
904 // Check that there is no pending exception, otherwise we
905 // should have returned the exception sentinel.
906 if (FLAG_debug_code) {
907 Label okay;
908 ExternalReference pending_exception_address(
909 Isolate::kPendingExceptionAddress, isolate());
910 __ mov(r3, Operand(pending_exception_address));
911 __ ldr(r3, MemOperand(r3));
912 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
913 // Cannot use check here as it attempts to generate call into runtime.
914 __ b(eq, &okay);
915 __ stop("Unexpected pending exception");
916 __ bind(&okay);
917 }
918
919 // Exit C frame and return.
920 // r0:r1: result
921 // sp: stack pointer
922 // fp: frame pointer
923 Register argc;
924 if (argv_in_register()) {
925 // We don't want to pop arguments so set argc to no_reg.
926 argc = no_reg;
927 } else {
928 // Callee-saved register r4 still holds argc.
929 argc = r4;
930 }
931 __ LeaveExitFrame(save_doubles(), argc, true);
932 __ mov(pc, lr);
933
934 // Handling of exception.
935 __ bind(&exception_returned);
936
937 ExternalReference pending_handler_context_address(
938 Isolate::kPendingHandlerContextAddress, isolate());
939 ExternalReference pending_handler_code_address(
940 Isolate::kPendingHandlerCodeAddress, isolate());
941 ExternalReference pending_handler_offset_address(
942 Isolate::kPendingHandlerOffsetAddress, isolate());
943 ExternalReference pending_handler_fp_address(
944 Isolate::kPendingHandlerFPAddress, isolate());
945 ExternalReference pending_handler_sp_address(
946 Isolate::kPendingHandlerSPAddress, isolate());
947
948 // Ask the runtime for help to determine the handler. This will set r0 to
949 // contain the current pending exception, don't clobber it.
950 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
951 isolate());
952 {
953 FrameScope scope(masm, StackFrame::MANUAL);
954 __ PrepareCallCFunction(3, 0, r0);
955 __ mov(r0, Operand(0));
956 __ mov(r1, Operand(0));
957 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
958 __ CallCFunction(find_handler, 3);
959 }
960
961 // Retrieve the handler context, SP and FP.
962 __ mov(cp, Operand(pending_handler_context_address));
963 __ ldr(cp, MemOperand(cp));
964 __ mov(sp, Operand(pending_handler_sp_address));
965 __ ldr(sp, MemOperand(sp));
966 __ mov(fp, Operand(pending_handler_fp_address));
967 __ ldr(fp, MemOperand(fp));
968
969 // If the handler is a JS frame, restore the context to the frame. Note that
970 // the context will be set to (cp == 0) for non-JS frames.
971 __ cmp(cp, Operand(0));
972 __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
973
974 // Compute the handler entry address and jump to it.
975 ConstantPoolUnavailableScope constant_pool_unavailable(masm);
976 __ mov(r1, Operand(pending_handler_code_address));
977 __ ldr(r1, MemOperand(r1));
978 __ mov(r2, Operand(pending_handler_offset_address));
979 __ ldr(r2, MemOperand(r2));
980 __ add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
981 if (FLAG_enable_embedded_constant_pool) {
982 __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r1);
983 }
984 __ add(pc, r1, r2);
985 }
986
987
Generate(MacroAssembler * masm)988 void JSEntryStub::Generate(MacroAssembler* masm) {
989 // r0: code entry
990 // r1: function
991 // r2: receiver
992 // r3: argc
993 // [sp+0]: argv
994
995 Label invoke, handler_entry, exit;
996
997 ProfileEntryHookStub::MaybeCallEntryHook(masm);
998
999 // Called from C, so do not pop argc and args on exit (preserve sp)
1000 // No need to save register-passed args
1001 // Save callee-saved registers (incl. cp and fp), sp, and lr
1002 __ stm(db_w, sp, kCalleeSaved | lr.bit());
1003
1004 // Save callee-saved vfp registers.
1005 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1006 // Set up the reserved register for 0.0.
1007 __ vmov(kDoubleRegZero, 0.0);
1008
1009 // Get address of argv, see stm above.
1010 // r0: code entry
1011 // r1: function
1012 // r2: receiver
1013 // r3: argc
1014
1015 // Set up argv in r4.
1016 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1017 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
1018 __ ldr(r4, MemOperand(sp, offset_to_argv));
1019
1020 // Push a frame with special values setup to mark it as an entry frame.
1021 // r0: code entry
1022 // r1: function
1023 // r2: receiver
1024 // r3: argc
1025 // r4: argv
1026 StackFrame::Type marker = type();
1027 if (FLAG_enable_embedded_constant_pool) {
1028 __ mov(r8, Operand::Zero());
1029 }
1030 __ mov(r7, Operand(StackFrame::TypeToMarker(marker)));
1031 __ mov(r6, Operand(StackFrame::TypeToMarker(marker)));
1032 __ mov(r5,
1033 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1034 __ ldr(r5, MemOperand(r5));
1035 __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1036 __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
1037 (FLAG_enable_embedded_constant_pool ? r8.bit() : 0) |
1038 ip.bit());
1039
1040 // Set up frame pointer for the frame to be pushed.
1041 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1042
1043 // If this is the outermost JS call, set js_entry_sp value.
1044 Label non_outermost_js;
1045 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1046 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1047 __ ldr(r6, MemOperand(r5));
1048 __ cmp(r6, Operand::Zero());
1049 __ b(ne, &non_outermost_js);
1050 __ str(fp, MemOperand(r5));
1051 __ mov(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
1052 Label cont;
1053 __ b(&cont);
1054 __ bind(&non_outermost_js);
1055 __ mov(ip, Operand(StackFrame::INNER_JSENTRY_FRAME));
1056 __ bind(&cont);
1057 __ push(ip);
1058
1059 // Jump to a faked try block that does the invoke, with a faked catch
1060 // block that sets the pending exception.
1061 __ jmp(&invoke);
1062
1063 // Block literal pool emission whilst taking the position of the handler
1064 // entry. This avoids making the assumption that literal pools are always
1065 // emitted after an instruction is emitted, rather than before.
1066 {
1067 Assembler::BlockConstPoolScope block_const_pool(masm);
1068 __ bind(&handler_entry);
1069 handler_offset_ = handler_entry.pos();
1070 // Caught exception: Store result (exception) in the pending exception
1071 // field in the JSEnv and return a failure sentinel. Coming in here the
1072 // fp will be invalid because the PushStackHandler below sets it to 0 to
1073 // signal the existence of the JSEntry frame.
1074 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1075 isolate())));
1076 }
1077 __ str(r0, MemOperand(ip));
1078 __ LoadRoot(r0, Heap::kExceptionRootIndex);
1079 __ b(&exit);
1080
1081 // Invoke: Link this frame into the handler chain.
1082 __ bind(&invoke);
1083 // Must preserve r0-r4, r5-r6 are available.
1084 __ PushStackHandler();
1085 // If an exception not caught by another handler occurs, this handler
1086 // returns control to the code after the bl(&invoke) above, which
1087 // restores all kCalleeSaved registers (including cp and fp) to their
1088 // saved values before returning a failure to C.
1089
1090 // Invoke the function by calling through JS entry trampoline builtin.
1091 // Notice that we cannot store a reference to the trampoline code directly in
1092 // this stub, because runtime stubs are not traversed when doing GC.
1093
1094 // Expected registers by Builtins::JSEntryTrampoline
1095 // r0: code entry
1096 // r1: function
1097 // r2: receiver
1098 // r3: argc
1099 // r4: argv
1100 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1101 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1102 isolate());
1103 __ mov(ip, Operand(construct_entry));
1104 } else {
1105 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1106 __ mov(ip, Operand(entry));
1107 }
1108 __ ldr(ip, MemOperand(ip)); // deref address
1109 __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1110
1111 // Branch and link to JSEntryTrampoline.
1112 __ Call(ip);
1113
1114 // Unlink this frame from the handler chain.
1115 __ PopStackHandler();
1116
1117 __ bind(&exit); // r0 holds result
1118 // Check if the current stack frame is marked as the outermost JS frame.
1119 Label non_outermost_js_2;
1120 __ pop(r5);
1121 __ cmp(r5, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
1122 __ b(ne, &non_outermost_js_2);
1123 __ mov(r6, Operand::Zero());
1124 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1125 __ str(r6, MemOperand(r5));
1126 __ bind(&non_outermost_js_2);
1127
1128 // Restore the top frame descriptors from the stack.
1129 __ pop(r3);
1130 __ mov(ip,
1131 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1132 __ str(r3, MemOperand(ip));
1133
1134 // Reset the stack to the callee saved registers.
1135 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1136
1137 // Restore callee-saved registers and return.
1138 #ifdef DEBUG
1139 if (FLAG_debug_code) {
1140 __ mov(lr, Operand(pc));
1141 }
1142 #endif
1143
1144 // Restore callee-saved vfp registers.
1145 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1146
1147 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
1148 }
1149
Generate(MacroAssembler * masm)1150 void RegExpExecStub::Generate(MacroAssembler* masm) {
1151 // Just jump directly to runtime if native RegExp is not selected at compile
1152 // time or if regexp entry in generated code is turned off runtime switch or
1153 // at compilation.
1154 #ifdef V8_INTERPRETED_REGEXP
1155 __ TailCallRuntime(Runtime::kRegExpExec);
1156 #else // V8_INTERPRETED_REGEXP
1157
1158 // Stack frame on entry.
1159 // sp[0]: last_match_info (expected JSArray)
1160 // sp[4]: previous index
1161 // sp[8]: subject string
1162 // sp[12]: JSRegExp object
1163
1164 const int kLastMatchInfoOffset = 0 * kPointerSize;
1165 const int kPreviousIndexOffset = 1 * kPointerSize;
1166 const int kSubjectOffset = 2 * kPointerSize;
1167 const int kJSRegExpOffset = 3 * kPointerSize;
1168
1169 Label runtime;
1170 // Allocation of registers for this function. These are in callee save
1171 // registers and will be preserved by the call to the native RegExp code, as
1172 // this code is called using the normal C calling convention. When calling
1173 // directly from generated code the native RegExp code will not do a GC and
1174 // therefore the content of these registers are safe to use after the call.
1175 Register subject = r4;
1176 Register regexp_data = r5;
1177 Register last_match_info_elements = no_reg; // will be r6;
1178
1179 // Ensure that a RegExp stack is allocated.
1180 ExternalReference address_of_regexp_stack_memory_address =
1181 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1182 ExternalReference address_of_regexp_stack_memory_size =
1183 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1184 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
1185 __ ldr(r0, MemOperand(r0, 0));
1186 __ cmp(r0, Operand::Zero());
1187 __ b(eq, &runtime);
1188
1189 // Check that the first argument is a JSRegExp object.
1190 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
1191 __ JumpIfSmi(r0, &runtime);
1192 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
1193 __ b(ne, &runtime);
1194
1195 // Check that the RegExp has been compiled (data contains a fixed array).
1196 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
1197 if (FLAG_debug_code) {
1198 __ SmiTst(regexp_data);
1199 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1200 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
1201 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1202 }
1203
1204 // regexp_data: RegExp data (FixedArray)
1205 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1206 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1207 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
1208 __ b(ne, &runtime);
1209
1210 // regexp_data: RegExp data (FixedArray)
1211 // Check that the number of captures fit in the static offsets vector buffer.
1212 __ ldr(r2,
1213 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1214 // Check (number_of_captures + 1) * 2 <= offsets vector size
1215 // Or number_of_captures * 2 <= offsets vector size - 2
1216 // Multiplying by 2 comes for free since r2 is smi-tagged.
1217 STATIC_ASSERT(kSmiTag == 0);
1218 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1219 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1220 __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1221 __ b(hi, &runtime);
1222
1223 // Reset offset for possibly sliced string.
1224 __ mov(r9, Operand::Zero());
1225 __ ldr(subject, MemOperand(sp, kSubjectOffset));
1226 __ JumpIfSmi(subject, &runtime);
1227 __ mov(r3, subject); // Make a copy of the original subject string.
1228 // subject: subject string
1229 // r3: subject string
1230 // regexp_data: RegExp data (FixedArray)
1231 // Handle subject string according to its encoding and representation:
1232 // (1) Sequential string? If yes, go to (4).
1233 // (2) Sequential or cons? If not, go to (5).
1234 // (3) Cons string. If the string is flat, replace subject with first string
1235 // and go to (1). Otherwise bail out to runtime.
1236 // (4) Sequential string. Load regexp code according to encoding.
1237 // (E) Carry on.
1238 /// [...]
1239
1240 // Deferred code at the end of the stub:
1241 // (5) Long external string? If not, go to (7).
1242 // (6) External string. Make it, offset-wise, look like a sequential string.
1243 // Go to (4).
1244 // (7) Short external string or not a string? If yes, bail out to runtime.
1245 // (8) Sliced or thin string. Replace subject with parent. Go to (1).
1246
1247 Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
1248 not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
1249
1250 __ bind(&check_underlying);
1251 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
1252 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
1253
1254 // (1) Sequential string? If yes, go to (4).
1255 __ and_(r1,
1256 r0,
1257 Operand(kIsNotStringMask |
1258 kStringRepresentationMask |
1259 kShortExternalStringMask),
1260 SetCC);
1261 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1262 __ b(eq, &seq_string); // Go to (4).
1263
1264 // (2) Sequential or cons? If not, go to (5).
1265 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1266 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1267 STATIC_ASSERT(kThinStringTag > kExternalStringTag);
1268 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1269 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1270 __ cmp(r1, Operand(kExternalStringTag));
1271 __ b(ge, ¬_seq_nor_cons); // Go to (5).
1272
1273 // (3) Cons string. Check that it's flat.
1274 // Replace subject with first string and reload instance type.
1275 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
1276 __ CompareRoot(r0, Heap::kempty_stringRootIndex);
1277 __ b(ne, &runtime);
1278 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
1279 __ jmp(&check_underlying);
1280
1281 // (4) Sequential string. Load regexp code according to encoding.
1282 __ bind(&seq_string);
1283 // subject: sequential subject string (or look-alike, external string)
1284 // r3: original subject string
1285 // Load previous index and check range before r3 is overwritten. We have to
1286 // use r3 instead of subject here because subject might have been only made
1287 // to look like a sequential string when it actually is an external string.
1288 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
1289 __ JumpIfNotSmi(r1, &runtime);
1290 __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
1291 __ cmp(r3, Operand(r1));
1292 __ b(ls, &runtime);
1293 __ SmiUntag(r1);
1294
1295 STATIC_ASSERT(8 == kOneByteStringTag);
1296 STATIC_ASSERT(kTwoByteStringTag == 0);
1297 __ and_(r0, r0, Operand(kStringEncodingMask));
1298 __ mov(r3, Operand(r0, ASR, 3), SetCC);
1299 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset),
1300 ne);
1301 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
1302
1303 // (E) Carry on. String handling is done.
1304 // r6: irregexp code
1305 // Check that the irregexp code has been generated for the actual string
1306 // encoding. If it has, the field contains a code object otherwise it contains
1307 // a smi (code flushing support).
1308 __ JumpIfSmi(r6, &runtime);
1309
1310 // r1: previous index
1311 // r3: encoding of subject string (1 if one_byte, 0 if two_byte);
1312 // r6: code
1313 // subject: Subject string
1314 // regexp_data: RegExp data (FixedArray)
1315 // All checks done. Now push arguments for native regexp code.
1316 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2);
1317
1318 // Isolates: note we add an additional parameter here (isolate pointer).
1319 const int kRegExpExecuteArguments = 9;
1320 const int kParameterRegisters = 4;
1321 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1322
1323 // Stack pointer now points to cell where return address is to be written.
1324 // Arguments are before that on the stack or in registers.
1325
1326 // Argument 9 (sp[20]): Pass current isolate address.
1327 __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
1328 __ str(r0, MemOperand(sp, 5 * kPointerSize));
1329
1330 // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
1331 __ mov(r0, Operand(1));
1332 __ str(r0, MemOperand(sp, 4 * kPointerSize));
1333
1334 // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
1335 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
1336 __ ldr(r0, MemOperand(r0, 0));
1337 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
1338 __ ldr(r2, MemOperand(r2, 0));
1339 __ add(r0, r0, Operand(r2));
1340 __ str(r0, MemOperand(sp, 3 * kPointerSize));
1341
1342 // Argument 6: Set the number of capture registers to zero to force global
1343 // regexps to behave as non-global. This does not affect non-global regexps.
1344 __ mov(r0, Operand::Zero());
1345 __ str(r0, MemOperand(sp, 2 * kPointerSize));
1346
1347 // Argument 5 (sp[4]): static offsets vector buffer.
1348 __ mov(r0,
1349 Operand(ExternalReference::address_of_static_offsets_vector(
1350 isolate())));
1351 __ str(r0, MemOperand(sp, 1 * kPointerSize));
1352
1353 // For arguments 4 and 3 get string length, calculate start of string data and
1354 // calculate the shift of the index (0 for one-byte and 1 for two-byte).
1355 __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1356 __ eor(r3, r3, Operand(1));
1357 // Load the length from the original subject string from the previous stack
1358 // frame. Therefore we have to use fp, which points exactly to two pointer
1359 // sizes below the previous sp. (Because creating a new stack frame pushes
1360 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
1361 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1362 // If slice offset is not 0, load the length from the original sliced string.
1363 // Argument 4, r3: End of string data
1364 // Argument 3, r2: Start of string data
1365 // Prepare start and end index of the input.
1366 __ add(r9, r7, Operand(r9, LSL, r3));
1367 __ add(r2, r9, Operand(r1, LSL, r3));
1368
1369 __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
1370 __ SmiUntag(r7);
1371 __ add(r3, r9, Operand(r7, LSL, r3));
1372
1373 // Argument 2 (r1): Previous index.
1374 // Already there
1375
1376 // Argument 1 (r0): Subject string.
1377 __ mov(r0, subject);
1378
1379 // Locate the code entry and call it.
1380 __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
1381 DirectCEntryStub stub(isolate());
1382 stub.GenerateCall(masm, r6);
1383
1384 __ LeaveExitFrame(false, no_reg, true);
1385
1386 last_match_info_elements = r6;
1387
1388 // r0: result
1389 // subject: subject string (callee saved)
1390 // regexp_data: RegExp data (callee saved)
1391 // last_match_info_elements: Last match info elements (callee saved)
1392 // Check the result.
1393 Label success;
1394 __ cmp(r0, Operand(1));
1395 // We expect exactly one result since we force the called regexp to behave
1396 // as non-global.
1397 __ b(eq, &success);
1398 Label failure;
1399 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
1400 __ b(eq, &failure);
1401 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1402 // If not exception it can only be retry. Handle that in the runtime system.
1403 __ b(ne, &runtime);
1404 // Result must now be exception. If there is no pending exception already a
1405 // stack overflow (on the backtrack stack) was detected in RegExp code but
1406 // haven't created the exception yet. Handle that in the runtime system.
1407 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1408 __ mov(r1, Operand(isolate()->factory()->the_hole_value()));
1409 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1410 isolate())));
1411 __ ldr(r0, MemOperand(r2, 0));
1412 __ cmp(r0, r1);
1413 __ b(eq, &runtime);
1414
1415 // For exception, throw the exception again.
1416 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1417
1418 __ bind(&failure);
1419 // For failure and exception return null.
1420 __ mov(r0, Operand(isolate()->factory()->null_value()));
1421 __ add(sp, sp, Operand(4 * kPointerSize));
1422 __ Ret();
1423
1424 // Process the result from the native regexp code.
1425 __ bind(&success);
1426 __ ldr(r1,
1427 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1428 // Calculate number of capture registers (number_of_captures + 1) * 2.
1429 // Multiplying by 2 comes for free since r1 is smi-tagged.
1430 STATIC_ASSERT(kSmiTag == 0);
1431 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1432 __ add(r1, r1, Operand(2)); // r1 was a smi.
1433
1434 // Check that the last match info is a FixedArray.
1435 __ ldr(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
1436 __ JumpIfSmi(last_match_info_elements, &runtime);
1437 // Check that the object has fast elements.
1438 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1439 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
1440 __ b(ne, &runtime);
1441 // Check that the last match info has space for the capture registers and the
1442 // additional information.
1443 __ ldr(r0,
1444 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1445 __ add(r2, r1, Operand(RegExpMatchInfo::kLastMatchOverhead));
1446 __ cmp(r2, Operand::SmiUntag(r0));
1447 __ b(gt, &runtime);
1448
1449 // r1: number of capture registers
1450 // r4: subject string
1451 // Store the capture count.
1452 __ SmiTag(r2, r1);
1453 __ str(r2, FieldMemOperand(last_match_info_elements,
1454 RegExpMatchInfo::kNumberOfCapturesOffset));
1455 // Store last subject and last input.
1456 __ str(subject, FieldMemOperand(last_match_info_elements,
1457 RegExpMatchInfo::kLastSubjectOffset));
1458 __ mov(r2, subject);
1459 __ RecordWriteField(last_match_info_elements,
1460 RegExpMatchInfo::kLastSubjectOffset, subject, r3,
1461 kLRHasNotBeenSaved, kDontSaveFPRegs);
1462 __ mov(subject, r2);
1463 __ str(subject, FieldMemOperand(last_match_info_elements,
1464 RegExpMatchInfo::kLastInputOffset));
1465 __ RecordWriteField(last_match_info_elements,
1466 RegExpMatchInfo::kLastInputOffset, subject, r3,
1467 kLRHasNotBeenSaved, kDontSaveFPRegs);
1468
1469 // Get the static offsets vector filled by the native regexp code.
1470 ExternalReference address_of_static_offsets_vector =
1471 ExternalReference::address_of_static_offsets_vector(isolate());
1472 __ mov(r2, Operand(address_of_static_offsets_vector));
1473
1474 // r1: number of capture registers
1475 // r2: offsets vector
1476 Label next_capture, done;
1477 // Capture register counter starts from number of capture registers and
1478 // counts down until wrapping after zero.
1479 __ add(r0, last_match_info_elements,
1480 Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag));
1481 __ bind(&next_capture);
1482 __ sub(r1, r1, Operand(1), SetCC);
1483 __ b(mi, &done);
1484 // Read the value from the static offsets vector buffer.
1485 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
1486 // Store the smi value in the last match info.
1487 __ SmiTag(r3);
1488 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
1489 __ jmp(&next_capture);
1490 __ bind(&done);
1491
1492 // Return last match info.
1493 __ mov(r0, last_match_info_elements);
1494 __ add(sp, sp, Operand(4 * kPointerSize));
1495 __ Ret();
1496
1497 // Do the runtime call to execute the regexp.
1498 __ bind(&runtime);
1499 __ TailCallRuntime(Runtime::kRegExpExec);
1500
1501 // Deferred code for string handling.
1502 // (5) Long external string? If not, go to (7).
1503 __ bind(¬_seq_nor_cons);
1504 // Compare flags are still set.
1505 __ b(gt, ¬_long_external); // Go to (7).
1506
1507 // (6) External string. Make it, offset-wise, look like a sequential string.
1508 __ bind(&external_string);
1509 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
1510 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
1511 if (FLAG_debug_code) {
1512 // Assert that we do not have a cons or slice (indirect strings) here.
1513 // Sequential strings have already been ruled out.
1514 __ tst(r0, Operand(kIsIndirectStringMask));
1515 __ Assert(eq, kExternalStringExpectedButNotFound);
1516 }
1517 __ ldr(subject,
1518 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1519 // Move the pointer so that offset-wise, it looks like a sequential string.
1520 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1521 __ sub(subject,
1522 subject,
1523 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1524 __ jmp(&seq_string); // Go to (4).
1525
1526 // (7) Short external string or not a string? If yes, bail out to runtime.
1527 __ bind(¬_long_external);
1528 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1529 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
1530 __ b(ne, &runtime);
1531
1532 // (8) Sliced or thin string. Replace subject with parent. Go to (4).
1533 Label thin_string;
1534 __ cmp(r1, Operand(kThinStringTag));
1535 __ b(eq, &thin_string);
1536 // Load offset into r9 and replace subject string with parent.
1537 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1538 __ SmiUntag(r9);
1539 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1540 __ jmp(&check_underlying); // Go to (4).
1541
1542 __ bind(&thin_string);
1543 __ ldr(subject, FieldMemOperand(subject, ThinString::kActualOffset));
1544 __ jmp(&check_underlying); // Go to (4).
1545 #endif // V8_INTERPRETED_REGEXP
1546 }
1547
1548
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)1549 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1550 // r0 : number of arguments to the construct function
1551 // r1 : the function to call
1552 // r2 : feedback vector
1553 // r3 : slot in feedback vector (Smi)
1554 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1555
1556 // Number-of-arguments register must be smi-tagged to call out.
1557 __ SmiTag(r0);
1558 __ Push(r3, r2, r1, r0);
1559 __ Push(cp);
1560
1561 __ CallStub(stub);
1562
1563 __ Pop(cp);
1564 __ Pop(r3, r2, r1, r0);
1565 __ SmiUntag(r0);
1566 }
1567
1568
GenerateRecordCallTarget(MacroAssembler * masm)1569 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1570 // Cache the called function in a feedback vector slot. Cache states
1571 // are uninitialized, monomorphic (indicated by a JSFunction), and
1572 // megamorphic.
1573 // r0 : number of arguments to the construct function
1574 // r1 : the function to call
1575 // r2 : feedback vector
1576 // r3 : slot in feedback vector (Smi)
1577 Label initialize, done, miss, megamorphic, not_array_function;
1578
1579 DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
1580 masm->isolate()->heap()->megamorphic_symbol());
1581 DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
1582 masm->isolate()->heap()->uninitialized_symbol());
1583
1584 // Load the cache state into r5.
1585 __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
1586 __ ldr(r5, FieldMemOperand(r5, FixedArray::kHeaderSize));
1587
1588 // A monomorphic cache hit or an already megamorphic state: invoke the
1589 // function without changing the state.
1590 // We don't know if r5 is a WeakCell or a Symbol, but it's harmless to read at
1591 // this position in a symbol (see static asserts in feedback-vector.h).
1592 Label check_allocation_site;
1593 Register feedback_map = r6;
1594 Register weak_value = r9;
1595 __ ldr(weak_value, FieldMemOperand(r5, WeakCell::kValueOffset));
1596 __ cmp(r1, weak_value);
1597 __ b(eq, &done);
1598 __ CompareRoot(r5, Heap::kmegamorphic_symbolRootIndex);
1599 __ b(eq, &done);
1600 __ ldr(feedback_map, FieldMemOperand(r5, HeapObject::kMapOffset));
1601 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
1602 __ b(ne, &check_allocation_site);
1603
1604 // If the weak cell is cleared, we have a new chance to become monomorphic.
1605 __ JumpIfSmi(weak_value, &initialize);
1606 __ jmp(&megamorphic);
1607
1608 __ bind(&check_allocation_site);
1609 // If we came here, we need to see if we are the array function.
1610 // If we didn't have a matching function, and we didn't find the megamorph
1611 // sentinel, then we have in the slot either some other function or an
1612 // AllocationSite.
1613 __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
1614 __ b(ne, &miss);
1615
1616 // Make sure the function is the Array() function
1617 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5);
1618 __ cmp(r1, r5);
1619 __ b(ne, &megamorphic);
1620 __ jmp(&done);
1621
1622 __ bind(&miss);
1623
1624 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1625 // megamorphic.
1626 __ CompareRoot(r5, Heap::kuninitialized_symbolRootIndex);
1627 __ b(eq, &initialize);
1628 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1629 // write-barrier is needed.
1630 __ bind(&megamorphic);
1631 __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
1632 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
1633 __ str(ip, FieldMemOperand(r5, FixedArray::kHeaderSize));
1634 __ jmp(&done);
1635
1636 // An uninitialized cache is patched with the function
1637 __ bind(&initialize);
1638
1639 // Make sure the function is the Array() function
1640 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5);
1641 __ cmp(r1, r5);
1642 __ b(ne, ¬_array_function);
1643
1644 // The target function is the Array constructor,
1645 // Create an AllocationSite if we don't already have it, store it in the
1646 // slot.
1647 CreateAllocationSiteStub create_stub(masm->isolate());
1648 CallStubInRecordCallTarget(masm, &create_stub);
1649 __ b(&done);
1650
1651 __ bind(¬_array_function);
1652 CreateWeakCellStub weak_cell_stub(masm->isolate());
1653 CallStubInRecordCallTarget(masm, &weak_cell_stub);
1654
1655 __ bind(&done);
1656
1657 // Increment the call count for all function calls.
1658 __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
1659 __ add(r5, r5, Operand(FixedArray::kHeaderSize + kPointerSize));
1660 __ ldr(r4, FieldMemOperand(r5, 0));
1661 __ add(r4, r4, Operand(Smi::FromInt(1)));
1662 __ str(r4, FieldMemOperand(r5, 0));
1663 }
1664
Generate(MacroAssembler * masm)1665 void CallConstructStub::Generate(MacroAssembler* masm) {
1666 // r0 : number of arguments
1667 // r1 : the function to call
1668 // r2 : feedback vector
1669 // r3 : slot in feedback vector (Smi, for RecordCallTarget)
1670
1671 Label non_function;
1672 // Check that the function is not a smi.
1673 __ JumpIfSmi(r1, &non_function);
1674 // Check that the function is a JSFunction.
1675 __ CompareObjectType(r1, r5, r5, JS_FUNCTION_TYPE);
1676 __ b(ne, &non_function);
1677
1678 GenerateRecordCallTarget(masm);
1679
1680 __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
1681 Label feedback_register_initialized;
1682 // Put the AllocationSite from the feedback vector into r2, or undefined.
1683 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize));
1684 __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset));
1685 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
1686 __ b(eq, &feedback_register_initialized);
1687 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1688 __ bind(&feedback_register_initialized);
1689
1690 __ AssertUndefinedOrAllocationSite(r2, r5);
1691
1692 // Pass function as new target.
1693 __ mov(r3, r1);
1694
1695 // Tail call to the function-specific construct stub (still in the caller
1696 // context at this point).
1697 __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1698 __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset));
1699 __ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
1700
1701 __ bind(&non_function);
1702 __ mov(r3, r1);
1703 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1704 }
1705
1706 // StringCharCodeAtGenerator
GenerateFast(MacroAssembler * masm)1707 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
1708 // If the receiver is a smi trigger the non-string case.
1709 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
1710 __ JumpIfSmi(object_, receiver_not_string_);
1711
1712 // Fetch the instance type of the receiver into result register.
1713 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1714 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1715 // If the receiver is not a string trigger the non-string case.
1716 __ tst(result_, Operand(kIsNotStringMask));
1717 __ b(ne, receiver_not_string_);
1718 }
1719
1720 // If the index is non-smi trigger the non-smi case.
1721 __ JumpIfNotSmi(index_, &index_not_smi_);
1722 __ bind(&got_smi_index_);
1723
1724 // Check for index out of range.
1725 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
1726 __ cmp(ip, Operand(index_));
1727 __ b(ls, index_out_of_range_);
1728
1729 __ SmiUntag(index_);
1730
1731 StringCharLoadGenerator::Generate(masm,
1732 object_,
1733 index_,
1734 result_,
1735 &call_runtime_);
1736
1737 __ SmiTag(result_);
1738 __ bind(&exit_);
1739 }
1740
1741
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)1742 void StringCharCodeAtGenerator::GenerateSlow(
1743 MacroAssembler* masm, EmbedMode embed_mode,
1744 const RuntimeCallHelper& call_helper) {
1745 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
1746
1747 // Index is not a smi.
1748 __ bind(&index_not_smi_);
1749 // If index is a heap number, try converting it to an integer.
1750 __ CheckMap(index_,
1751 result_,
1752 Heap::kHeapNumberMapRootIndex,
1753 index_not_number_,
1754 DONT_DO_SMI_CHECK);
1755 call_helper.BeforeCall(masm);
1756 if (embed_mode == PART_OF_IC_HANDLER) {
1757 __ Push(LoadWithVectorDescriptor::VectorRegister(),
1758 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
1759 } else {
1760 // index_ is consumed by runtime conversion function.
1761 __ Push(object_, index_);
1762 }
1763 __ CallRuntime(Runtime::kNumberToSmi);
1764 // Save the conversion result before the pop instructions below
1765 // have a chance to overwrite it.
1766 __ Move(index_, r0);
1767 if (embed_mode == PART_OF_IC_HANDLER) {
1768 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
1769 LoadWithVectorDescriptor::SlotRegister(), object_);
1770 } else {
1771 __ pop(object_);
1772 }
1773 // Reload the instance type.
1774 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1775 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1776 call_helper.AfterCall(masm);
1777 // If index is still not a smi, it must be out of range.
1778 __ JumpIfNotSmi(index_, index_out_of_range_);
1779 // Otherwise, return to the fast path.
1780 __ jmp(&got_smi_index_);
1781
1782 // Call runtime. We get here when the receiver is a string and the
1783 // index is a number, but the code of getting the actual character
1784 // is too complex (e.g., when the string needs to be flattened).
1785 __ bind(&call_runtime_);
1786 call_helper.BeforeCall(masm);
1787 __ SmiTag(index_);
1788 __ Push(object_, index_);
1789 __ CallRuntime(Runtime::kStringCharCodeAtRT);
1790 __ Move(result_, r0);
1791 call_helper.AfterCall(masm);
1792 __ jmp(&exit_);
1793
1794 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
1795 }
1796
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)1797 void StringHelper::GenerateFlatOneByteStringEquals(
1798 MacroAssembler* masm, Register left, Register right, Register scratch1,
1799 Register scratch2, Register scratch3) {
1800 Register length = scratch1;
1801
1802 // Compare lengths.
1803 Label strings_not_equal, check_zero_length;
1804 __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
1805 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
1806 __ cmp(length, scratch2);
1807 __ b(eq, &check_zero_length);
1808 __ bind(&strings_not_equal);
1809 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
1810 __ Ret();
1811
1812 // Check if the length is zero.
1813 Label compare_chars;
1814 __ bind(&check_zero_length);
1815 STATIC_ASSERT(kSmiTag == 0);
1816 __ cmp(length, Operand::Zero());
1817 __ b(ne, &compare_chars);
1818 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
1819 __ Ret();
1820
1821 // Compare characters.
1822 __ bind(&compare_chars);
1823 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
1824 &strings_not_equal);
1825
1826 // Characters are equal.
1827 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
1828 __ Ret();
1829 }
1830
1831
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)1832 void StringHelper::GenerateCompareFlatOneByteStrings(
1833 MacroAssembler* masm, Register left, Register right, Register scratch1,
1834 Register scratch2, Register scratch3, Register scratch4) {
1835 Label result_not_equal, compare_lengths;
1836 // Find minimum length and length difference.
1837 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
1838 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
1839 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
1840 Register length_delta = scratch3;
1841 __ mov(scratch1, scratch2, LeaveCC, gt);
1842 Register min_length = scratch1;
1843 STATIC_ASSERT(kSmiTag == 0);
1844 __ cmp(min_length, Operand::Zero());
1845 __ b(eq, &compare_lengths);
1846
1847 // Compare loop.
1848 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
1849 scratch4, &result_not_equal);
1850
1851 // Compare lengths - strings up to min-length are equal.
1852 __ bind(&compare_lengths);
1853 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
1854 // Use length_delta as result if it's zero.
1855 __ mov(r0, Operand(length_delta), SetCC);
1856 __ bind(&result_not_equal);
1857 // Conditionally update the result based either on length_delta or
1858 // the last comparion performed in the loop above.
1859 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
1860 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
1861 __ Ret();
1862 }
1863
1864
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Label * chars_not_equal)1865 void StringHelper::GenerateOneByteCharsCompareLoop(
1866 MacroAssembler* masm, Register left, Register right, Register length,
1867 Register scratch1, Register scratch2, Label* chars_not_equal) {
1868 // Change index to run from -length to -1 by adding length to string
1869 // start. This means that loop ends when index reaches zero, which
1870 // doesn't need an additional compare.
1871 __ SmiUntag(length);
1872 __ add(scratch1, length,
1873 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
1874 __ add(left, left, Operand(scratch1));
1875 __ add(right, right, Operand(scratch1));
1876 __ rsb(length, length, Operand::Zero());
1877 Register index = length; // index = -length;
1878
1879 // Compare loop.
1880 Label loop;
1881 __ bind(&loop);
1882 __ ldrb(scratch1, MemOperand(left, index));
1883 __ ldrb(scratch2, MemOperand(right, index));
1884 __ cmp(scratch1, scratch2);
1885 __ b(ne, chars_not_equal);
1886 __ add(index, index, Operand(1), SetCC);
1887 __ b(ne, &loop);
1888 }
1889
1890
Generate(MacroAssembler * masm)1891 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
1892 // ----------- S t a t e -------------
1893 // -- r1 : left
1894 // -- r0 : right
1895 // -- lr : return address
1896 // -----------------------------------
1897
1898 // Load r2 with the allocation site. We stick an undefined dummy value here
1899 // and replace it with the real allocation site later when we instantiate this
1900 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
1901 __ Move(r2, isolate()->factory()->undefined_value());
1902
1903 // Make sure that we actually patched the allocation site.
1904 if (FLAG_debug_code) {
1905 __ tst(r2, Operand(kSmiTagMask));
1906 __ Assert(ne, kExpectedAllocationSite);
1907 __ push(r2);
1908 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
1909 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
1910 __ cmp(r2, ip);
1911 __ pop(r2);
1912 __ Assert(eq, kExpectedAllocationSite);
1913 }
1914
1915 // Tail call into the stub that handles binary operations with allocation
1916 // sites.
1917 BinaryOpWithAllocationSiteStub stub(isolate(), state());
1918 __ TailCallStub(&stub);
1919 }
1920
1921
GenerateBooleans(MacroAssembler * masm)1922 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
1923 DCHECK_EQ(CompareICState::BOOLEAN, state());
1924 Label miss;
1925
1926 __ CheckMap(r1, r2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
1927 __ CheckMap(r0, r3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
1928 if (!Token::IsEqualityOp(op())) {
1929 __ ldr(r1, FieldMemOperand(r1, Oddball::kToNumberOffset));
1930 __ AssertSmi(r1);
1931 __ ldr(r0, FieldMemOperand(r0, Oddball::kToNumberOffset));
1932 __ AssertSmi(r0);
1933 }
1934 __ sub(r0, r1, r0);
1935 __ Ret();
1936
1937 __ bind(&miss);
1938 GenerateMiss(masm);
1939 }
1940
1941
GenerateSmis(MacroAssembler * masm)1942 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
1943 DCHECK(state() == CompareICState::SMI);
1944 Label miss;
1945 __ orr(r2, r1, r0);
1946 __ JumpIfNotSmi(r2, &miss);
1947
1948 if (GetCondition() == eq) {
1949 // For equality we do not care about the sign of the result.
1950 __ sub(r0, r0, r1, SetCC);
1951 } else {
1952 // Untag before subtracting to avoid handling overflow.
1953 __ SmiUntag(r1);
1954 __ sub(r0, r1, Operand::SmiUntag(r0));
1955 }
1956 __ Ret();
1957
1958 __ bind(&miss);
1959 GenerateMiss(masm);
1960 }
1961
1962
GenerateNumbers(MacroAssembler * masm)1963 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
1964 DCHECK(state() == CompareICState::NUMBER);
1965
1966 Label generic_stub;
1967 Label unordered, maybe_undefined1, maybe_undefined2;
1968 Label miss;
1969
1970 if (left() == CompareICState::SMI) {
1971 __ JumpIfNotSmi(r1, &miss);
1972 }
1973 if (right() == CompareICState::SMI) {
1974 __ JumpIfNotSmi(r0, &miss);
1975 }
1976
1977 // Inlining the double comparison and falling back to the general compare
1978 // stub if NaN is involved.
1979 // Load left and right operand.
1980 Label done, left, left_smi, right_smi;
1981 __ JumpIfSmi(r0, &right_smi);
1982 __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
1983 DONT_DO_SMI_CHECK);
1984 __ sub(r2, r0, Operand(kHeapObjectTag));
1985 __ vldr(d1, r2, HeapNumber::kValueOffset);
1986 __ b(&left);
1987 __ bind(&right_smi);
1988 __ SmiToDouble(d1, r0);
1989
1990 __ bind(&left);
1991 __ JumpIfSmi(r1, &left_smi);
1992 __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
1993 DONT_DO_SMI_CHECK);
1994 __ sub(r2, r1, Operand(kHeapObjectTag));
1995 __ vldr(d0, r2, HeapNumber::kValueOffset);
1996 __ b(&done);
1997 __ bind(&left_smi);
1998 __ SmiToDouble(d0, r1);
1999
2000 __ bind(&done);
2001 // Compare operands.
2002 __ VFPCompareAndSetFlags(d0, d1);
2003
2004 // Don't base result on status bits when a NaN is involved.
2005 __ b(vs, &unordered);
2006
2007 // Return a result of -1, 0, or 1, based on status bits.
2008 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
2009 __ mov(r0, Operand(LESS), LeaveCC, lt);
2010 __ mov(r0, Operand(GREATER), LeaveCC, gt);
2011 __ Ret();
2012
2013 __ bind(&unordered);
2014 __ bind(&generic_stub);
2015 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
2016 CompareICState::GENERIC, CompareICState::GENERIC);
2017 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2018
2019 __ bind(&maybe_undefined1);
2020 if (Token::IsOrderedRelationalCompareOp(op())) {
2021 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
2022 __ b(ne, &miss);
2023 __ JumpIfSmi(r1, &unordered);
2024 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
2025 __ b(ne, &maybe_undefined2);
2026 __ jmp(&unordered);
2027 }
2028
2029 __ bind(&maybe_undefined2);
2030 if (Token::IsOrderedRelationalCompareOp(op())) {
2031 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
2032 __ b(eq, &unordered);
2033 }
2034
2035 __ bind(&miss);
2036 GenerateMiss(masm);
2037 }
2038
2039
GenerateInternalizedStrings(MacroAssembler * masm)2040 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2041 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2042 Label miss;
2043
2044 // Registers containing left and right operands respectively.
2045 Register left = r1;
2046 Register right = r0;
2047 Register tmp1 = r2;
2048 Register tmp2 = r3;
2049
2050 // Check that both operands are heap objects.
2051 __ JumpIfEitherSmi(left, right, &miss);
2052
2053 // Check that both operands are internalized strings.
2054 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2055 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2056 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2057 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2058 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2059 __ orr(tmp1, tmp1, Operand(tmp2));
2060 __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
2061 __ b(ne, &miss);
2062
2063 // Internalized strings are compared by identity.
2064 __ cmp(left, right);
2065 // Make sure r0 is non-zero. At this point input operands are
2066 // guaranteed to be non-zero.
2067 DCHECK(right.is(r0));
2068 STATIC_ASSERT(EQUAL == 0);
2069 STATIC_ASSERT(kSmiTag == 0);
2070 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
2071 __ Ret();
2072
2073 __ bind(&miss);
2074 GenerateMiss(masm);
2075 }
2076
2077
GenerateUniqueNames(MacroAssembler * masm)2078 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2079 DCHECK(state() == CompareICState::UNIQUE_NAME);
2080 DCHECK(GetCondition() == eq);
2081 Label miss;
2082
2083 // Registers containing left and right operands respectively.
2084 Register left = r1;
2085 Register right = r0;
2086 Register tmp1 = r2;
2087 Register tmp2 = r3;
2088
2089 // Check that both operands are heap objects.
2090 __ JumpIfEitherSmi(left, right, &miss);
2091
2092 // Check that both operands are unique names. This leaves the instance
2093 // types loaded in tmp1 and tmp2.
2094 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2095 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2096 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2097 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2098
2099 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
2100 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
2101
2102 // Unique names are compared by identity.
2103 __ cmp(left, right);
2104 // Make sure r0 is non-zero. At this point input operands are
2105 // guaranteed to be non-zero.
2106 DCHECK(right.is(r0));
2107 STATIC_ASSERT(EQUAL == 0);
2108 STATIC_ASSERT(kSmiTag == 0);
2109 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
2110 __ Ret();
2111
2112 __ bind(&miss);
2113 GenerateMiss(masm);
2114 }
2115
2116
GenerateStrings(MacroAssembler * masm)2117 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2118 DCHECK(state() == CompareICState::STRING);
2119 Label miss;
2120
2121 bool equality = Token::IsEqualityOp(op());
2122
2123 // Registers containing left and right operands respectively.
2124 Register left = r1;
2125 Register right = r0;
2126 Register tmp1 = r2;
2127 Register tmp2 = r3;
2128 Register tmp3 = r4;
2129 Register tmp4 = r5;
2130
2131 // Check that both operands are heap objects.
2132 __ JumpIfEitherSmi(left, right, &miss);
2133
2134 // Check that both operands are strings. This leaves the instance
2135 // types loaded in tmp1 and tmp2.
2136 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2137 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2138 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2139 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2140 STATIC_ASSERT(kNotStringTag != 0);
2141 __ orr(tmp3, tmp1, tmp2);
2142 __ tst(tmp3, Operand(kIsNotStringMask));
2143 __ b(ne, &miss);
2144
2145 // Fast check for identical strings.
2146 __ cmp(left, right);
2147 STATIC_ASSERT(EQUAL == 0);
2148 STATIC_ASSERT(kSmiTag == 0);
2149 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
2150 __ Ret(eq);
2151
2152 // Handle not identical strings.
2153
2154 // Check that both strings are internalized strings. If they are, we're done
2155 // because we already know they are not identical. We know they are both
2156 // strings.
2157 if (equality) {
2158 DCHECK(GetCondition() == eq);
2159 STATIC_ASSERT(kInternalizedTag == 0);
2160 __ orr(tmp3, tmp1, Operand(tmp2));
2161 __ tst(tmp3, Operand(kIsNotInternalizedMask));
2162 // Make sure r0 is non-zero. At this point input operands are
2163 // guaranteed to be non-zero.
2164 DCHECK(right.is(r0));
2165 __ Ret(eq);
2166 }
2167
2168 // Check that both strings are sequential one-byte.
2169 Label runtime;
2170 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
2171 &runtime);
2172
2173 // Compare flat one-byte strings. Returns when done.
2174 if (equality) {
2175 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
2176 tmp3);
2177 } else {
2178 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
2179 tmp2, tmp3, tmp4);
2180 }
2181
2182 // Handle more complex cases in runtime.
2183 __ bind(&runtime);
2184 if (equality) {
2185 {
2186 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2187 __ Push(left, right);
2188 __ CallRuntime(Runtime::kStringEqual);
2189 }
2190 __ LoadRoot(r1, Heap::kTrueValueRootIndex);
2191 __ sub(r0, r0, r1);
2192 __ Ret();
2193 } else {
2194 __ Push(left, right);
2195 __ TailCallRuntime(Runtime::kStringCompare);
2196 }
2197
2198 __ bind(&miss);
2199 GenerateMiss(masm);
2200 }
2201
2202
GenerateReceivers(MacroAssembler * masm)2203 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2204 DCHECK_EQ(CompareICState::RECEIVER, state());
2205 Label miss;
2206 __ and_(r2, r1, Operand(r0));
2207 __ JumpIfSmi(r2, &miss);
2208
2209 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2210 __ CompareObjectType(r0, r2, r2, FIRST_JS_RECEIVER_TYPE);
2211 __ b(lt, &miss);
2212 __ CompareObjectType(r1, r2, r2, FIRST_JS_RECEIVER_TYPE);
2213 __ b(lt, &miss);
2214
2215 DCHECK(GetCondition() == eq);
2216 __ sub(r0, r0, Operand(r1));
2217 __ Ret();
2218
2219 __ bind(&miss);
2220 GenerateMiss(masm);
2221 }
2222
2223
GenerateKnownReceivers(MacroAssembler * masm)2224 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2225 Label miss;
2226 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2227 __ and_(r2, r1, Operand(r0));
2228 __ JumpIfSmi(r2, &miss);
2229 __ GetWeakValue(r4, cell);
2230 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
2231 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
2232 __ cmp(r2, r4);
2233 __ b(ne, &miss);
2234 __ cmp(r3, r4);
2235 __ b(ne, &miss);
2236
2237 if (Token::IsEqualityOp(op())) {
2238 __ sub(r0, r0, Operand(r1));
2239 __ Ret();
2240 } else {
2241 if (op() == Token::LT || op() == Token::LTE) {
2242 __ mov(r2, Operand(Smi::FromInt(GREATER)));
2243 } else {
2244 __ mov(r2, Operand(Smi::FromInt(LESS)));
2245 }
2246 __ Push(r1, r0, r2);
2247 __ TailCallRuntime(Runtime::kCompare);
2248 }
2249
2250 __ bind(&miss);
2251 GenerateMiss(masm);
2252 }
2253
2254
GenerateMiss(MacroAssembler * masm)2255 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2256 {
2257 // Call the runtime system in a fresh internal frame.
2258 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2259 __ Push(r1, r0);
2260 __ Push(lr, r1, r0);
2261 __ mov(ip, Operand(Smi::FromInt(op())));
2262 __ push(ip);
2263 __ CallRuntime(Runtime::kCompareIC_Miss);
2264 // Compute the entry point of the rewritten stub.
2265 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
2266 // Restore registers.
2267 __ pop(lr);
2268 __ Pop(r1, r0);
2269 }
2270
2271 __ Jump(r2);
2272 }
2273
2274
Generate(MacroAssembler * masm)2275 void DirectCEntryStub::Generate(MacroAssembler* masm) {
2276 // Place the return address on the stack, making the call
2277 // GC safe. The RegExp backend also relies on this.
2278 __ str(lr, MemOperand(sp, 0));
2279 __ blx(ip); // Call the C++ function.
2280 __ ldr(pc, MemOperand(sp, 0));
2281 }
2282
2283
GenerateCall(MacroAssembler * masm,Register target)2284 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
2285 Register target) {
2286 intptr_t code =
2287 reinterpret_cast<intptr_t>(GetCode().location());
2288 __ Move(ip, target);
2289 __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
2290 __ blx(lr); // Call the stub.
2291 }
2292
2293
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)2294 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
2295 Label* miss,
2296 Label* done,
2297 Register receiver,
2298 Register properties,
2299 Handle<Name> name,
2300 Register scratch0) {
2301 DCHECK(name->IsUniqueName());
2302 // If names of slots in range from 1 to kProbes - 1 for the hash value are
2303 // not equal to the name and kProbes-th slot is not used (its name is the
2304 // undefined value), it guarantees the hash table doesn't contain the
2305 // property. It's true even if some slots represent deleted properties
2306 // (their names are the hole value).
2307 for (int i = 0; i < kInlinedProbes; i++) {
2308 // scratch0 points to properties hash.
2309 // Compute the masked index: (hash + i + i * i) & mask.
2310 Register index = scratch0;
2311 // Capacity is smi 2^n.
2312 __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
2313 __ sub(index, index, Operand(1));
2314 __ and_(index, index, Operand(
2315 Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
2316
2317 // Scale the index by multiplying by the entry size.
2318 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2319 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
2320
2321 Register entity_name = scratch0;
2322 // Having undefined at this place means the name is not contained.
2323 STATIC_ASSERT(kSmiTagSize == 1);
2324 Register tmp = properties;
2325 __ add(tmp, properties, Operand(index, LSL, 1));
2326 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
2327
2328 DCHECK(!tmp.is(entity_name));
2329 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
2330 __ cmp(entity_name, tmp);
2331 __ b(eq, done);
2332
2333 // Load the hole ready for use below:
2334 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
2335
2336 // Stop if found the property.
2337 __ cmp(entity_name, Operand(Handle<Name>(name)));
2338 __ b(eq, miss);
2339
2340 Label good;
2341 __ cmp(entity_name, tmp);
2342 __ b(eq, &good);
2343
2344 // Check if the entry name is not a unique name.
2345 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
2346 __ ldrb(entity_name,
2347 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
2348 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
2349 __ bind(&good);
2350
2351 // Restore the properties.
2352 __ ldr(properties,
2353 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2354 }
2355
2356 const int spill_mask =
2357 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
2358 r2.bit() | r1.bit() | r0.bit());
2359
2360 __ stm(db_w, sp, spill_mask);
2361 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2362 __ mov(r1, Operand(Handle<Name>(name)));
2363 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
2364 __ CallStub(&stub);
2365 __ cmp(r0, Operand::Zero());
2366 __ ldm(ia_w, sp, spill_mask);
2367
2368 __ b(eq, done);
2369 __ b(ne, miss);
2370 }
2371
Generate(MacroAssembler * masm)2372 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
2373 // This stub overrides SometimesSetsUpAFrame() to return false. That means
2374 // we cannot call anything that could cause a GC from this stub.
2375 // Registers:
2376 // result: NameDictionary to probe
2377 // r1: key
2378 // dictionary: NameDictionary to probe.
2379 // index: will hold an index of entry if lookup is successful.
2380 // might alias with result_.
2381 // Returns:
2382 // result_ is zero if lookup failed, non zero otherwise.
2383
2384 Register result = r0;
2385 Register dictionary = r0;
2386 Register key = r1;
2387 Register index = r2;
2388 Register mask = r3;
2389 Register hash = r4;
2390 Register undefined = r5;
2391 Register entry_key = r6;
2392
2393 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
2394
2395 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
2396 __ SmiUntag(mask);
2397 __ sub(mask, mask, Operand(1));
2398
2399 __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
2400
2401 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
2402
2403 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
2404 // Compute the masked index: (hash + i + i * i) & mask.
2405 // Capacity is smi 2^n.
2406 if (i > 0) {
2407 // Add the probe offset (i + i * i) left shifted to avoid right shifting
2408 // the hash in a separate instruction. The value hash + i + i * i is right
2409 // shifted in the following and instruction.
2410 DCHECK(NameDictionary::GetProbeOffset(i) <
2411 1 << (32 - Name::kHashFieldOffset));
2412 __ add(index, hash, Operand(
2413 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
2414 } else {
2415 __ mov(index, Operand(hash));
2416 }
2417 __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
2418
2419 // Scale the index by multiplying by the entry size.
2420 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2421 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
2422
2423 STATIC_ASSERT(kSmiTagSize == 1);
2424 __ add(index, dictionary, Operand(index, LSL, 2));
2425 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
2426
2427 // Having undefined at this place means the name is not contained.
2428 __ cmp(entry_key, Operand(undefined));
2429 __ b(eq, ¬_in_dictionary);
2430
2431 // Stop if found the property.
2432 __ cmp(entry_key, Operand(key));
2433 __ b(eq, &in_dictionary);
2434
2435 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
2436 // Check if the entry name is not a unique name.
2437 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
2438 __ ldrb(entry_key,
2439 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
2440 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
2441 }
2442 }
2443
2444 __ bind(&maybe_in_dictionary);
2445 // If we are doing negative lookup then probing failure should be
2446 // treated as a lookup success. For positive lookup probing failure
2447 // should be treated as lookup failure.
2448 if (mode() == POSITIVE_LOOKUP) {
2449 __ mov(result, Operand::Zero());
2450 __ Ret();
2451 }
2452
2453 __ bind(&in_dictionary);
2454 __ mov(result, Operand(1));
2455 __ Ret();
2456
2457 __ bind(¬_in_dictionary);
2458 __ mov(result, Operand::Zero());
2459 __ Ret();
2460 }
2461
2462
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)2463 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
2464 Isolate* isolate) {
2465 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
2466 stub1.GetCode();
2467 // Hydrogen code stubs need stub2 at snapshot time.
2468 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
2469 stub2.GetCode();
2470 }
2471
2472
2473 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
2474 // the value has just been written into the object, now this stub makes sure
2475 // we keep the GC informed. The word in the object where the value has been
2476 // written is in the address register.
Generate(MacroAssembler * masm)2477 void RecordWriteStub::Generate(MacroAssembler* masm) {
2478 Label skip_to_incremental_noncompacting;
2479 Label skip_to_incremental_compacting;
2480
2481 // The first two instructions are generated with labels so as to get the
2482 // offset fixed up correctly by the bind(Label*) call. We patch it back and
2483 // forth between a compare instructions (a nop in this position) and the
2484 // real branch when we start and stop incremental heap marking.
2485 // See RecordWriteStub::Patch for details.
2486 {
2487 // Block literal pool emission, as the position of these two instructions
2488 // is assumed by the patching code.
2489 Assembler::BlockConstPoolScope block_const_pool(masm);
2490 __ b(&skip_to_incremental_noncompacting);
2491 __ b(&skip_to_incremental_compacting);
2492 }
2493
2494 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2495 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2496 MacroAssembler::kReturnAtEnd);
2497 }
2498 __ Ret();
2499
2500 __ bind(&skip_to_incremental_noncompacting);
2501 GenerateIncremental(masm, INCREMENTAL);
2502
2503 __ bind(&skip_to_incremental_compacting);
2504 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
2505
2506 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
2507 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
2508 DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
2509 DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
2510 PatchBranchIntoNop(masm, 0);
2511 PatchBranchIntoNop(masm, Assembler::kInstrSize);
2512 }
2513
2514
GenerateIncremental(MacroAssembler * masm,Mode mode)2515 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
2516 regs_.Save(masm);
2517
2518 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2519 Label dont_need_remembered_set;
2520
2521 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
2522 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
2523 regs_.scratch0(),
2524 &dont_need_remembered_set);
2525
2526 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
2527 &dont_need_remembered_set);
2528
2529 // First notify the incremental marker if necessary, then update the
2530 // remembered set.
2531 CheckNeedsToInformIncrementalMarker(
2532 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
2533 InformIncrementalMarker(masm);
2534 regs_.Restore(masm);
2535 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2536 MacroAssembler::kReturnAtEnd);
2537
2538 __ bind(&dont_need_remembered_set);
2539 }
2540
2541 CheckNeedsToInformIncrementalMarker(
2542 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
2543 InformIncrementalMarker(masm);
2544 regs_.Restore(masm);
2545 __ Ret();
2546 }
2547
2548
InformIncrementalMarker(MacroAssembler * masm)2549 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
2550 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
2551 int argument_count = 3;
2552 __ PrepareCallCFunction(argument_count, regs_.scratch0());
2553 Register address =
2554 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
2555 DCHECK(!address.is(regs_.object()));
2556 DCHECK(!address.is(r0));
2557 __ Move(address, regs_.address());
2558 __ Move(r0, regs_.object());
2559 __ Move(r1, address);
2560 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
2561
2562 AllowExternalCallThatCantCauseGC scope(masm);
2563 __ CallCFunction(
2564 ExternalReference::incremental_marking_record_write_function(isolate()),
2565 argument_count);
2566 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
2567 }
2568
2569
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)2570 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
2571 MacroAssembler* masm,
2572 OnNoNeedToInformIncrementalMarker on_no_need,
2573 Mode mode) {
2574 Label on_black;
2575 Label need_incremental;
2576 Label need_incremental_pop_scratch;
2577
2578 // Let's look at the color of the object: If it is not black we don't have
2579 // to inform the incremental marker.
2580 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
2581
2582 regs_.Restore(masm);
2583 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2584 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2585 MacroAssembler::kReturnAtEnd);
2586 } else {
2587 __ Ret();
2588 }
2589
2590 __ bind(&on_black);
2591
2592 // Get the value from the slot.
2593 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
2594
2595 if (mode == INCREMENTAL_COMPACTION) {
2596 Label ensure_not_white;
2597
2598 __ CheckPageFlag(regs_.scratch0(), // Contains value.
2599 regs_.scratch1(), // Scratch.
2600 MemoryChunk::kEvacuationCandidateMask,
2601 eq,
2602 &ensure_not_white);
2603
2604 __ CheckPageFlag(regs_.object(),
2605 regs_.scratch1(), // Scratch.
2606 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
2607 eq,
2608 &need_incremental);
2609
2610 __ bind(&ensure_not_white);
2611 }
2612
2613 // We need extra registers for this, so we push the object and the address
2614 // register temporarily.
2615 __ Push(regs_.object(), regs_.address());
2616 __ JumpIfWhite(regs_.scratch0(), // The value.
2617 regs_.scratch1(), // Scratch.
2618 regs_.object(), // Scratch.
2619 regs_.address(), // Scratch.
2620 &need_incremental_pop_scratch);
2621 __ Pop(regs_.object(), regs_.address());
2622
2623 regs_.Restore(masm);
2624 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2625 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2626 MacroAssembler::kReturnAtEnd);
2627 } else {
2628 __ Ret();
2629 }
2630
2631 __ bind(&need_incremental_pop_scratch);
2632 __ Pop(regs_.object(), regs_.address());
2633
2634 __ bind(&need_incremental);
2635
2636 // Fall through when we need to inform the incremental marker.
2637 }
2638
2639
Generate(MacroAssembler * masm)2640 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
2641 CEntryStub ces(isolate(), 1, kSaveFPRegs);
2642 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
2643 int parameter_count_offset =
2644 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
2645 __ ldr(r1, MemOperand(fp, parameter_count_offset));
2646 if (function_mode() == JS_FUNCTION_STUB_MODE) {
2647 __ add(r1, r1, Operand(1));
2648 }
2649 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
2650 __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
2651 __ add(sp, sp, r1);
2652 __ Ret();
2653 }
2654
MaybeCallEntryHook(MacroAssembler * masm)2655 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
2656 if (masm->isolate()->function_entry_hook() != NULL) {
2657 ProfileEntryHookStub stub(masm->isolate());
2658 PredictableCodeSizeScope predictable(masm);
2659 predictable.ExpectSize(masm->CallStubSize(&stub) +
2660 2 * Assembler::kInstrSize);
2661 __ push(lr);
2662 __ CallStub(&stub);
2663 __ pop(lr);
2664 }
2665 }
2666
2667
Generate(MacroAssembler * masm)2668 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
2669 // The entry hook is a "push lr" instruction, followed by a call.
2670 const int32_t kReturnAddressDistanceFromFunctionStart =
2671 3 * Assembler::kInstrSize;
2672
2673 // This should contain all kCallerSaved registers.
2674 const RegList kSavedRegs =
2675 1 << 0 | // r0
2676 1 << 1 | // r1
2677 1 << 2 | // r2
2678 1 << 3 | // r3
2679 1 << 5 | // r5
2680 1 << 9; // r9
2681 // We also save lr, so the count here is one higher than the mask indicates.
2682 const int32_t kNumSavedRegs = 7;
2683
2684 DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
2685
2686 // Save all caller-save registers as this may be called from anywhere.
2687 __ stm(db_w, sp, kSavedRegs | lr.bit());
2688
2689 // Compute the function's address for the first argument.
2690 __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
2691
2692 // The caller's return address is above the saved temporaries.
2693 // Grab that for the second argument to the hook.
2694 __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
2695
2696 // Align the stack if necessary.
2697 int frame_alignment = masm->ActivationFrameAlignment();
2698 if (frame_alignment > kPointerSize) {
2699 __ mov(r5, sp);
2700 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2701 __ and_(sp, sp, Operand(-frame_alignment));
2702 }
2703
2704 #if V8_HOST_ARCH_ARM
2705 int32_t entry_hook =
2706 reinterpret_cast<int32_t>(isolate()->function_entry_hook());
2707 __ mov(ip, Operand(entry_hook));
2708 #else
2709 // Under the simulator we need to indirect the entry hook through a
2710 // trampoline function at a known address.
2711 // It additionally takes an isolate as a third parameter
2712 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
2713
2714 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
2715 __ mov(ip, Operand(ExternalReference(&dispatcher,
2716 ExternalReference::BUILTIN_CALL,
2717 isolate())));
2718 #endif
2719 __ Call(ip);
2720
2721 // Restore the stack pointer if needed.
2722 if (frame_alignment > kPointerSize) {
2723 __ mov(sp, r5);
2724 }
2725
2726 // Also pop pc to get Ret(0).
2727 __ ldm(ia_w, sp, kSavedRegs | pc.bit());
2728 }
2729
2730
2731 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)2732 static void CreateArrayDispatch(MacroAssembler* masm,
2733 AllocationSiteOverrideMode mode) {
2734 if (mode == DISABLE_ALLOCATION_SITES) {
2735 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
2736 __ TailCallStub(&stub);
2737 } else if (mode == DONT_OVERRIDE) {
2738 int last_index = GetSequenceIndexFromFastElementsKind(
2739 TERMINAL_FAST_ELEMENTS_KIND);
2740 for (int i = 0; i <= last_index; ++i) {
2741 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2742 __ cmp(r3, Operand(kind));
2743 T stub(masm->isolate(), kind);
2744 __ TailCallStub(&stub, eq);
2745 }
2746
2747 // If we reached this point there is a problem.
2748 __ Abort(kUnexpectedElementsKindInArrayConstructor);
2749 } else {
2750 UNREACHABLE();
2751 }
2752 }
2753
2754
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)2755 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
2756 AllocationSiteOverrideMode mode) {
2757 // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
2758 // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
2759 // r0 - number of arguments
2760 // r1 - constructor?
2761 // sp[0] - last argument
2762 Label normal_sequence;
2763 if (mode == DONT_OVERRIDE) {
2764 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2765 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2766 STATIC_ASSERT(FAST_ELEMENTS == 2);
2767 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2768 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
2769 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
2770
2771 // is the low bit set? If so, we are holey and that is good.
2772 __ tst(r3, Operand(1));
2773 __ b(ne, &normal_sequence);
2774 }
2775
2776 // look at the first argument
2777 __ ldr(r5, MemOperand(sp, 0));
2778 __ cmp(r5, Operand::Zero());
2779 __ b(eq, &normal_sequence);
2780
2781 if (mode == DISABLE_ALLOCATION_SITES) {
2782 ElementsKind initial = GetInitialFastElementsKind();
2783 ElementsKind holey_initial = GetHoleyElementsKind(initial);
2784
2785 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
2786 holey_initial,
2787 DISABLE_ALLOCATION_SITES);
2788 __ TailCallStub(&stub_holey);
2789
2790 __ bind(&normal_sequence);
2791 ArraySingleArgumentConstructorStub stub(masm->isolate(),
2792 initial,
2793 DISABLE_ALLOCATION_SITES);
2794 __ TailCallStub(&stub);
2795 } else if (mode == DONT_OVERRIDE) {
2796 // We are going to create a holey array, but our kind is non-holey.
2797 // Fix kind and retry (only if we have an allocation site in the slot).
2798 __ add(r3, r3, Operand(1));
2799
2800 if (FLAG_debug_code) {
2801 __ ldr(r5, FieldMemOperand(r2, 0));
2802 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
2803 __ Assert(eq, kExpectedAllocationSite);
2804 }
2805
2806 // Save the resulting elements kind in type info. We can't just store r3
2807 // in the AllocationSite::transition_info field because elements kind is
2808 // restricted to a portion of the field...upper bits need to be left alone.
2809 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
2810 __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
2811 __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
2812 __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
2813
2814 __ bind(&normal_sequence);
2815 int last_index = GetSequenceIndexFromFastElementsKind(
2816 TERMINAL_FAST_ELEMENTS_KIND);
2817 for (int i = 0; i <= last_index; ++i) {
2818 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2819 __ cmp(r3, Operand(kind));
2820 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
2821 __ TailCallStub(&stub, eq);
2822 }
2823
2824 // If we reached this point there is a problem.
2825 __ Abort(kUnexpectedElementsKindInArrayConstructor);
2826 } else {
2827 UNREACHABLE();
2828 }
2829 }
2830
2831
2832 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)2833 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
2834 int to_index = GetSequenceIndexFromFastElementsKind(
2835 TERMINAL_FAST_ELEMENTS_KIND);
2836 for (int i = 0; i <= to_index; ++i) {
2837 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2838 T stub(isolate, kind);
2839 stub.GetCode();
2840 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
2841 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
2842 stub1.GetCode();
2843 }
2844 }
2845 }
2846
GenerateStubsAheadOfTime(Isolate * isolate)2847 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2848 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
2849 isolate);
2850 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
2851 isolate);
2852 ArrayNArgumentsConstructorStub stub(isolate);
2853 stub.GetCode();
2854 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
2855 for (int i = 0; i < 2; i++) {
2856 // For internal arrays we only need a few things
2857 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
2858 stubh1.GetCode();
2859 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
2860 stubh2.GetCode();
2861 }
2862 }
2863
2864
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)2865 void ArrayConstructorStub::GenerateDispatchToArrayStub(
2866 MacroAssembler* masm,
2867 AllocationSiteOverrideMode mode) {
2868 Label not_zero_case, not_one_case;
2869 __ tst(r0, r0);
2870 __ b(ne, ¬_zero_case);
2871 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
2872
2873 __ bind(¬_zero_case);
2874 __ cmp(r0, Operand(1));
2875 __ b(gt, ¬_one_case);
2876 CreateArrayDispatchOneArgument(masm, mode);
2877
2878 __ bind(¬_one_case);
2879 ArrayNArgumentsConstructorStub stub(masm->isolate());
2880 __ TailCallStub(&stub);
2881 }
2882
2883
Generate(MacroAssembler * masm)2884 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
2885 // ----------- S t a t e -------------
2886 // -- r0 : argc (only if argument_count() == ANY)
2887 // -- r1 : constructor
2888 // -- r2 : AllocationSite or undefined
2889 // -- r3 : new target
2890 // -- sp[0] : return address
2891 // -- sp[4] : last argument
2892 // -----------------------------------
2893
2894 if (FLAG_debug_code) {
2895 // The array construct code is only set for the global and natives
2896 // builtin Array functions which always have maps.
2897
2898 // Initial map for the builtin Array function should be a map.
2899 __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
2900 // Will both indicate a NULL and a Smi.
2901 __ tst(r4, Operand(kSmiTagMask));
2902 __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
2903 __ CompareObjectType(r4, r4, r5, MAP_TYPE);
2904 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
2905
2906 // We should either have undefined in r2 or a valid AllocationSite
2907 __ AssertUndefinedOrAllocationSite(r2, r4);
2908 }
2909
2910 // Enter the context of the Array function.
2911 __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
2912
2913 Label subclassing;
2914 __ cmp(r3, r1);
2915 __ b(ne, &subclassing);
2916
2917 Label no_info;
2918 // Get the elements kind and case on that.
2919 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
2920 __ b(eq, &no_info);
2921
2922 __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
2923 __ SmiUntag(r3);
2924 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
2925 __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
2926 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
2927
2928 __ bind(&no_info);
2929 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
2930
2931 __ bind(&subclassing);
2932 __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
2933 __ add(r0, r0, Operand(3));
2934 __ Push(r3, r2);
2935 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
2936 }
2937
2938
GenerateCase(MacroAssembler * masm,ElementsKind kind)2939 void InternalArrayConstructorStub::GenerateCase(
2940 MacroAssembler* masm, ElementsKind kind) {
2941 __ cmp(r0, Operand(1));
2942
2943 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
2944 __ TailCallStub(&stub0, lo);
2945
2946 ArrayNArgumentsConstructorStub stubN(isolate());
2947 __ TailCallStub(&stubN, hi);
2948
2949 if (IsFastPackedElementsKind(kind)) {
2950 // We might need to create a holey array
2951 // look at the first argument
2952 __ ldr(r3, MemOperand(sp, 0));
2953 __ cmp(r3, Operand::Zero());
2954
2955 InternalArraySingleArgumentConstructorStub
2956 stub1_holey(isolate(), GetHoleyElementsKind(kind));
2957 __ TailCallStub(&stub1_holey, ne);
2958 }
2959
2960 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
2961 __ TailCallStub(&stub1);
2962 }
2963
2964
Generate(MacroAssembler * masm)2965 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
2966 // ----------- S t a t e -------------
2967 // -- r0 : argc
2968 // -- r1 : constructor
2969 // -- sp[0] : return address
2970 // -- sp[4] : last argument
2971 // -----------------------------------
2972
2973 if (FLAG_debug_code) {
2974 // The array construct code is only set for the global and natives
2975 // builtin Array functions which always have maps.
2976
2977 // Initial map for the builtin Array function should be a map.
2978 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
2979 // Will both indicate a NULL and a Smi.
2980 __ tst(r3, Operand(kSmiTagMask));
2981 __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
2982 __ CompareObjectType(r3, r3, r4, MAP_TYPE);
2983 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
2984 }
2985
2986 // Figure out the right elements kind
2987 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
2988 // Load the map's "bit field 2" into |result|. We only need the first byte,
2989 // but the following bit field extraction takes care of that anyway.
2990 __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
2991 // Retrieve elements_kind from bit field 2.
2992 __ DecodeField<Map::ElementsKindBits>(r3);
2993
2994 if (FLAG_debug_code) {
2995 Label done;
2996 __ cmp(r3, Operand(FAST_ELEMENTS));
2997 __ b(eq, &done);
2998 __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
2999 __ Assert(eq,
3000 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
3001 __ bind(&done);
3002 }
3003
3004 Label fast_elements_case;
3005 __ cmp(r3, Operand(FAST_ELEMENTS));
3006 __ b(eq, &fast_elements_case);
3007 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
3008
3009 __ bind(&fast_elements_case);
3010 GenerateCase(masm, FAST_ELEMENTS);
3011 }
3012
AddressOffset(ExternalReference ref0,ExternalReference ref1)3013 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
3014 return ref0.address() - ref1.address();
3015 }
3016
3017
3018 // Calls an API function. Allocates HandleScope, extracts returned value
3019 // from handle and propagates exceptions. Restores context. stack_space
3020 // - space to be unwound on exit (includes the call JS arguments space and
3021 // the additional space allocated for the fast call).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,int stack_space,MemOperand * stack_space_operand,MemOperand return_value_operand,MemOperand * context_restore_operand)3022 static void CallApiFunctionAndReturn(MacroAssembler* masm,
3023 Register function_address,
3024 ExternalReference thunk_ref,
3025 int stack_space,
3026 MemOperand* stack_space_operand,
3027 MemOperand return_value_operand,
3028 MemOperand* context_restore_operand) {
3029 Isolate* isolate = masm->isolate();
3030 ExternalReference next_address =
3031 ExternalReference::handle_scope_next_address(isolate);
3032 const int kNextOffset = 0;
3033 const int kLimitOffset = AddressOffset(
3034 ExternalReference::handle_scope_limit_address(isolate), next_address);
3035 const int kLevelOffset = AddressOffset(
3036 ExternalReference::handle_scope_level_address(isolate), next_address);
3037
3038 DCHECK(function_address.is(r1) || function_address.is(r2));
3039
3040 Label profiler_disabled;
3041 Label end_profiler_check;
3042 __ mov(r9, Operand(ExternalReference::is_profiling_address(isolate)));
3043 __ ldrb(r9, MemOperand(r9, 0));
3044 __ cmp(r9, Operand(0));
3045 __ b(eq, &profiler_disabled);
3046
3047 // Additional parameter is the address of the actual callback.
3048 __ mov(r3, Operand(thunk_ref));
3049 __ jmp(&end_profiler_check);
3050
3051 __ bind(&profiler_disabled);
3052 __ Move(r3, function_address);
3053 __ bind(&end_profiler_check);
3054
3055 // Allocate HandleScope in callee-save registers.
3056 __ mov(r9, Operand(next_address));
3057 __ ldr(r4, MemOperand(r9, kNextOffset));
3058 __ ldr(r5, MemOperand(r9, kLimitOffset));
3059 __ ldr(r6, MemOperand(r9, kLevelOffset));
3060 __ add(r6, r6, Operand(1));
3061 __ str(r6, MemOperand(r9, kLevelOffset));
3062
3063 if (FLAG_log_timer_events) {
3064 FrameScope frame(masm, StackFrame::MANUAL);
3065 __ PushSafepointRegisters();
3066 __ PrepareCallCFunction(1, r0);
3067 __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
3068 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
3069 1);
3070 __ PopSafepointRegisters();
3071 }
3072
3073 // Native call returns to the DirectCEntry stub which redirects to the
3074 // return address pushed on stack (could have moved after GC).
3075 // DirectCEntry stub itself is generated early and never moves.
3076 DirectCEntryStub stub(isolate);
3077 stub.GenerateCall(masm, r3);
3078
3079 if (FLAG_log_timer_events) {
3080 FrameScope frame(masm, StackFrame::MANUAL);
3081 __ PushSafepointRegisters();
3082 __ PrepareCallCFunction(1, r0);
3083 __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
3084 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
3085 1);
3086 __ PopSafepointRegisters();
3087 }
3088
3089 Label promote_scheduled_exception;
3090 Label delete_allocated_handles;
3091 Label leave_exit_frame;
3092 Label return_value_loaded;
3093
3094 // load value from ReturnValue
3095 __ ldr(r0, return_value_operand);
3096 __ bind(&return_value_loaded);
3097 // No more valid handles (the result handle was the last one). Restore
3098 // previous handle scope.
3099 __ str(r4, MemOperand(r9, kNextOffset));
3100 if (__ emit_debug_code()) {
3101 __ ldr(r1, MemOperand(r9, kLevelOffset));
3102 __ cmp(r1, r6);
3103 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
3104 }
3105 __ sub(r6, r6, Operand(1));
3106 __ str(r6, MemOperand(r9, kLevelOffset));
3107 __ ldr(ip, MemOperand(r9, kLimitOffset));
3108 __ cmp(r5, ip);
3109 __ b(ne, &delete_allocated_handles);
3110
3111 // Leave the API exit frame.
3112 __ bind(&leave_exit_frame);
3113 bool restore_context = context_restore_operand != NULL;
3114 if (restore_context) {
3115 __ ldr(cp, *context_restore_operand);
3116 }
3117 // LeaveExitFrame expects unwind space to be in a register.
3118 if (stack_space_operand != NULL) {
3119 __ ldr(r4, *stack_space_operand);
3120 } else {
3121 __ mov(r4, Operand(stack_space));
3122 }
3123 __ LeaveExitFrame(false, r4, !restore_context, stack_space_operand != NULL);
3124
3125 // Check if the function scheduled an exception.
3126 __ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
3127 __ mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate)));
3128 __ ldr(r5, MemOperand(ip));
3129 __ cmp(r4, r5);
3130 __ b(ne, &promote_scheduled_exception);
3131
3132 __ mov(pc, lr);
3133
3134 // Re-throw by promoting a scheduled exception.
3135 __ bind(&promote_scheduled_exception);
3136 __ TailCallRuntime(Runtime::kPromoteScheduledException);
3137
3138 // HandleScope limit has changed. Delete allocated extensions.
3139 __ bind(&delete_allocated_handles);
3140 __ str(r5, MemOperand(r9, kLimitOffset));
3141 __ mov(r4, r0);
3142 __ PrepareCallCFunction(1, r5);
3143 __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
3144 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
3145 1);
3146 __ mov(r0, r4);
3147 __ jmp(&leave_exit_frame);
3148 }
3149
Generate(MacroAssembler * masm)3150 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
3151 // ----------- S t a t e -------------
3152 // -- r0 : callee
3153 // -- r4 : call_data
3154 // -- r2 : holder
3155 // -- r1 : api_function_address
3156 // -- cp : context
3157 // --
3158 // -- sp[0] : last argument
3159 // -- ...
3160 // -- sp[(argc - 1)* 4] : first argument
3161 // -- sp[argc * 4] : receiver
3162 // -----------------------------------
3163
3164 Register callee = r0;
3165 Register call_data = r4;
3166 Register holder = r2;
3167 Register api_function_address = r1;
3168 Register context = cp;
3169
3170 typedef FunctionCallbackArguments FCA;
3171
3172 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
3173 STATIC_ASSERT(FCA::kCalleeIndex == 5);
3174 STATIC_ASSERT(FCA::kDataIndex == 4);
3175 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
3176 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
3177 STATIC_ASSERT(FCA::kIsolateIndex == 1);
3178 STATIC_ASSERT(FCA::kHolderIndex == 0);
3179 STATIC_ASSERT(FCA::kNewTargetIndex == 7);
3180 STATIC_ASSERT(FCA::kArgsLength == 8);
3181
3182 // new target
3183 __ PushRoot(Heap::kUndefinedValueRootIndex);
3184
3185 // context save
3186 __ push(context);
3187 if (!is_lazy()) {
3188 // load context from callee
3189 __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
3190 }
3191
3192 // callee
3193 __ push(callee);
3194
3195 // call data
3196 __ push(call_data);
3197
3198 Register scratch = call_data;
3199 if (!call_data_undefined()) {
3200 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3201 }
3202 // return value
3203 __ push(scratch);
3204 // return value default
3205 __ push(scratch);
3206 // isolate
3207 __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
3208 __ push(scratch);
3209 // holder
3210 __ push(holder);
3211
3212 // Prepare arguments.
3213 __ mov(scratch, sp);
3214
3215 // Allocate the v8::Arguments structure in the arguments' space since
3216 // it's not controlled by GC.
3217 const int kApiStackSpace = 3;
3218
3219 FrameScope frame_scope(masm, StackFrame::MANUAL);
3220 __ EnterExitFrame(false, kApiStackSpace);
3221
3222 DCHECK(!api_function_address.is(r0) && !scratch.is(r0));
3223 // r0 = FunctionCallbackInfo&
3224 // Arguments is after the return address.
3225 __ add(r0, sp, Operand(1 * kPointerSize));
3226 // FunctionCallbackInfo::implicit_args_
3227 __ str(scratch, MemOperand(r0, 0 * kPointerSize));
3228 // FunctionCallbackInfo::values_
3229 __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
3230 __ str(ip, MemOperand(r0, 1 * kPointerSize));
3231 // FunctionCallbackInfo::length_ = argc
3232 __ mov(ip, Operand(argc()));
3233 __ str(ip, MemOperand(r0, 2 * kPointerSize));
3234
3235 ExternalReference thunk_ref =
3236 ExternalReference::invoke_function_callback(masm->isolate());
3237
3238 AllowExternalCallThatCantCauseGC scope(masm);
3239 MemOperand context_restore_operand(
3240 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
3241 // Stores return the first js argument
3242 int return_value_offset = 0;
3243 if (is_store()) {
3244 return_value_offset = 2 + FCA::kArgsLength;
3245 } else {
3246 return_value_offset = 2 + FCA::kReturnValueOffset;
3247 }
3248 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
3249 int stack_space = 0;
3250 MemOperand length_operand = MemOperand(sp, 3 * kPointerSize);
3251 MemOperand* stack_space_operand = &length_operand;
3252 stack_space = argc() + FCA::kArgsLength + 1;
3253 stack_space_operand = NULL;
3254
3255 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
3256 stack_space_operand, return_value_operand,
3257 &context_restore_operand);
3258 }
3259
3260
Generate(MacroAssembler * masm)3261 void CallApiGetterStub::Generate(MacroAssembler* masm) {
3262 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
3263 // name below the exit frame to make GC aware of them.
3264 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
3265 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
3266 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
3267 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
3268 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
3269 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
3270 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
3271 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
3272
3273 Register receiver = ApiGetterDescriptor::ReceiverRegister();
3274 Register holder = ApiGetterDescriptor::HolderRegister();
3275 Register callback = ApiGetterDescriptor::CallbackRegister();
3276 Register scratch = r4;
3277 DCHECK(!AreAliased(receiver, holder, callback, scratch));
3278
3279 Register api_function_address = r2;
3280
3281 __ push(receiver);
3282 // Push data from AccessorInfo.
3283 __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
3284 __ push(scratch);
3285 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3286 __ Push(scratch, scratch);
3287 __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
3288 __ Push(scratch, holder);
3289 __ Push(Smi::kZero); // should_throw_on_error -> false
3290 __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
3291 __ push(scratch);
3292 // v8::PropertyCallbackInfo::args_ array and name handle.
3293 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
3294
3295 // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
3296 __ mov(r0, sp); // r0 = Handle<Name>
3297 __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = v8::PCI::args_
3298
3299 const int kApiStackSpace = 1;
3300 FrameScope frame_scope(masm, StackFrame::MANUAL);
3301 __ EnterExitFrame(false, kApiStackSpace);
3302
3303 // Create v8::PropertyCallbackInfo object on the stack and initialize
3304 // it's args_ field.
3305 __ str(r1, MemOperand(sp, 1 * kPointerSize));
3306 __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = v8::PropertyCallbackInfo&
3307
3308 ExternalReference thunk_ref =
3309 ExternalReference::invoke_accessor_getter_callback(isolate());
3310
3311 __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
3312 __ ldr(api_function_address,
3313 FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
3314
3315 // +3 is to skip prolog, return address and name handle.
3316 MemOperand return_value_operand(
3317 fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
3318 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3319 kStackUnwindSpace, NULL, return_value_operand, NULL);
3320 }
3321
3322 #undef __
3323
3324 } // namespace internal
3325 } // namespace v8
3326
3327 #endif // V8_TARGET_ARCH_ARM
3328