• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 
6 // Declares a Simulator for ARM instructions if we are not generating a native
7 // ARM binary. This Simulator allows us to run and debug ARM code generation on
8 // regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a ARM HW platform.
12 
13 #ifndef V8_ARM_SIMULATOR_ARM_H_
14 #define V8_ARM_SIMULATOR_ARM_H_
15 
16 #include "src/allocation.h"
17 #include "src/base/lazy-instance.h"
18 #include "src/base/platform/mutex.h"
19 
20 #if !defined(USE_SIMULATOR)
21 // Running without a simulator on a native arm platform.
22 
23 namespace v8 {
24 namespace internal {
25 
26 // When running without a simulator we call the entry directly.
27 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
28   (entry(p0, p1, p2, p3, p4))
29 
30 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
31                                   void*, int*, int, Address, int, Isolate*);
32 
33 
34 // Call the generated regexp code directly. The code at the entry address
35 // should act as a function matching the type arm_regexp_matcher.
36 // The fifth argument is a dummy that reserves the space used for
37 // the return address added by the ExitFrame in native calls.
38 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
39                                    p7, p8)                                     \
40   (FUNCTION_CAST<arm_regexp_matcher>(entry)(p0, p1, p2, p3, NULL, p4, p5, p6,  \
41                                             p7, p8))
42 
43 // The stack limit beyond which we will throw stack overflow errors in
44 // generated code. Because generated code on arm uses the C stack, we
45 // just use the C stack limit.
46 class SimulatorStack : public v8::internal::AllStatic {
47  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)48   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
49                                             uintptr_t c_limit) {
50     USE(isolate);
51     return c_limit;
52   }
53 
RegisterCTryCatch(v8::internal::Isolate * isolate,uintptr_t try_catch_address)54   static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
55                                             uintptr_t try_catch_address) {
56     USE(isolate);
57     return try_catch_address;
58   }
59 
UnregisterCTryCatch(v8::internal::Isolate * isolate)60   static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
61     USE(isolate);
62   }
63 };
64 
65 }  // namespace internal
66 }  // namespace v8
67 
68 #else  // !defined(USE_SIMULATOR)
69 // Running with a simulator.
70 
71 #include "src/arm/constants-arm.h"
72 #include "src/assembler.h"
73 #include "src/base/hashmap.h"
74 
75 namespace v8 {
76 namespace internal {
77 
78 class CachePage {
79  public:
80   static const int LINE_VALID = 0;
81   static const int LINE_INVALID = 1;
82 
83   static const int kPageShift = 12;
84   static const int kPageSize = 1 << kPageShift;
85   static const int kPageMask = kPageSize - 1;
86   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
87   static const int kLineLength = 1 << kLineShift;
88   static const int kLineMask = kLineLength - 1;
89 
CachePage()90   CachePage() {
91     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
92   }
93 
ValidityByte(int offset)94   char* ValidityByte(int offset) {
95     return &validity_map_[offset >> kLineShift];
96   }
97 
CachedData(int offset)98   char* CachedData(int offset) {
99     return &data_[offset];
100   }
101 
102  private:
103   char data_[kPageSize];   // The cached data.
104   static const int kValidityMapSize = kPageSize >> kLineShift;
105   char validity_map_[kValidityMapSize];  // One byte per line.
106 };
107 
108 
109 class Simulator {
110  public:
111   friend class ArmDebugger;
112   enum Register {
113     no_reg = -1,
114     r0 = 0, r1, r2, r3, r4, r5, r6, r7,
115     r8, r9, r10, r11, r12, r13, r14, r15,
116     num_registers,
117     sp = 13,
118     lr = 14,
119     pc = 15,
120     s0 = 0, s1, s2, s3, s4, s5, s6, s7,
121     s8, s9, s10, s11, s12, s13, s14, s15,
122     s16, s17, s18, s19, s20, s21, s22, s23,
123     s24, s25, s26, s27, s28, s29, s30, s31,
124     num_s_registers = 32,
125     d0 = 0, d1, d2, d3, d4, d5, d6, d7,
126     d8, d9, d10, d11, d12, d13, d14, d15,
127     d16, d17, d18, d19, d20, d21, d22, d23,
128     d24, d25, d26, d27, d28, d29, d30, d31,
129     num_d_registers = 32,
130     q0 = 0, q1, q2, q3, q4, q5, q6, q7,
131     q8, q9, q10, q11, q12, q13, q14, q15,
132     num_q_registers = 16
133   };
134 
135   explicit Simulator(Isolate* isolate);
136   ~Simulator();
137 
138   // The currently executing Simulator instance. Potentially there can be one
139   // for each native thread.
140   static Simulator* current(v8::internal::Isolate* isolate);
141 
142   // Accessors for register state. Reading the pc value adheres to the ARM
143   // architecture specification and is off by a 8 from the currently executing
144   // instruction.
145   void set_register(int reg, int32_t value);
146   int32_t get_register(int reg) const;
147   double get_double_from_register_pair(int reg);
148   void set_register_pair_from_double(int reg, double* value);
149   void set_dw_register(int dreg, const int* dbl);
150 
151   // Support for VFP.
152   void get_d_register(int dreg, uint64_t* value);
153   void set_d_register(int dreg, const uint64_t* value);
154   void get_d_register(int dreg, uint32_t* value);
155   void set_d_register(int dreg, const uint32_t* value);
156   // Support for NEON.
157   template <typename T>
158   void get_q_register(int qreg, T* value);
159   template <typename T>
160   void set_q_register(int qreg, const T* value);
161 
162   void set_s_register(int reg, unsigned int value);
163   unsigned int get_s_register(int reg) const;
164 
set_d_register_from_double(int dreg,const double & dbl)165   void set_d_register_from_double(int dreg, const double& dbl) {
166     SetVFPRegister<double, 2>(dreg, dbl);
167   }
168 
get_double_from_d_register(int dreg)169   double get_double_from_d_register(int dreg) {
170     return GetFromVFPRegister<double, 2>(dreg);
171   }
172 
set_s_register_from_float(int sreg,const float flt)173   void set_s_register_from_float(int sreg, const float flt) {
174     SetVFPRegister<float, 1>(sreg, flt);
175   }
176 
get_float_from_s_register(int sreg)177   float get_float_from_s_register(int sreg) {
178     return GetFromVFPRegister<float, 1>(sreg);
179   }
180 
set_s_register_from_sinteger(int sreg,const int sint)181   void set_s_register_from_sinteger(int sreg, const int sint) {
182     SetVFPRegister<int, 1>(sreg, sint);
183   }
184 
get_sinteger_from_s_register(int sreg)185   int get_sinteger_from_s_register(int sreg) {
186     return GetFromVFPRegister<int, 1>(sreg);
187   }
188 
189   // Special case of set_register and get_register to access the raw PC value.
190   void set_pc(int32_t value);
191   int32_t get_pc() const;
192 
get_sp()193   Address get_sp() const {
194     return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
195   }
196 
197   // Accessor to the internal simulator stack area.
198   uintptr_t StackLimit(uintptr_t c_limit) const;
199 
200   // Executes ARM instructions until the PC reaches end_sim_pc.
201   void Execute();
202 
203   // Call on program start.
204   static void Initialize(Isolate* isolate);
205 
206   static void TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first);
207 
208   // V8 generally calls into generated JS code with 5 parameters and into
209   // generated RegExp code with 7 parameters. This is a convenience function,
210   // which sets up the simulator state and grabs the result on return.
211   int32_t Call(byte* entry, int argument_count, ...);
212   // Alternative: call a 2-argument double function.
213   void CallFP(byte* entry, double d0, double d1);
214   int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
215   double CallFPReturnsDouble(byte* entry, double d0, double d1);
216 
217   // Push an address onto the JS stack.
218   uintptr_t PushAddress(uintptr_t address);
219 
220   // Pop an address from the JS stack.
221   uintptr_t PopAddress();
222 
223   // Debugger input.
224   void set_last_debugger_input(char* input);
last_debugger_input()225   char* last_debugger_input() { return last_debugger_input_; }
226 
227   // ICache checking.
228   static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
229                           size_t size);
230 
231   // Returns true if pc register contains one of the 'special_values' defined
232   // below (bad_lr, end_sim_pc).
233   bool has_bad_pc() const;
234 
235   // EABI variant for double arguments in use.
use_eabi_hardfloat()236   bool use_eabi_hardfloat() {
237 #if USE_EABI_HARDFLOAT
238     return true;
239 #else
240     return false;
241 #endif
242   }
243 
244  private:
245   enum special_values {
246     // Known bad pc value to ensure that the simulator does not execute
247     // without being properly setup.
248     bad_lr = -1,
249     // A pc value used to signal the simulator to stop execution.  Generally
250     // the lr is set to this value on transition from native C code to
251     // simulated execution, so that the simulator can "return" to the native
252     // C code.
253     end_sim_pc = -2
254   };
255 
256   // Unsupported instructions use Format to print an error and stop execution.
257   void Format(Instruction* instr, const char* format);
258 
259   // Checks if the current instruction should be executed based on its
260   // condition bits.
261   inline bool ConditionallyExecute(Instruction* instr);
262 
263   // Helper functions to set the conditional flags in the architecture state.
264   void SetNZFlags(int32_t val);
265   void SetCFlag(bool val);
266   void SetVFlag(bool val);
267   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
268   bool BorrowFrom(int32_t left, int32_t right, int32_t carry = 1);
269   bool OverflowFrom(int32_t alu_out,
270                     int32_t left,
271                     int32_t right,
272                     bool addition);
273 
GetCarry()274   inline int GetCarry() {
275     return c_flag_ ? 1 : 0;
276   }
277 
278   // Support for VFP.
279   void Compute_FPSCR_Flags(float val1, float val2);
280   void Compute_FPSCR_Flags(double val1, double val2);
281   void Copy_FPSCR_to_APSR();
282   inline float canonicalizeNaN(float value);
283   inline double canonicalizeNaN(double value);
284 
285   // Helper functions to decode common "addressing" modes
286   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
287   int32_t GetImm(Instruction* instr, bool* carry_out);
288   int32_t ProcessPU(Instruction* instr,
289                     int num_regs,
290                     int operand_size,
291                     intptr_t* start_address,
292                     intptr_t* end_address);
293   void HandleRList(Instruction* instr, bool load);
294   void HandleVList(Instruction* inst);
295   void SoftwareInterrupt(Instruction* instr);
296 
297   // Stop helper functions.
298   inline bool isStopInstruction(Instruction* instr);
299   inline bool isWatchedStop(uint32_t bkpt_code);
300   inline bool isEnabledStop(uint32_t bkpt_code);
301   inline void EnableStop(uint32_t bkpt_code);
302   inline void DisableStop(uint32_t bkpt_code);
303   inline void IncreaseStopCounter(uint32_t bkpt_code);
304   void PrintStopInfo(uint32_t code);
305 
306   // Read and write memory.
307   // The *Ex functions are exclusive access. The writes return the strex status:
308   // 0 if the write succeeds, and 1 if the write fails.
309   inline uint8_t ReadBU(int32_t addr);
310   inline int8_t ReadB(int32_t addr);
311   uint8_t ReadExBU(int32_t addr);
312   inline void WriteB(int32_t addr, uint8_t value);
313   inline void WriteB(int32_t addr, int8_t value);
314   int WriteExB(int32_t addr, uint8_t value);
315 
316   inline uint16_t ReadHU(int32_t addr, Instruction* instr);
317   inline int16_t ReadH(int32_t addr, Instruction* instr);
318   uint16_t ReadExHU(int32_t addr, Instruction* instr);
319   // Note: Overloaded on the sign of the value.
320   inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
321   inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
322   int WriteExH(int32_t addr, uint16_t value, Instruction* instr);
323 
324   inline int ReadW(int32_t addr, Instruction* instr);
325   int ReadExW(int32_t addr, Instruction* instr);
326   inline void WriteW(int32_t addr, int value, Instruction* instr);
327   int WriteExW(int32_t addr, int value, Instruction* instr);
328 
329   int32_t* ReadDW(int32_t addr);
330   void WriteDW(int32_t addr, int32_t value1, int32_t value2);
331 
332   // Executing is handled based on the instruction type.
333   // Both type 0 and type 1 rolled into one.
334   void DecodeType01(Instruction* instr);
335   void DecodeType2(Instruction* instr);
336   void DecodeType3(Instruction* instr);
337   void DecodeType4(Instruction* instr);
338   void DecodeType5(Instruction* instr);
339   void DecodeType6(Instruction* instr);
340   void DecodeType7(Instruction* instr);
341 
342   // CP15 coprocessor instructions.
343   void DecodeTypeCP15(Instruction* instr);
344 
345   // Support for VFP.
346   void DecodeTypeVFP(Instruction* instr);
347   void DecodeType6CoprocessorIns(Instruction* instr);
348   void DecodeSpecialCondition(Instruction* instr);
349 
350   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
351   void DecodeVCMP(Instruction* instr);
352   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
353   int32_t ConvertDoubleToInt(double val, bool unsigned_integer,
354                              VFPRoundingMode mode);
355   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
356 
357   // Executes one instruction.
358   void InstructionDecode(Instruction* instr);
359 
360   // ICache.
361   static void CheckICache(base::CustomMatcherHashMap* i_cache,
362                           Instruction* instr);
363   static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
364                            int size);
365   static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
366                                  void* page);
367 
368   // Runtime call support.
369   static void* RedirectExternalReference(
370       Isolate* isolate, void* external_function,
371       v8::internal::ExternalReference::Type type);
372 
373   // Handle arguments and return value for runtime FP functions.
374   void GetFpArgs(double* x, double* y, int32_t* z);
375   void SetFpResult(const double& result);
376   void TrashCallerSaveRegisters();
377 
378   template<class ReturnType, int register_size>
379       ReturnType GetFromVFPRegister(int reg_index);
380 
381   template<class InputType, int register_size>
382       void SetVFPRegister(int reg_index, const InputType& value);
383 
384   void SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value);
385   uint32_t GetFromSpecialRegister(SRegister reg);
386 
387   void CallInternal(byte* entry);
388 
389   // Architecture state.
390   // Saturating instructions require a Q flag to indicate saturation.
391   // There is currently no way to read the CPSR directly, and thus read the Q
392   // flag, so this is left unimplemented.
393   int32_t registers_[16];
394   bool n_flag_;
395   bool z_flag_;
396   bool c_flag_;
397   bool v_flag_;
398 
399   // VFP architecture state.
400   unsigned int vfp_registers_[num_d_registers * 2];
401   bool n_flag_FPSCR_;
402   bool z_flag_FPSCR_;
403   bool c_flag_FPSCR_;
404   bool v_flag_FPSCR_;
405 
406   // VFP rounding mode. See ARM DDI 0406B Page A2-29.
407   VFPRoundingMode FPSCR_rounding_mode_;
408   bool FPSCR_default_NaN_mode_;
409 
410   // VFP FP exception flags architecture state.
411   bool inv_op_vfp_flag_;
412   bool div_zero_vfp_flag_;
413   bool overflow_vfp_flag_;
414   bool underflow_vfp_flag_;
415   bool inexact_vfp_flag_;
416 
417   // Simulator support.
418   char* stack_;
419   bool pc_modified_;
420   int icount_;
421 
422   // Debugger input.
423   char* last_debugger_input_;
424 
425   // Icache simulation
426   base::CustomMatcherHashMap* i_cache_;
427 
428   // Registered breakpoints.
429   Instruction* break_pc_;
430   Instr break_instr_;
431 
432   v8::internal::Isolate* isolate_;
433 
434   // A stop is watched if its code is less than kNumOfWatchedStops.
435   // Only watched stops support enabling/disabling and the counter feature.
436   static const uint32_t kNumOfWatchedStops = 256;
437 
438   // Breakpoint is disabled if bit 31 is set.
439   static const uint32_t kStopDisabledBit = 1 << 31;
440 
441   // A stop is enabled, meaning the simulator will stop when meeting the
442   // instruction, if bit 31 of watched_stops_[code].count is unset.
443   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
444   // the breakpoint was hit or gone through.
445   struct StopCountAndDesc {
446     uint32_t count;
447     char* desc;
448   };
449   StopCountAndDesc watched_stops_[kNumOfWatchedStops];
450 
451   // Syncronization primitives. See ARM DDI 0406C.b, A2.9.
452   enum class MonitorAccess {
453     Open,
454     Exclusive,
455   };
456 
457   enum class TransactionSize {
458     None = 0,
459     Byte = 1,
460     HalfWord = 2,
461     Word = 4,
462   };
463 
464   // The least-significant bits of the address are ignored. The number of bits
465   // is implementation-defined, between 3 and 11. See ARM DDI 0406C.b, A3.4.3.
466   static const int32_t kExclusiveTaggedAddrMask = ~((1 << 11) - 1);
467 
468   class LocalMonitor {
469    public:
470     LocalMonitor();
471 
472     // These functions manage the state machine for the local monitor, but do
473     // not actually perform loads and stores. NotifyStoreExcl only returns
474     // true if the exclusive store is allowed; the global monitor will still
475     // have to be checked to see whether the memory should be updated.
476     void NotifyLoad(int32_t addr);
477     void NotifyLoadExcl(int32_t addr, TransactionSize size);
478     void NotifyStore(int32_t addr);
479     bool NotifyStoreExcl(int32_t addr, TransactionSize size);
480 
481    private:
482     void Clear();
483 
484     MonitorAccess access_state_;
485     int32_t tagged_addr_;
486     TransactionSize size_;
487   };
488 
489   class GlobalMonitor {
490    public:
491     GlobalMonitor();
492 
493     class Processor {
494      public:
495       Processor();
496 
497      private:
498       friend class GlobalMonitor;
499       // These functions manage the state machine for the global monitor, but do
500       // not actually perform loads and stores.
501       void Clear_Locked();
502       void NotifyLoadExcl_Locked(int32_t addr);
503       void NotifyStore_Locked(int32_t addr, bool is_requesting_processor);
504       bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor);
505 
506       MonitorAccess access_state_;
507       int32_t tagged_addr_;
508       Processor* next_;
509       Processor* prev_;
510       // A strex can fail due to background cache evictions. Rather than
511       // simulating this, we'll just occasionally introduce cases where an
512       // exclusive store fails. This will happen once after every
513       // kMaxFailureCounter exclusive stores.
514       static const int kMaxFailureCounter = 5;
515       int failure_counter_;
516     };
517 
518     // Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
519     base::Mutex mutex;
520 
521     void NotifyLoadExcl_Locked(int32_t addr, Processor* processor);
522     void NotifyStore_Locked(int32_t addr, Processor* processor);
523     bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor);
524 
525     // Called when the simulator is destroyed.
526     void RemoveProcessor(Processor* processor);
527 
528    private:
529     bool IsProcessorInLinkedList_Locked(Processor* processor) const;
530     void PrependProcessor_Locked(Processor* processor);
531 
532     Processor* head_;
533   };
534 
535   LocalMonitor local_monitor_;
536   GlobalMonitor::Processor global_monitor_processor_;
537   static base::LazyInstance<GlobalMonitor>::type global_monitor_;
538 };
539 
540 
541 // When running with the simulator transition into simulated execution at this
542 // point.
543 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
544   reinterpret_cast<Object*>(Simulator::current(isolate)->Call(  \
545       FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
546 
547 #define CALL_GENERATED_FP_INT(isolate, entry, p0, p1) \
548   Simulator::current(isolate)->CallFPReturnsInt(FUNCTION_ADDR(entry), p0, p1)
549 
550 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
551                                    p7, p8)                                     \
552   Simulator::current(isolate)                                                  \
553       ->Call(entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
554 
555 
556 // The simulator has its own stack. Thus it has a different stack limit from
557 // the C-based native code.  The JS-based limit normally points near the end of
558 // the simulator stack.  When the C-based limit is exhausted we reflect that by
559 // lowering the JS-based limit as well, to make stack checks trigger.
560 class SimulatorStack : public v8::internal::AllStatic {
561  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)562   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
563                                             uintptr_t c_limit) {
564     return Simulator::current(isolate)->StackLimit(c_limit);
565   }
566 
RegisterCTryCatch(v8::internal::Isolate * isolate,uintptr_t try_catch_address)567   static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
568                                             uintptr_t try_catch_address) {
569     Simulator* sim = Simulator::current(isolate);
570     return sim->PushAddress(try_catch_address);
571   }
572 
UnregisterCTryCatch(v8::internal::Isolate * isolate)573   static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
574     Simulator::current(isolate)->PopAddress();
575   }
576 };
577 
578 }  // namespace internal
579 }  // namespace v8
580 
581 #endif  // !defined(USE_SIMULATOR)
582 #endif  // V8_ARM_SIMULATOR_ARM_H_
583