• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_CONVERSIONS_INL_H_
6 #define V8_CONVERSIONS_INL_H_
7 
8 #include <float.h>         // Required for DBL_MAX and on Win32 for finite()
9 #include <limits.h>        // Required for INT_MAX etc.
10 #include <stdarg.h>
11 #include <cmath>
12 #include "src/globals.h"       // Required for V8_INFINITY
13 #include "src/unicode-cache-inl.h"
14 
15 // ----------------------------------------------------------------------------
16 // Extra POSIX/ANSI functions for Win32/MSVC.
17 
18 #include "src/base/bits.h"
19 #include "src/base/platform/platform.h"
20 #include "src/conversions.h"
21 #include "src/double.h"
22 #include "src/objects-inl.h"
23 #include "src/strtod.h"
24 
25 namespace v8 {
26 namespace internal {
27 
JunkStringValue()28 inline double JunkStringValue() {
29   return bit_cast<double, uint64_t>(kQuietNaNMask);
30 }
31 
32 
SignedZero(bool negative)33 inline double SignedZero(bool negative) {
34   return negative ? uint64_to_double(Double::kSignMask) : 0.0;
35 }
36 
37 
38 // The fast double-to-unsigned-int conversion routine does not guarantee
39 // rounding towards zero, or any reasonable value if the argument is larger
40 // than what fits in an unsigned 32-bit integer.
FastD2UI(double x)41 inline unsigned int FastD2UI(double x) {
42   // There is no unsigned version of lrint, so there is no fast path
43   // in this function as there is in FastD2I. Using lrint doesn't work
44   // for values of 2^31 and above.
45 
46   // Convert "small enough" doubles to uint32_t by fixing the 32
47   // least significant non-fractional bits in the low 32 bits of the
48   // double, and reading them from there.
49   const double k2Pow52 = 4503599627370496.0;
50   bool negative = x < 0;
51   if (negative) {
52     x = -x;
53   }
54   if (x < k2Pow52) {
55     x += k2Pow52;
56     uint32_t result;
57 #ifndef V8_TARGET_BIG_ENDIAN
58     Address mantissa_ptr = reinterpret_cast<Address>(&x);
59 #else
60     Address mantissa_ptr = reinterpret_cast<Address>(&x) + kInt32Size;
61 #endif
62     // Copy least significant 32 bits of mantissa.
63     memcpy(&result, mantissa_ptr, sizeof(result));
64     return negative ? ~result + 1 : result;
65   }
66   // Large number (outside uint32 range), Infinity or NaN.
67   return 0x80000000u;  // Return integer indefinite.
68 }
69 
70 
DoubleToFloat32(double x)71 inline float DoubleToFloat32(double x) {
72   // TODO(yangguo): This static_cast is implementation-defined behaviour in C++,
73   // so we may need to do the conversion manually instead to match the spec.
74   volatile float f = static_cast<float>(x);
75   return f;
76 }
77 
78 
DoubleToInteger(double x)79 inline double DoubleToInteger(double x) {
80   if (std::isnan(x)) return 0;
81   if (!std::isfinite(x) || x == 0) return x;
82   return (x >= 0) ? std::floor(x) : std::ceil(x);
83 }
84 
85 
DoubleToInt32(double x)86 int32_t DoubleToInt32(double x) {
87   int32_t i = FastD2I(x);
88   if (FastI2D(i) == x) return i;
89   Double d(x);
90   int exponent = d.Exponent();
91   if (exponent < 0) {
92     if (exponent <= -Double::kSignificandSize) return 0;
93     return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
94   } else {
95     if (exponent > 31) return 0;
96     return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
97   }
98 }
99 
DoubleToSmiInteger(double value,int * smi_int_value)100 bool DoubleToSmiInteger(double value, int* smi_int_value) {
101   if (IsMinusZero(value)) return false;
102   int i = FastD2IChecked(value);
103   if (value != i || !Smi::IsValid(i)) return false;
104   *smi_int_value = i;
105   return true;
106 }
107 
IsSmiDouble(double value)108 bool IsSmiDouble(double value) {
109   return !IsMinusZero(value) && value >= Smi::kMinValue &&
110          value <= Smi::kMaxValue && value == FastI2D(FastD2I(value));
111 }
112 
113 
IsInt32Double(double value)114 bool IsInt32Double(double value) {
115   return !IsMinusZero(value) && value >= kMinInt && value <= kMaxInt &&
116          value == FastI2D(FastD2I(value));
117 }
118 
119 
IsUint32Double(double value)120 bool IsUint32Double(double value) {
121   return !IsMinusZero(value) && value >= 0 && value <= kMaxUInt32 &&
122          value == FastUI2D(FastD2UI(value));
123 }
124 
DoubleToUint32IfEqualToSelf(double value,uint32_t * uint32_value)125 bool DoubleToUint32IfEqualToSelf(double value, uint32_t* uint32_value) {
126   const double k2Pow52 = 4503599627370496.0;
127   const uint32_t kValidTopBits = 0x43300000;
128   const uint64_t kBottomBitMask = V8_2PART_UINT64_C(0x00000000, FFFFFFFF);
129 
130   // Add 2^52 to the double, to place valid uint32 values in the low-significant
131   // bits of the exponent, by effectively setting the (implicit) top bit of the
132   // significand. Note that this addition also normalises 0.0 and -0.0.
133   double shifted_value = value + k2Pow52;
134 
135   // At this point, a valid uint32 valued double will be represented as:
136   //
137   // sign = 0
138   // exponent = 52
139   // significand = 1. 00...00 <value>
140   //       implicit^          ^^^^^^^ 32 bits
141   //                  ^^^^^^^^^^^^^^^ 52 bits
142   //
143   // Therefore, we can first check the top 32 bits to make sure that the sign,
144   // exponent and remaining significand bits are valid, and only then check the
145   // value in the bottom 32 bits.
146 
147   uint64_t result = bit_cast<uint64_t>(shifted_value);
148   if ((result >> 32) == kValidTopBits) {
149     *uint32_value = result & kBottomBitMask;
150     return FastUI2D(result & kBottomBitMask) == value;
151   }
152   return false;
153 }
154 
NumberToInt32(Object * number)155 int32_t NumberToInt32(Object* number) {
156   if (number->IsSmi()) return Smi::cast(number)->value();
157   return DoubleToInt32(number->Number());
158 }
159 
NumberToUint32(Object * number)160 uint32_t NumberToUint32(Object* number) {
161   if (number->IsSmi()) return Smi::cast(number)->value();
162   return DoubleToUint32(number->Number());
163 }
164 
PositiveNumberToUint32(Object * number)165 uint32_t PositiveNumberToUint32(Object* number) {
166   if (number->IsSmi()) {
167     int value = Smi::cast(number)->value();
168     if (value <= 0) return 0;
169     return value;
170   }
171   DCHECK(number->IsHeapNumber());
172   double value = number->Number();
173   // Catch all values smaller than 1 and use the double-negation trick for NANs.
174   if (!(value >= 1)) return 0;
175   uint32_t max = std::numeric_limits<uint32_t>::max();
176   if (value < max) return static_cast<uint32_t>(value);
177   return max;
178 }
179 
NumberToInt64(Object * number)180 int64_t NumberToInt64(Object* number) {
181   if (number->IsSmi()) return Smi::cast(number)->value();
182   return static_cast<int64_t>(number->Number());
183 }
184 
TryNumberToSize(Object * number,size_t * result)185 bool TryNumberToSize(Object* number, size_t* result) {
186   // Do not create handles in this function! Don't use SealHandleScope because
187   // the function can be used concurrently.
188   if (number->IsSmi()) {
189     int value = Smi::cast(number)->value();
190     DCHECK(static_cast<unsigned>(Smi::kMaxValue) <=
191            std::numeric_limits<size_t>::max());
192     if (value >= 0) {
193       *result = static_cast<size_t>(value);
194       return true;
195     }
196     return false;
197   } else {
198     DCHECK(number->IsHeapNumber());
199     double value = HeapNumber::cast(number)->value();
200     // If value is compared directly to the limit, the limit will be
201     // casted to a double and could end up as limit + 1,
202     // because a double might not have enough mantissa bits for it.
203     // So we might as well cast the limit first, and use < instead of <=.
204     double maxSize = static_cast<double>(std::numeric_limits<size_t>::max());
205     if (value >= 0 && value < maxSize) {
206       *result = static_cast<size_t>(value);
207       return true;
208     } else {
209       return false;
210     }
211   }
212 }
213 
NumberToSize(Object * number)214 size_t NumberToSize(Object* number) {
215   size_t result = 0;
216   bool is_valid = TryNumberToSize(number, &result);
217   CHECK(is_valid);
218   return result;
219 }
220 
221 
DoubleToUint32(double x)222 uint32_t DoubleToUint32(double x) {
223   return static_cast<uint32_t>(DoubleToInt32(x));
224 }
225 
226 
227 template <class Iterator, class EndMark>
SubStringEquals(Iterator * current,EndMark end,const char * substring)228 bool SubStringEquals(Iterator* current,
229                      EndMark end,
230                      const char* substring) {
231   DCHECK(**current == *substring);
232   for (substring++; *substring != '\0'; substring++) {
233     ++*current;
234     if (*current == end || **current != *substring) return false;
235   }
236   ++*current;
237   return true;
238 }
239 
240 
241 // Returns true if a nonspace character has been found and false if the
242 // end was been reached before finding a nonspace character.
243 template <class Iterator, class EndMark>
AdvanceToNonspace(UnicodeCache * unicode_cache,Iterator * current,EndMark end)244 inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
245                               Iterator* current,
246                               EndMark end) {
247   while (*current != end) {
248     if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
249     ++*current;
250   }
251   return false;
252 }
253 
254 
255 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
256 template <int radix_log_2, class Iterator, class EndMark>
InternalStringToIntDouble(UnicodeCache * unicode_cache,Iterator current,EndMark end,bool negative,bool allow_trailing_junk)257 double InternalStringToIntDouble(UnicodeCache* unicode_cache,
258                                  Iterator current,
259                                  EndMark end,
260                                  bool negative,
261                                  bool allow_trailing_junk) {
262   DCHECK(current != end);
263 
264   // Skip leading 0s.
265   while (*current == '0') {
266     ++current;
267     if (current == end) return SignedZero(negative);
268   }
269 
270   int64_t number = 0;
271   int exponent = 0;
272   const int radix = (1 << radix_log_2);
273 
274   do {
275     int digit;
276     if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
277       digit = static_cast<char>(*current) - '0';
278     } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
279       digit = static_cast<char>(*current) - 'a' + 10;
280     } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
281       digit = static_cast<char>(*current) - 'A' + 10;
282     } else {
283       if (allow_trailing_junk ||
284           !AdvanceToNonspace(unicode_cache, &current, end)) {
285         break;
286       } else {
287         return JunkStringValue();
288       }
289     }
290 
291     number = number * radix + digit;
292     int overflow = static_cast<int>(number >> 53);
293     if (overflow != 0) {
294       // Overflow occurred. Need to determine which direction to round the
295       // result.
296       int overflow_bits_count = 1;
297       while (overflow > 1) {
298         overflow_bits_count++;
299         overflow >>= 1;
300       }
301 
302       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
303       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
304       number >>= overflow_bits_count;
305       exponent = overflow_bits_count;
306 
307       bool zero_tail = true;
308       while (true) {
309         ++current;
310         if (current == end || !isDigit(*current, radix)) break;
311         zero_tail = zero_tail && *current == '0';
312         exponent += radix_log_2;
313       }
314 
315       if (!allow_trailing_junk &&
316           AdvanceToNonspace(unicode_cache, &current, end)) {
317         return JunkStringValue();
318       }
319 
320       int middle_value = (1 << (overflow_bits_count - 1));
321       if (dropped_bits > middle_value) {
322         number++;  // Rounding up.
323       } else if (dropped_bits == middle_value) {
324         // Rounding to even to consistency with decimals: half-way case rounds
325         // up if significant part is odd and down otherwise.
326         if ((number & 1) != 0 || !zero_tail) {
327           number++;  // Rounding up.
328         }
329       }
330 
331       // Rounding up may cause overflow.
332       if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
333         exponent++;
334         number >>= 1;
335       }
336       break;
337     }
338     ++current;
339   } while (current != end);
340 
341   DCHECK(number < ((int64_t)1 << 53));
342   DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);
343 
344   if (exponent == 0) {
345     if (negative) {
346       if (number == 0) return -0.0;
347       number = -number;
348     }
349     return static_cast<double>(number);
350   }
351 
352   DCHECK(number != 0);
353   return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
354 }
355 
356 // ES6 18.2.5 parseInt(string, radix)
357 template <class Iterator, class EndMark>
InternalStringToInt(UnicodeCache * unicode_cache,Iterator current,EndMark end,int radix)358 double InternalStringToInt(UnicodeCache* unicode_cache,
359                            Iterator current,
360                            EndMark end,
361                            int radix) {
362   const bool allow_trailing_junk = true;
363   const double empty_string_val = JunkStringValue();
364 
365   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
366     return empty_string_val;
367   }
368 
369   bool negative = false;
370   bool leading_zero = false;
371 
372   if (*current == '+') {
373     // Ignore leading sign; skip following spaces.
374     ++current;
375     if (current == end) {
376       return JunkStringValue();
377     }
378   } else if (*current == '-') {
379     ++current;
380     if (current == end) {
381       return JunkStringValue();
382     }
383     negative = true;
384   }
385 
386   if (radix == 0) {
387     // Radix detection.
388     radix = 10;
389     if (*current == '0') {
390       ++current;
391       if (current == end) return SignedZero(negative);
392       if (*current == 'x' || *current == 'X') {
393         radix = 16;
394         ++current;
395         if (current == end) return JunkStringValue();
396       } else {
397         leading_zero = true;
398       }
399     }
400   } else if (radix == 16) {
401     if (*current == '0') {
402       // Allow "0x" prefix.
403       ++current;
404       if (current == end) return SignedZero(negative);
405       if (*current == 'x' || *current == 'X') {
406         ++current;
407         if (current == end) return JunkStringValue();
408       } else {
409         leading_zero = true;
410       }
411     }
412   }
413 
414   if (radix < 2 || radix > 36) return JunkStringValue();
415 
416   // Skip leading zeros.
417   while (*current == '0') {
418     leading_zero = true;
419     ++current;
420     if (current == end) return SignedZero(negative);
421   }
422 
423   if (!leading_zero && !isDigit(*current, radix)) {
424     return JunkStringValue();
425   }
426 
427   if (base::bits::IsPowerOfTwo32(radix)) {
428     switch (radix) {
429       case 2:
430         return InternalStringToIntDouble<1>(
431             unicode_cache, current, end, negative, allow_trailing_junk);
432       case 4:
433         return InternalStringToIntDouble<2>(
434             unicode_cache, current, end, negative, allow_trailing_junk);
435       case 8:
436         return InternalStringToIntDouble<3>(
437             unicode_cache, current, end, negative, allow_trailing_junk);
438 
439       case 16:
440         return InternalStringToIntDouble<4>(
441             unicode_cache, current, end, negative, allow_trailing_junk);
442 
443       case 32:
444         return InternalStringToIntDouble<5>(
445             unicode_cache, current, end, negative, allow_trailing_junk);
446       default:
447         UNREACHABLE();
448     }
449   }
450 
451   if (radix == 10) {
452     // Parsing with strtod.
453     const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
454     // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
455     // end.
456     const int kBufferSize = kMaxSignificantDigits + 2;
457     char buffer[kBufferSize];
458     int buffer_pos = 0;
459     while (*current >= '0' && *current <= '9') {
460       if (buffer_pos <= kMaxSignificantDigits) {
461         // If the number has more than kMaxSignificantDigits it will be parsed
462         // as infinity.
463         DCHECK(buffer_pos < kBufferSize);
464         buffer[buffer_pos++] = static_cast<char>(*current);
465       }
466       ++current;
467       if (current == end) break;
468     }
469 
470     if (!allow_trailing_junk &&
471         AdvanceToNonspace(unicode_cache, &current, end)) {
472       return JunkStringValue();
473     }
474 
475     SLOW_DCHECK(buffer_pos < kBufferSize);
476     buffer[buffer_pos] = '\0';
477     Vector<const char> buffer_vector(buffer, buffer_pos);
478     return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
479   }
480 
481   // The following code causes accumulating rounding error for numbers greater
482   // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
483   // 16, or 32, then mathInt may be an implementation-dependent approximation to
484   // the mathematical integer value" (15.1.2.2).
485 
486   int lim_0 = '0' + (radix < 10 ? radix : 10);
487   int lim_a = 'a' + (radix - 10);
488   int lim_A = 'A' + (radix - 10);
489 
490   // NOTE: The code for computing the value may seem a bit complex at
491   // first glance. It is structured to use 32-bit multiply-and-add
492   // loops as long as possible to avoid loosing precision.
493 
494   double v = 0.0;
495   bool done = false;
496   do {
497     // Parse the longest part of the string starting at index j
498     // possible while keeping the multiplier, and thus the part
499     // itself, within 32 bits.
500     unsigned int part = 0, multiplier = 1;
501     while (true) {
502       int d;
503       if (*current >= '0' && *current < lim_0) {
504         d = *current - '0';
505       } else if (*current >= 'a' && *current < lim_a) {
506         d = *current - 'a' + 10;
507       } else if (*current >= 'A' && *current < lim_A) {
508         d = *current - 'A' + 10;
509       } else {
510         done = true;
511         break;
512       }
513 
514       // Update the value of the part as long as the multiplier fits
515       // in 32 bits. When we can't guarantee that the next iteration
516       // will not overflow the multiplier, we stop parsing the part
517       // by leaving the loop.
518       const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
519       uint32_t m = multiplier * radix;
520       if (m > kMaximumMultiplier) break;
521       part = part * radix + d;
522       multiplier = m;
523       DCHECK(multiplier > part);
524 
525       ++current;
526       if (current == end) {
527         done = true;
528         break;
529       }
530     }
531 
532     // Update the value and skip the part in the string.
533     v = v * multiplier + part;
534   } while (!done);
535 
536   if (!allow_trailing_junk &&
537       AdvanceToNonspace(unicode_cache, &current, end)) {
538     return JunkStringValue();
539   }
540 
541   return negative ? -v : v;
542 }
543 
544 
545 // Converts a string to a double value. Assumes the Iterator supports
546 // the following operations:
547 // 1. current == end (other ops are not allowed), current != end.
548 // 2. *current - gets the current character in the sequence.
549 // 3. ++current (advances the position).
550 template <class Iterator, class EndMark>
InternalStringToDouble(UnicodeCache * unicode_cache,Iterator current,EndMark end,int flags,double empty_string_val)551 double InternalStringToDouble(UnicodeCache* unicode_cache,
552                               Iterator current,
553                               EndMark end,
554                               int flags,
555                               double empty_string_val) {
556   // To make sure that iterator dereferencing is valid the following
557   // convention is used:
558   // 1. Each '++current' statement is followed by check for equality to 'end'.
559   // 2. If AdvanceToNonspace returned false then current == end.
560   // 3. If 'current' becomes be equal to 'end' the function returns or goes to
561   // 'parsing_done'.
562   // 4. 'current' is not dereferenced after the 'parsing_done' label.
563   // 5. Code before 'parsing_done' may rely on 'current != end'.
564   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
565     return empty_string_val;
566   }
567 
568   const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
569 
570   // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
571   const int kBufferSize = kMaxSignificantDigits + 10;
572   char buffer[kBufferSize];  // NOLINT: size is known at compile time.
573   int buffer_pos = 0;
574 
575   // Exponent will be adjusted if insignificant digits of the integer part
576   // or insignificant leading zeros of the fractional part are dropped.
577   int exponent = 0;
578   int significant_digits = 0;
579   int insignificant_digits = 0;
580   bool nonzero_digit_dropped = false;
581 
582   enum Sign {
583     NONE,
584     NEGATIVE,
585     POSITIVE
586   };
587 
588   Sign sign = NONE;
589 
590   if (*current == '+') {
591     // Ignore leading sign.
592     ++current;
593     if (current == end) return JunkStringValue();
594     sign = POSITIVE;
595   } else if (*current == '-') {
596     ++current;
597     if (current == end) return JunkStringValue();
598     sign = NEGATIVE;
599   }
600 
601   static const char kInfinityString[] = "Infinity";
602   if (*current == kInfinityString[0]) {
603     if (!SubStringEquals(&current, end, kInfinityString)) {
604       return JunkStringValue();
605     }
606 
607     if (!allow_trailing_junk &&
608         AdvanceToNonspace(unicode_cache, &current, end)) {
609       return JunkStringValue();
610     }
611 
612     DCHECK(buffer_pos == 0);
613     return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
614   }
615 
616   bool leading_zero = false;
617   if (*current == '0') {
618     ++current;
619     if (current == end) return SignedZero(sign == NEGATIVE);
620 
621     leading_zero = true;
622 
623     // It could be hexadecimal value.
624     if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
625       ++current;
626       if (current == end || !isDigit(*current, 16) || sign != NONE) {
627         return JunkStringValue();  // "0x".
628       }
629 
630       return InternalStringToIntDouble<4>(unicode_cache,
631                                           current,
632                                           end,
633                                           false,
634                                           allow_trailing_junk);
635 
636     // It could be an explicit octal value.
637     } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
638       ++current;
639       if (current == end || !isDigit(*current, 8) || sign != NONE) {
640         return JunkStringValue();  // "0o".
641       }
642 
643       return InternalStringToIntDouble<3>(unicode_cache,
644                                           current,
645                                           end,
646                                           false,
647                                           allow_trailing_junk);
648 
649     // It could be a binary value.
650     } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
651       ++current;
652       if (current == end || !isBinaryDigit(*current) || sign != NONE) {
653         return JunkStringValue();  // "0b".
654       }
655 
656       return InternalStringToIntDouble<1>(unicode_cache,
657                                           current,
658                                           end,
659                                           false,
660                                           allow_trailing_junk);
661     }
662 
663     // Ignore leading zeros in the integer part.
664     while (*current == '0') {
665       ++current;
666       if (current == end) return SignedZero(sign == NEGATIVE);
667     }
668   }
669 
670   bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;
671 
672   // Copy significant digits of the integer part (if any) to the buffer.
673   while (*current >= '0' && *current <= '9') {
674     if (significant_digits < kMaxSignificantDigits) {
675       DCHECK(buffer_pos < kBufferSize);
676       buffer[buffer_pos++] = static_cast<char>(*current);
677       significant_digits++;
678       // Will later check if it's an octal in the buffer.
679     } else {
680       insignificant_digits++;  // Move the digit into the exponential part.
681       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
682     }
683     octal = octal && *current < '8';
684     ++current;
685     if (current == end) goto parsing_done;
686   }
687 
688   if (significant_digits == 0) {
689     octal = false;
690   }
691 
692   if (*current == '.') {
693     if (octal && !allow_trailing_junk) return JunkStringValue();
694     if (octal) goto parsing_done;
695 
696     ++current;
697     if (current == end) {
698       if (significant_digits == 0 && !leading_zero) {
699         return JunkStringValue();
700       } else {
701         goto parsing_done;
702       }
703     }
704 
705     if (significant_digits == 0) {
706       // octal = false;
707       // Integer part consists of 0 or is absent. Significant digits start after
708       // leading zeros (if any).
709       while (*current == '0') {
710         ++current;
711         if (current == end) return SignedZero(sign == NEGATIVE);
712         exponent--;  // Move this 0 into the exponent.
713       }
714     }
715 
716     // There is a fractional part.  We don't emit a '.', but adjust the exponent
717     // instead.
718     while (*current >= '0' && *current <= '9') {
719       if (significant_digits < kMaxSignificantDigits) {
720         DCHECK(buffer_pos < kBufferSize);
721         buffer[buffer_pos++] = static_cast<char>(*current);
722         significant_digits++;
723         exponent--;
724       } else {
725         // Ignore insignificant digits in the fractional part.
726         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
727       }
728       ++current;
729       if (current == end) goto parsing_done;
730     }
731   }
732 
733   if (!leading_zero && exponent == 0 && significant_digits == 0) {
734     // If leading_zeros is true then the string contains zeros.
735     // If exponent < 0 then string was [+-]\.0*...
736     // If significant_digits != 0 the string is not equal to 0.
737     // Otherwise there are no digits in the string.
738     return JunkStringValue();
739   }
740 
741   // Parse exponential part.
742   if (*current == 'e' || *current == 'E') {
743     if (octal) return JunkStringValue();
744     ++current;
745     if (current == end) {
746       if (allow_trailing_junk) {
747         goto parsing_done;
748       } else {
749         return JunkStringValue();
750       }
751     }
752     char sign = '+';
753     if (*current == '+' || *current == '-') {
754       sign = static_cast<char>(*current);
755       ++current;
756       if (current == end) {
757         if (allow_trailing_junk) {
758           goto parsing_done;
759         } else {
760           return JunkStringValue();
761         }
762       }
763     }
764 
765     if (current == end || *current < '0' || *current > '9') {
766       if (allow_trailing_junk) {
767         goto parsing_done;
768       } else {
769         return JunkStringValue();
770       }
771     }
772 
773     const int max_exponent = INT_MAX / 2;
774     DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
775     int num = 0;
776     do {
777       // Check overflow.
778       int digit = *current - '0';
779       if (num >= max_exponent / 10
780           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
781         num = max_exponent;
782       } else {
783         num = num * 10 + digit;
784       }
785       ++current;
786     } while (current != end && *current >= '0' && *current <= '9');
787 
788     exponent += (sign == '-' ? -num : num);
789   }
790 
791   if (!allow_trailing_junk &&
792       AdvanceToNonspace(unicode_cache, &current, end)) {
793     return JunkStringValue();
794   }
795 
796   parsing_done:
797   exponent += insignificant_digits;
798 
799   if (octal) {
800     return InternalStringToIntDouble<3>(unicode_cache,
801                                         buffer,
802                                         buffer + buffer_pos,
803                                         sign == NEGATIVE,
804                                         allow_trailing_junk);
805   }
806 
807   if (nonzero_digit_dropped) {
808     buffer[buffer_pos++] = '1';
809     exponent--;
810   }
811 
812   SLOW_DCHECK(buffer_pos < kBufferSize);
813   buffer[buffer_pos] = '\0';
814 
815   double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
816   return (sign == NEGATIVE) ? -converted : converted;
817 }
818 
819 }  // namespace internal
820 }  // namespace v8
821 
822 #endif  // V8_CONVERSIONS_INL_H_
823