1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips64/assembler-mips64.h"
11
12 namespace v8 {
13 namespace internal {
14
15 // Give alias names to registers for calling conventions.
16 const Register kReturnRegister0 = {Register::kCode_v0};
17 const Register kReturnRegister1 = {Register::kCode_v1};
18 const Register kReturnRegister2 = {Register::kCode_a0};
19 const Register kJSFunctionRegister = {Register::kCode_a1};
20 const Register kContextRegister = {Register::kCpRegister};
21 const Register kAllocateSizeRegister = {Register::kCode_a0};
22 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t0};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t1};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_t2};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30
31 // Forward declaration.
32 class JumpTarget;
33
34 // Reserved Register Usage Summary.
35 //
36 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
37 //
38 // The programmer should know that the MacroAssembler may clobber these three,
39 // but won't touch other registers except in special cases.
40 //
41 // Per the MIPS ABI, register t9 must be used for indirect function call
42 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43 // trying to update gp register for position-independent-code. Whenever
44 // MIPS generated code calls C code, it must be via t9 register.
45
46
47 // Flags used for LeaveExitFrame function.
48 enum LeaveExitFrameMode {
49 EMIT_RETURN = true,
50 NO_EMIT_RETURN = false
51 };
52
53 // Flags used for AllocateHeapNumber
54 enum TaggingMode {
55 // Tag the result.
56 TAG_RESULT,
57 // Don't tag
58 DONT_TAG_RESULT
59 };
60
61 // Flags used for the ObjectToDoubleFPURegister function.
62 enum ObjectToDoubleFlags {
63 // No special flags.
64 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65 // Object is known to be a non smi.
66 OBJECT_NOT_SMI = 1 << 0,
67 // Don't load NaNs or infinities, branch to the non number case instead.
68 AVOID_NANS_AND_INFINITIES = 1 << 1
69 };
70
71 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72 enum BranchDelaySlot {
73 USE_DELAY_SLOT,
74 PROTECT
75 };
76
77 // Flags used for the li macro-assembler function.
78 enum LiFlags {
79 // If the constant value can be represented in just 16 bits, then
80 // optimize the li to use a single instruction, rather than lui/ori/dsll
81 // sequence.
82 OPTIMIZE_SIZE = 0,
83 // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
84 // could be loaded with just one, so that this value is patchable later.
85 CONSTANT_SIZE = 1,
86 // For address loads only 4 instruction are required. Used to mark
87 // constant load that will be used as address without relocation
88 // information. It ensures predictable code size, so specific sites
89 // in code are patchable.
90 ADDRESS_LOAD = 2
91 };
92
93
94 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
95 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
96 enum PointersToHereCheck {
97 kPointersToHereMaybeInteresting,
98 kPointersToHereAreAlwaysInteresting
99 };
100 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
101
102 Register GetRegisterThatIsNotOneOf(Register reg1,
103 Register reg2 = no_reg,
104 Register reg3 = no_reg,
105 Register reg4 = no_reg,
106 Register reg5 = no_reg,
107 Register reg6 = no_reg);
108
109 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
110 Register reg4 = no_reg, Register reg5 = no_reg,
111 Register reg6 = no_reg, Register reg7 = no_reg,
112 Register reg8 = no_reg, Register reg9 = no_reg,
113 Register reg10 = no_reg);
114
115
116 // -----------------------------------------------------------------------------
117 // Static helper functions.
118
119 #if defined(V8_TARGET_LITTLE_ENDIAN)
120 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
121 #else
122 #define SmiWordOffset(offset) offset
123 #endif
124
125
ContextMemOperand(Register context,int index)126 inline MemOperand ContextMemOperand(Register context, int index) {
127 return MemOperand(context, Context::SlotOffset(index));
128 }
129
130
NativeContextMemOperand()131 inline MemOperand NativeContextMemOperand() {
132 return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
133 }
134
135
136 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)137 inline MemOperand FieldMemOperand(Register object, int offset) {
138 return MemOperand(object, offset - kHeapObjectTag);
139 }
140
141
UntagSmiMemOperand(Register rm,int offset)142 inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
143 // Assumes that Smis are shifted by 32 bits.
144 STATIC_ASSERT(kSmiShift == 32);
145 return MemOperand(rm, SmiWordOffset(offset));
146 }
147
148
UntagSmiFieldMemOperand(Register rm,int offset)149 inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
150 return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
151 }
152
153
154 // Generate a MemOperand for storing arguments 5..N on the stack
155 // when calling CallCFunction().
156 // TODO(plind): Currently ONLY used for O32. Should be fixed for
157 // n64, and used in RegExp code, and other places
158 // with more than 8 arguments.
CFunctionArgumentOperand(int index)159 inline MemOperand CFunctionArgumentOperand(int index) {
160 DCHECK(index > kCArgSlotCount);
161 // Argument 5 takes the slot just past the four Arg-slots.
162 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
163 return MemOperand(sp, offset);
164 }
165
166
167 // MacroAssembler implements a collection of frequently used macros.
168 class MacroAssembler: public Assembler {
169 public:
170 MacroAssembler(Isolate* isolate, void* buffer, int size,
171 CodeObjectRequired create_code_object);
172
173 // Arguments macros.
174 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
175 #define COND_ARGS cond, r1, r2
176
177 // Cases when relocation is not needed.
178 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
179 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
180 inline void Name(BranchDelaySlot bd, target_type target) { \
181 Name(target, bd); \
182 } \
183 void Name(target_type target, \
184 COND_TYPED_ARGS, \
185 BranchDelaySlot bd = PROTECT); \
186 inline void Name(BranchDelaySlot bd, \
187 target_type target, \
188 COND_TYPED_ARGS) { \
189 Name(target, COND_ARGS, bd); \
190 }
191
192 #define DECLARE_BRANCH_PROTOTYPES(Name) \
193 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
194 DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
195
196 DECLARE_BRANCH_PROTOTYPES(Branch)
197 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
198 DECLARE_BRANCH_PROTOTYPES(BranchShort)
199
200 #undef DECLARE_BRANCH_PROTOTYPES
201 #undef COND_TYPED_ARGS
202 #undef COND_ARGS
203
204
205 // Jump, Call, and Ret pseudo instructions implementing inter-working.
206 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
207 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
208
209 void Jump(Register target, COND_ARGS);
210 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
211 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
212 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
213 static int CallSize(Register target, COND_ARGS);
214 void Call(Register target, COND_ARGS);
215 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
216 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
217 int CallSize(Handle<Code> code,
218 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
219 TypeFeedbackId ast_id = TypeFeedbackId::None(),
220 COND_ARGS);
221 void Call(Handle<Code> code,
222 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
223 TypeFeedbackId ast_id = TypeFeedbackId::None(),
224 COND_ARGS);
225 void Ret(COND_ARGS);
226 inline void Ret(BranchDelaySlot bd, Condition cond = al,
227 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
228 Ret(cond, rs, rt, bd);
229 }
230
231 bool IsNear(Label* L, Condition cond, int rs_reg);
232
233 void Branch(Label* L,
234 Condition cond,
235 Register rs,
236 Heap::RootListIndex index,
237 BranchDelaySlot bdslot = PROTECT);
238
239 // Number of instructions needed for calculation of switch table entry address
240 #ifdef _MIPS_ARCH_MIPS64R6
241 static const int kSwitchTablePrologueSize = 6;
242 #else
243 static const int kSwitchTablePrologueSize = 11;
244 #endif
245
246 // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
247 // functor/function with 'Label *func(size_t index)' declaration.
248 template <typename Func>
249 void GenerateSwitchTable(Register index, size_t case_count,
250 Func GetLabelFunction);
251 #undef COND_ARGS
252
253 // Emit code that loads |parameter_index|'th parameter from the stack to
254 // the register according to the CallInterfaceDescriptor definition.
255 // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
256 // below the caller's sp.
257 template <class Descriptor>
258 void LoadParameterFromStack(
259 Register reg, typename Descriptor::ParameterIndices parameter_index,
260 int sp_to_ra_offset_in_words = 0) {
261 DCHECK(Descriptor::kPassLastArgsOnStack);
262 UNIMPLEMENTED();
263 }
264
265 // Emit code to discard a non-negative number of pointer-sized elements
266 // from the stack, clobbering only the sp register.
267 void Drop(int count,
268 Condition cond = cc_always,
269 Register reg = no_reg,
270 const Operand& op = Operand(no_reg));
271
272 // Trivial case of DropAndRet that utilizes the delay slot and only emits
273 // 2 instructions.
274 void DropAndRet(int drop);
275
276 void DropAndRet(int drop,
277 Condition cond,
278 Register reg,
279 const Operand& op);
280
281 // Swap two registers. If the scratch register is omitted then a slightly
282 // less efficient form using xor instead of mov is emitted.
283 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
284
285 void Call(Label* target);
286
Move(Register dst,Handle<Object> handle)287 inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
Move(Register dst,Smi * smi)288 inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
289
Move(Register dst,Register src)290 inline void Move(Register dst, Register src) {
291 if (!dst.is(src)) {
292 mov(dst, src);
293 }
294 }
295
Move_d(FPURegister dst,FPURegister src)296 inline void Move_d(FPURegister dst, FPURegister src) {
297 if (!dst.is(src)) {
298 mov_d(dst, src);
299 }
300 }
301
Move_s(FPURegister dst,FPURegister src)302 inline void Move_s(FPURegister dst, FPURegister src) {
303 if (!dst.is(src)) {
304 mov_s(dst, src);
305 }
306 }
307
Move(FPURegister dst,FPURegister src)308 inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
309
Move(Register dst_low,Register dst_high,FPURegister src)310 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
311 mfc1(dst_low, src);
312 mfhc1(dst_high, src);
313 }
314
Move(Register dst,FPURegister src)315 inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
316
Move(FPURegister dst,Register src)317 inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
318
FmoveHigh(Register dst_high,FPURegister src)319 inline void FmoveHigh(Register dst_high, FPURegister src) {
320 mfhc1(dst_high, src);
321 }
322
FmoveHigh(FPURegister dst,Register src_high)323 inline void FmoveHigh(FPURegister dst, Register src_high) {
324 mthc1(src_high, dst);
325 }
326
FmoveLow(Register dst_low,FPURegister src)327 inline void FmoveLow(Register dst_low, FPURegister src) {
328 mfc1(dst_low, src);
329 }
330
331 void FmoveLow(FPURegister dst, Register src_low);
332
Move(FPURegister dst,Register src_low,Register src_high)333 inline void Move(FPURegister dst, Register src_low, Register src_high) {
334 mtc1(src_low, dst);
335 mthc1(src_high, dst);
336 }
337
338 void Move(FPURegister dst, float imm);
339 void Move(FPURegister dst, double imm);
340
341 // Conditional move.
342 void Movz(Register rd, Register rs, Register rt);
343 void Movn(Register rd, Register rs, Register rt);
344 void Movt(Register rd, Register rs, uint16_t cc = 0);
345 void Movf(Register rd, Register rs, uint16_t cc = 0);
346
347 void Clz(Register rd, Register rs);
348
349 // Jump unconditionally to given label.
350 // We NEED a nop in the branch delay slot, as it used by v8, for example in
351 // CodeGenerator::ProcessDeferred().
352 // Currently the branch delay slot is filled by the MacroAssembler.
353 // Use rather b(Label) for code generation.
jmp(Label * L)354 void jmp(Label* L) {
355 Branch(L);
356 }
357
358 void Load(Register dst, const MemOperand& src, Representation r);
359 void Store(Register src, const MemOperand& dst, Representation r);
360
PushRoot(Heap::RootListIndex index)361 void PushRoot(Heap::RootListIndex index) {
362 LoadRoot(at, index);
363 Push(at);
364 }
365
366 // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)367 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
368 LoadRoot(at, index);
369 Branch(if_equal, eq, with, Operand(at));
370 }
371
372 // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)373 void JumpIfNotRoot(Register with, Heap::RootListIndex index,
374 Label* if_not_equal) {
375 LoadRoot(at, index);
376 Branch(if_not_equal, ne, with, Operand(at));
377 }
378
379 // Load an object from the root table.
380 void LoadRoot(Register destination,
381 Heap::RootListIndex index);
382 void LoadRoot(Register destination,
383 Heap::RootListIndex index,
384 Condition cond, Register src1, const Operand& src2);
385
386 // Store an object to the root table.
387 void StoreRoot(Register source,
388 Heap::RootListIndex index);
389 void StoreRoot(Register source,
390 Heap::RootListIndex index,
391 Condition cond, Register src1, const Operand& src2);
392
393 // ---------------------------------------------------------------------------
394 // GC Support
395
396 void IncrementalMarkingRecordWriteHelper(Register object,
397 Register value,
398 Register address);
399
400 enum RememberedSetFinalAction {
401 kReturnAtEnd,
402 kFallThroughAtEnd
403 };
404
405
406 // Record in the remembered set the fact that we have a pointer to new space
407 // at the address pointed to by the addr register. Only works if addr is not
408 // in new space.
409 void RememberedSetHelper(Register object, // Used for debug code.
410 Register addr,
411 Register scratch,
412 SaveFPRegsMode save_fp,
413 RememberedSetFinalAction and_then);
414
415 void CheckPageFlag(Register object,
416 Register scratch,
417 int mask,
418 Condition cc,
419 Label* condition_met);
420
421 // Check if object is in new space. Jumps if the object is not in new space.
422 // The register scratch can be object itself, but it will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)423 void JumpIfNotInNewSpace(Register object,
424 Register scratch,
425 Label* branch) {
426 InNewSpace(object, scratch, eq, branch);
427 }
428
429 // Check if object is in new space. Jumps if the object is in new space.
430 // The register scratch can be object itself, but scratch will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)431 void JumpIfInNewSpace(Register object,
432 Register scratch,
433 Label* branch) {
434 InNewSpace(object, scratch, ne, branch);
435 }
436
437 // Check if an object has a given incremental marking color.
438 void HasColor(Register object,
439 Register scratch0,
440 Register scratch1,
441 Label* has_color,
442 int first_bit,
443 int second_bit);
444
445 void JumpIfBlack(Register object,
446 Register scratch0,
447 Register scratch1,
448 Label* on_black);
449
450 // Checks the color of an object. If the object is white we jump to the
451 // incremental marker.
452 void JumpIfWhite(Register value, Register scratch1, Register scratch2,
453 Register scratch3, Label* value_is_white);
454
455 // Notify the garbage collector that we wrote a pointer into an object.
456 // |object| is the object being stored into, |value| is the object being
457 // stored. value and scratch registers are clobbered by the operation.
458 // The offset is the offset from the start of the object, not the offset from
459 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
460 void RecordWriteField(
461 Register object,
462 int offset,
463 Register value,
464 Register scratch,
465 RAStatus ra_status,
466 SaveFPRegsMode save_fp,
467 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
468 SmiCheck smi_check = INLINE_SMI_CHECK,
469 PointersToHereCheck pointers_to_here_check_for_value =
470 kPointersToHereMaybeInteresting);
471
472 // As above, but the offset has the tag presubtracted. For use with
473 // MemOperand(reg, off).
474 inline void RecordWriteContextSlot(
475 Register context,
476 int offset,
477 Register value,
478 Register scratch,
479 RAStatus ra_status,
480 SaveFPRegsMode save_fp,
481 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
482 SmiCheck smi_check = INLINE_SMI_CHECK,
483 PointersToHereCheck pointers_to_here_check_for_value =
484 kPointersToHereMaybeInteresting) {
485 RecordWriteField(context,
486 offset + kHeapObjectTag,
487 value,
488 scratch,
489 ra_status,
490 save_fp,
491 remembered_set_action,
492 smi_check,
493 pointers_to_here_check_for_value);
494 }
495
496 // Notify the garbage collector that we wrote a code entry into a
497 // JSFunction. Only scratch is clobbered by the operation.
498 void RecordWriteCodeEntryField(Register js_function, Register code_entry,
499 Register scratch);
500
501 void RecordWriteForMap(
502 Register object,
503 Register map,
504 Register dst,
505 RAStatus ra_status,
506 SaveFPRegsMode save_fp);
507
508 // For a given |object| notify the garbage collector that the slot |address|
509 // has been written. |value| is the object being stored. The value and
510 // address registers are clobbered by the operation.
511 void RecordWrite(
512 Register object,
513 Register address,
514 Register value,
515 RAStatus ra_status,
516 SaveFPRegsMode save_fp,
517 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
518 SmiCheck smi_check = INLINE_SMI_CHECK,
519 PointersToHereCheck pointers_to_here_check_for_value =
520 kPointersToHereMaybeInteresting);
521
522
523 // ---------------------------------------------------------------------------
524 // Inline caching support.
525
526 void GetNumberHash(Register reg0, Register scratch);
527
MarkCode(NopMarkerTypes type)528 inline void MarkCode(NopMarkerTypes type) {
529 nop(type);
530 }
531
532 // Check if the given instruction is a 'type' marker.
533 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
534 // nop(type)). These instructions are generated to mark special location in
535 // the code, like some special IC code.
IsMarkedCode(Instr instr,int type)536 static inline bool IsMarkedCode(Instr instr, int type) {
537 DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
538 return IsNop(instr, type);
539 }
540
541
GetCodeMarker(Instr instr)542 static inline int GetCodeMarker(Instr instr) {
543 uint32_t opcode = ((instr & kOpcodeMask));
544 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
545 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
546 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
547
548 // Return <n> if we have a sll zero_reg, zero_reg, n
549 // else return -1.
550 bool sllzz = (opcode == SLL &&
551 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
552 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
553 int type =
554 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
555 DCHECK((type == -1) ||
556 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
557 return type;
558 }
559
560
561
562 // ---------------------------------------------------------------------------
563 // Allocation support.
564
565 // Allocate an object in new space or old space. The object_size is
566 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
567 // is passed. If the space is exhausted control continues at the gc_required
568 // label. The allocated object is returned in result. If the flag
569 // tag_allocated_object is true the result is tagged as as a heap object.
570 // All registers are clobbered also when control continues at the gc_required
571 // label.
572 void Allocate(int object_size,
573 Register result,
574 Register scratch1,
575 Register scratch2,
576 Label* gc_required,
577 AllocationFlags flags);
578
579 void Allocate(Register object_size, Register result, Register result_end,
580 Register scratch, Label* gc_required, AllocationFlags flags);
581
582 // FastAllocate is right now only used for folded allocations. It just
583 // increments the top pointer without checking against limit. This can only
584 // be done if it was proved earlier that the allocation will succeed.
585 void FastAllocate(int object_size, Register result, Register scratch1,
586 Register scratch2, AllocationFlags flags);
587
588 void FastAllocate(Register object_size, Register result, Register result_new,
589 Register scratch, AllocationFlags flags);
590
591 // Allocates a heap number or jumps to the gc_required label if the young
592 // space is full and a scavenge is needed. All registers are clobbered also
593 // when control continues at the gc_required label.
594 void AllocateHeapNumber(Register result,
595 Register scratch1,
596 Register scratch2,
597 Register heap_number_map,
598 Label* gc_required,
599 MutableMode mode = IMMUTABLE);
600
601 void AllocateHeapNumberWithValue(Register result,
602 FPURegister value,
603 Register scratch1,
604 Register scratch2,
605 Label* gc_required);
606
607 // Allocate and initialize a JSValue wrapper with the specified {constructor}
608 // and {value}.
609 void AllocateJSValue(Register result, Register constructor, Register value,
610 Register scratch1, Register scratch2,
611 Label* gc_required);
612
613 // ---------------------------------------------------------------------------
614 // Instruction macros.
615
616 #define DEFINE_INSTRUCTION(instr) \
617 void instr(Register rd, Register rs, const Operand& rt); \
618 void instr(Register rd, Register rs, Register rt) { \
619 instr(rd, rs, Operand(rt)); \
620 } \
621 void instr(Register rs, Register rt, int32_t j) { \
622 instr(rs, rt, Operand(j)); \
623 }
624
625 #define DEFINE_INSTRUCTION2(instr) \
626 void instr(Register rs, const Operand& rt); \
627 void instr(Register rs, Register rt) { \
628 instr(rs, Operand(rt)); \
629 } \
630 void instr(Register rs, int32_t j) { \
631 instr(rs, Operand(j)); \
632 }
633
634 DEFINE_INSTRUCTION(Addu);
635 DEFINE_INSTRUCTION(Daddu);
636 DEFINE_INSTRUCTION(Div);
637 DEFINE_INSTRUCTION(Divu);
638 DEFINE_INSTRUCTION(Ddivu);
639 DEFINE_INSTRUCTION(Mod);
640 DEFINE_INSTRUCTION(Modu);
641 DEFINE_INSTRUCTION(Ddiv);
642 DEFINE_INSTRUCTION(Subu);
643 DEFINE_INSTRUCTION(Dsubu);
644 DEFINE_INSTRUCTION(Dmod);
645 DEFINE_INSTRUCTION(Dmodu);
646 DEFINE_INSTRUCTION(Mul);
647 DEFINE_INSTRUCTION(Mulh);
648 DEFINE_INSTRUCTION(Mulhu);
649 DEFINE_INSTRUCTION(Dmul);
650 DEFINE_INSTRUCTION(Dmulh);
651 DEFINE_INSTRUCTION2(Mult);
652 DEFINE_INSTRUCTION2(Dmult);
653 DEFINE_INSTRUCTION2(Multu);
654 DEFINE_INSTRUCTION2(Dmultu);
655 DEFINE_INSTRUCTION2(Div);
656 DEFINE_INSTRUCTION2(Ddiv);
657 DEFINE_INSTRUCTION2(Divu);
658 DEFINE_INSTRUCTION2(Ddivu);
659
660 DEFINE_INSTRUCTION(And);
661 DEFINE_INSTRUCTION(Or);
662 DEFINE_INSTRUCTION(Xor);
663 DEFINE_INSTRUCTION(Nor);
664 DEFINE_INSTRUCTION2(Neg);
665
666 DEFINE_INSTRUCTION(Slt);
667 DEFINE_INSTRUCTION(Sltu);
668
669 // MIPS32 R2 instruction macro.
670 DEFINE_INSTRUCTION(Ror);
671 DEFINE_INSTRUCTION(Dror);
672
673 #undef DEFINE_INSTRUCTION
674 #undef DEFINE_INSTRUCTION2
675 #undef DEFINE_INSTRUCTION3
676
677 // Load Scaled Address instructions. Parameter sa (shift argument) must be
678 // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
679 // may be clobbered.
680 void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
681 Register scratch = at);
682 void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
683 Register scratch = at);
684
685 void Pref(int32_t hint, const MemOperand& rs);
686
687
688 // ---------------------------------------------------------------------------
689 // Pseudo-instructions.
690
691 // Change endianness
692 void ByteSwapSigned(Register dest, Register src, int operand_size);
693 void ByteSwapUnsigned(Register dest, Register src, int operand_size);
694
mov(Register rd,Register rt)695 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
696
697 void Ulh(Register rd, const MemOperand& rs);
698 void Ulhu(Register rd, const MemOperand& rs);
699 void Ush(Register rd, const MemOperand& rs, Register scratch);
700
701 void Ulw(Register rd, const MemOperand& rs);
702 void Ulwu(Register rd, const MemOperand& rs);
703 void Usw(Register rd, const MemOperand& rs);
704
705 void Uld(Register rd, const MemOperand& rs);
706 void Usd(Register rd, const MemOperand& rs);
707
708 void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
709 void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
710
711 void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
712 void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
713
714 void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
715 void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
716
717 // Load int32 in the rd register.
718 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
719 inline bool LiLower32BitHelper(Register rd, Operand j);
720 inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
721 li(rd, Operand(j), mode);
722 }
723 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
724
725 // Push multiple registers on the stack.
726 // Registers are saved in numerical order, with higher numbered registers
727 // saved in higher memory addresses.
728 void MultiPush(RegList regs);
729 void MultiPushReversed(RegList regs);
730
731 void MultiPushFPU(RegList regs);
732 void MultiPushReversedFPU(RegList regs);
733
push(Register src)734 void push(Register src) {
735 Daddu(sp, sp, Operand(-kPointerSize));
736 sd(src, MemOperand(sp, 0));
737 }
Push(Register src)738 void Push(Register src) { push(src); }
739
740 // Push a handle.
741 void Push(Handle<Object> handle);
Push(Smi * smi)742 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
743
744 // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)745 void Push(Register src1, Register src2) {
746 Dsubu(sp, sp, Operand(2 * kPointerSize));
747 sd(src1, MemOperand(sp, 1 * kPointerSize));
748 sd(src2, MemOperand(sp, 0 * kPointerSize));
749 }
750
751 // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)752 void Push(Register src1, Register src2, Register src3) {
753 Dsubu(sp, sp, Operand(3 * kPointerSize));
754 sd(src1, MemOperand(sp, 2 * kPointerSize));
755 sd(src2, MemOperand(sp, 1 * kPointerSize));
756 sd(src3, MemOperand(sp, 0 * kPointerSize));
757 }
758
759 // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)760 void Push(Register src1, Register src2, Register src3, Register src4) {
761 Dsubu(sp, sp, Operand(4 * kPointerSize));
762 sd(src1, MemOperand(sp, 3 * kPointerSize));
763 sd(src2, MemOperand(sp, 2 * kPointerSize));
764 sd(src3, MemOperand(sp, 1 * kPointerSize));
765 sd(src4, MemOperand(sp, 0 * kPointerSize));
766 }
767
768 // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)769 void Push(Register src1, Register src2, Register src3, Register src4,
770 Register src5) {
771 Dsubu(sp, sp, Operand(5 * kPointerSize));
772 sd(src1, MemOperand(sp, 4 * kPointerSize));
773 sd(src2, MemOperand(sp, 3 * kPointerSize));
774 sd(src3, MemOperand(sp, 2 * kPointerSize));
775 sd(src4, MemOperand(sp, 1 * kPointerSize));
776 sd(src5, MemOperand(sp, 0 * kPointerSize));
777 }
778
Push(Register src,Condition cond,Register tst1,Register tst2)779 void Push(Register src, Condition cond, Register tst1, Register tst2) {
780 // Since we don't have conditional execution we use a Branch.
781 Branch(3, cond, tst1, Operand(tst2));
782 Dsubu(sp, sp, Operand(kPointerSize));
783 sd(src, MemOperand(sp, 0));
784 }
785
786 void PushRegisterAsTwoSmis(Register src, Register scratch = at);
787 void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
788
789 // Pops multiple values from the stack and load them in the
790 // registers specified in regs. Pop order is the opposite as in MultiPush.
791 void MultiPop(RegList regs);
792 void MultiPopReversed(RegList regs);
793
794 void MultiPopFPU(RegList regs);
795 void MultiPopReversedFPU(RegList regs);
796
pop(Register dst)797 void pop(Register dst) {
798 ld(dst, MemOperand(sp, 0));
799 Daddu(sp, sp, Operand(kPointerSize));
800 }
Pop(Register dst)801 void Pop(Register dst) { pop(dst); }
802
803 // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)804 void Pop(Register src1, Register src2) {
805 DCHECK(!src1.is(src2));
806 ld(src2, MemOperand(sp, 0 * kPointerSize));
807 ld(src1, MemOperand(sp, 1 * kPointerSize));
808 Daddu(sp, sp, 2 * kPointerSize);
809 }
810
811 // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)812 void Pop(Register src1, Register src2, Register src3) {
813 ld(src3, MemOperand(sp, 0 * kPointerSize));
814 ld(src2, MemOperand(sp, 1 * kPointerSize));
815 ld(src1, MemOperand(sp, 2 * kPointerSize));
816 Daddu(sp, sp, 3 * kPointerSize);
817 }
818
819 void Pop(uint32_t count = 1) {
820 Daddu(sp, sp, Operand(count * kPointerSize));
821 }
822
823 // Push a fixed frame, consisting of ra, fp.
824 void PushCommonFrame(Register marker_reg = no_reg);
825
826 // Push a standard frame, consisting of ra, fp, context and JS function.
827 void PushStandardFrame(Register function_reg);
828
829 void PopCommonFrame(Register marker_reg = no_reg);
830
831 // Push and pop the registers that can hold pointers, as defined by the
832 // RegList constant kSafepointSavedRegisters.
833 void PushSafepointRegisters();
834 void PopSafepointRegisters();
835 // Store value in register src in the safepoint stack slot for
836 // register dst.
837 void StoreToSafepointRegisterSlot(Register src, Register dst);
838 // Load the value of the src register from its safepoint stack slot
839 // into register dst.
840 void LoadFromSafepointRegisterSlot(Register dst, Register src);
841
842 // MIPS64 R2 instruction macro.
843 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
844 void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
845 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
846
847 void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size);
848
849 void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
850 void Dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
851 void Dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
852 void Neg_s(FPURegister fd, FPURegister fs);
853 void Neg_d(FPURegister fd, FPURegister fs);
854
855 // MIPS64 R6 instruction macros.
856 void Bovc(Register rt, Register rs, Label* L);
857 void Bnvc(Register rt, Register rs, Label* L);
858
859 // ---------------------------------------------------------------------------
860 // FPU macros. These do not handle special cases like NaN or +- inf.
861
862 // Convert unsigned word to double.
863 void Cvt_d_uw(FPURegister fd, FPURegister fs);
864 void Cvt_d_uw(FPURegister fd, Register rs);
865
866 // Convert unsigned long to double.
867 void Cvt_d_ul(FPURegister fd, FPURegister fs);
868 void Cvt_d_ul(FPURegister fd, Register rs);
869
870 // Convert unsigned word to float.
871 void Cvt_s_uw(FPURegister fd, FPURegister fs);
872 void Cvt_s_uw(FPURegister fd, Register rs);
873
874 // Convert unsigned long to float.
875 void Cvt_s_ul(FPURegister fd, FPURegister fs);
876 void Cvt_s_ul(FPURegister fd, Register rs);
877
878 // Convert double to unsigned long.
879 void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
880
881 void Trunc_l_d(FPURegister fd, FPURegister fs);
882 void Round_l_d(FPURegister fd, FPURegister fs);
883 void Floor_l_d(FPURegister fd, FPURegister fs);
884 void Ceil_l_d(FPURegister fd, FPURegister fs);
885
886 // Convert double to unsigned word.
887 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
888 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
889
890 // Convert single to unsigned word.
891 void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
892 void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
893
894 // Convert double to unsigned long.
895 void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
896 Register result = no_reg);
897 void Trunc_ul_d(FPURegister fd, Register rs, FPURegister scratch,
898 Register result = no_reg);
899
900 // Convert single to unsigned long.
901 void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
902 Register result = no_reg);
903 void Trunc_ul_s(FPURegister fd, Register rs, FPURegister scratch,
904 Register result = no_reg);
905
906 void Trunc_w_d(FPURegister fd, FPURegister fs);
907 void Round_w_d(FPURegister fd, FPURegister fs);
908 void Floor_w_d(FPURegister fd, FPURegister fs);
909 void Ceil_w_d(FPURegister fd, FPURegister fs);
910
911 // Preserve value of a NaN operand
912 void SubNanPreservePayloadAndSign_s(FPURegister fd, FPURegister fs,
913 FPURegister ft);
914 void SubNanPreservePayloadAndSign_d(FPURegister fd, FPURegister fs,
915 FPURegister ft);
916
917 void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
918 FPURegister scratch);
919 void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
920 FPURegister scratch);
921 void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
922 FPURegister scratch);
923 void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
924 FPURegister scratch);
925
926 // Wrapper functions for the different cmp/branch types.
927 inline void BranchF32(Label* target, Label* nan, Condition cc,
928 FPURegister cmp1, FPURegister cmp2,
929 BranchDelaySlot bd = PROTECT) {
930 BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
931 }
932
933 inline void BranchF64(Label* target, Label* nan, Condition cc,
934 FPURegister cmp1, FPURegister cmp2,
935 BranchDelaySlot bd = PROTECT) {
936 BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
937 }
938
939 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
BranchF64(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)940 inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
941 Condition cc, FPURegister cmp1, FPURegister cmp2) {
942 BranchF64(target, nan, cc, cmp1, cmp2, bd);
943 }
944
BranchF32(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)945 inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
946 Condition cc, FPURegister cmp1, FPURegister cmp2) {
947 BranchF32(target, nan, cc, cmp1, cmp2, bd);
948 }
949
950 // Alias functions for backward compatibility.
951 inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
952 FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
953 BranchF64(target, nan, cc, cmp1, cmp2, bd);
954 }
955
BranchF(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)956 inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
957 Condition cc, FPURegister cmp1, FPURegister cmp2) {
958 BranchF64(bd, target, nan, cc, cmp1, cmp2);
959 }
960
961 // Truncates a double using a specific rounding mode, and writes the value
962 // to the result register.
963 // The except_flag will contain any exceptions caused by the instruction.
964 // If check_inexact is kDontCheckForInexactConversion, then the inexact
965 // exception is masked.
966 void EmitFPUTruncate(FPURoundingMode rounding_mode,
967 Register result,
968 DoubleRegister double_input,
969 Register scratch,
970 DoubleRegister double_scratch,
971 Register except_flag,
972 CheckForInexactConversion check_inexact
973 = kDontCheckForInexactConversion);
974
975 // Performs a truncating conversion of a floating point number as used by
976 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
977 // succeeds, otherwise falls through if result is saturated. On return
978 // 'result' either holds answer, or is clobbered on fall through.
979 //
980 // Only public for the test code in test-code-stubs-arm.cc.
981 void TryInlineTruncateDoubleToI(Register result,
982 DoubleRegister input,
983 Label* done);
984
985 // Performs a truncating conversion of a floating point number as used by
986 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
987 // Exits with 'result' holding the answer.
988 void TruncateDoubleToI(Register result, DoubleRegister double_input);
989
990 // Performs a truncating conversion of a heap number as used by
991 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
992 // must be different registers. Exits with 'result' holding the answer.
993 void TruncateHeapNumberToI(Register result, Register object);
994
995 // Converts the smi or heap number in object to an int32 using the rules
996 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
997 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
998 // different registers.
999 void TruncateNumberToI(Register object,
1000 Register result,
1001 Register heap_number_map,
1002 Register scratch,
1003 Label* not_int32);
1004
1005 // Loads the number from object into dst register.
1006 // If |object| is neither smi nor heap number, |not_number| is jumped to
1007 // with |object| still intact.
1008 void LoadNumber(Register object,
1009 FPURegister dst,
1010 Register heap_number_map,
1011 Register scratch,
1012 Label* not_number);
1013
1014 // Loads the number from object into double_dst in the double format.
1015 // Control will jump to not_int32 if the value cannot be exactly represented
1016 // by a 32-bit integer.
1017 // Floating point value in the 32-bit integer range that are not exact integer
1018 // won't be loaded.
1019 void LoadNumberAsInt32Double(Register object,
1020 DoubleRegister double_dst,
1021 Register heap_number_map,
1022 Register scratch1,
1023 Register scratch2,
1024 FPURegister double_scratch,
1025 Label* not_int32);
1026
1027 // Loads the number from object into dst as a 32-bit integer.
1028 // Control will jump to not_int32 if the object cannot be exactly represented
1029 // by a 32-bit integer.
1030 // Floating point value in the 32-bit integer range that are not exact integer
1031 // won't be converted.
1032 void LoadNumberAsInt32(Register object,
1033 Register dst,
1034 Register heap_number_map,
1035 Register scratch1,
1036 Register scratch2,
1037 FPURegister double_scratch0,
1038 FPURegister double_scratch1,
1039 Label* not_int32);
1040
1041 // Enter exit frame.
1042 // argc - argument count to be dropped by LeaveExitFrame.
1043 // save_doubles - saves FPU registers on stack, currently disabled.
1044 // stack_space - extra stack space.
1045 void EnterExitFrame(bool save_doubles, int stack_space = 0,
1046 StackFrame::Type frame_type = StackFrame::EXIT);
1047
1048 // Leave the current exit frame.
1049 void LeaveExitFrame(bool save_doubles, Register arg_count,
1050 bool restore_context, bool do_return = NO_EMIT_RETURN,
1051 bool argument_count_is_length = false);
1052
1053 // Get the actual activation frame alignment for target environment.
1054 static int ActivationFrameAlignment();
1055
1056 // Make sure the stack is aligned. Only emits code in debug mode.
1057 void AssertStackIsAligned();
1058
1059 void LoadContext(Register dst, int context_chain_length);
1060
1061 // Load the global object from the current context.
LoadGlobalObject(Register dst)1062 void LoadGlobalObject(Register dst) {
1063 LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1064 }
1065
1066 // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1067 void LoadGlobalProxy(Register dst) {
1068 LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1069 }
1070
1071 void LoadNativeContextSlot(int index, Register dst);
1072
1073 // Load the initial map from the global function. The registers
1074 // function and map can be the same, function is then overwritten.
1075 void LoadGlobalFunctionInitialMap(Register function,
1076 Register map,
1077 Register scratch);
1078
InitializeRootRegister()1079 void InitializeRootRegister() {
1080 ExternalReference roots_array_start =
1081 ExternalReference::roots_array_start(isolate());
1082 li(kRootRegister, Operand(roots_array_start));
1083 }
1084
1085 // -------------------------------------------------------------------------
1086 // JavaScript invokes.
1087
1088 // Removes current frame and its arguments from the stack preserving
1089 // the arguments and a return address pushed to the stack for the next call.
1090 // Both |callee_args_count| and |caller_args_count_reg| do not include
1091 // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1092 // is trashed.
1093 void PrepareForTailCall(const ParameterCount& callee_args_count,
1094 Register caller_args_count_reg, Register scratch0,
1095 Register scratch1);
1096
1097 // Invoke the JavaScript function code by either calling or jumping.
1098 void InvokeFunctionCode(Register function, Register new_target,
1099 const ParameterCount& expected,
1100 const ParameterCount& actual, InvokeFlag flag,
1101 const CallWrapper& call_wrapper);
1102
1103 // On function call, call into the debugger if necessary.
1104 void CheckDebugHook(Register fun, Register new_target,
1105 const ParameterCount& expected,
1106 const ParameterCount& actual);
1107
1108 // Invoke the JavaScript function in the given register. Changes the
1109 // current context to the context in the function before invoking.
1110 void InvokeFunction(Register function,
1111 Register new_target,
1112 const ParameterCount& actual,
1113 InvokeFlag flag,
1114 const CallWrapper& call_wrapper);
1115
1116 void InvokeFunction(Register function,
1117 const ParameterCount& expected,
1118 const ParameterCount& actual,
1119 InvokeFlag flag,
1120 const CallWrapper& call_wrapper);
1121
1122 void InvokeFunction(Handle<JSFunction> function,
1123 const ParameterCount& expected,
1124 const ParameterCount& actual,
1125 InvokeFlag flag,
1126 const CallWrapper& call_wrapper);
1127
1128
1129 void IsObjectJSStringType(Register object,
1130 Register scratch,
1131 Label* fail);
1132
1133 void IsObjectNameType(Register object,
1134 Register scratch,
1135 Label* fail);
1136
1137 // Frame restart support.
1138 void MaybeDropFrames();
1139
1140 // Exception handling.
1141
1142 // Push a new stack handler and link into stack handler chain.
1143 void PushStackHandler();
1144
1145 // Unlink the stack handler on top of the stack from the stack handler chain.
1146 // Must preserve the result register.
1147 void PopStackHandler();
1148
1149 // Initialize fields with filler values. Fields starting at |current_address|
1150 // not including |end_address| are overwritten with the value in |filler|. At
1151 // the end the loop, |current_address| takes the value of |end_address|.
1152 void InitializeFieldsWithFiller(Register current_address,
1153 Register end_address, Register filler);
1154
1155 // -------------------------------------------------------------------------
1156 // Support functions.
1157
1158 // Machine code version of Map::GetConstructor().
1159 // |temp| holds |result|'s map when done, and |temp2| its instance type.
1160 void GetMapConstructor(Register result, Register map, Register temp,
1161 Register temp2);
1162
1163 void GetObjectType(Register function,
1164 Register map,
1165 Register type_reg);
1166
GetInstanceType(Register object_map,Register object_instance_type)1167 void GetInstanceType(Register object_map, Register object_instance_type) {
1168 lbu(object_instance_type,
1169 FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1170 }
1171
1172 // Compare an object's map with the specified map and its transitioned
1173 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1174 // "branch_to" if the result of the comparison is "cond". If multiple map
1175 // compares are required, the compare sequences branches to early_success.
1176 void CompareMapAndBranch(Register obj,
1177 Register scratch,
1178 Handle<Map> map,
1179 Label* early_success,
1180 Condition cond,
1181 Label* branch_to);
1182
1183 // As above, but the map of the object is already loaded into the register
1184 // which is preserved by the code generated.
1185 void CompareMapAndBranch(Register obj_map,
1186 Handle<Map> map,
1187 Label* early_success,
1188 Condition cond,
1189 Label* branch_to);
1190
1191 // Check if the map of an object is equal to a specified map and branch to
1192 // label if not. Skip the smi check if not required (object is known to be a
1193 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1194 // against maps that are ElementsKind transition maps of the specificed map.
1195 void CheckMap(Register obj,
1196 Register scratch,
1197 Handle<Map> map,
1198 Label* fail,
1199 SmiCheckType smi_check_type);
1200
1201
1202 void CheckMap(Register obj,
1203 Register scratch,
1204 Heap::RootListIndex index,
1205 Label* fail,
1206 SmiCheckType smi_check_type);
1207
1208 // Check if the map of an object is equal to a specified weak map and branch
1209 // to a specified target if equal. Skip the smi check if not required
1210 // (object is known to be a heap object)
1211 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1212 Handle<WeakCell> cell, Handle<Code> success,
1213 SmiCheckType smi_check_type);
1214
1215 // If the value is a NaN, canonicalize the value else, do nothing.
1216 void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1217
1218
1219 // Get value of the weak cell.
1220 void GetWeakValue(Register value, Handle<WeakCell> cell);
1221
1222 // Load the value of the weak cell in the value register. Branch to the
1223 // given miss label is the weak cell was cleared.
1224 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1225
1226 // Load and check the instance type of an object for being a string.
1227 // Loads the type into the second argument register.
1228 // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type,Register result)1229 Condition IsObjectStringType(Register obj,
1230 Register type,
1231 Register result) {
1232 ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1233 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1234 And(type, type, Operand(kIsNotStringMask));
1235 DCHECK_EQ(0u, kStringTag);
1236 return eq;
1237 }
1238
1239 // Get the number of least significant bits from a register.
1240 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1241 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1242
1243 // Load the value of a number object into a FPU double register. If the
1244 // object is not a number a jump to the label not_number is performed
1245 // and the FPU double register is unchanged.
1246 void ObjectToDoubleFPURegister(
1247 Register object,
1248 FPURegister value,
1249 Register scratch1,
1250 Register scratch2,
1251 Register heap_number_map,
1252 Label* not_number,
1253 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1254
1255 // Load the value of a smi object into a FPU double register. The register
1256 // scratch1 can be the same register as smi in which case smi will hold the
1257 // untagged value afterwards.
1258 void SmiToDoubleFPURegister(Register smi,
1259 FPURegister value,
1260 Register scratch1);
1261
1262 // -------------------------------------------------------------------------
1263 // Overflow handling functions.
1264 // Usage: first call the appropriate arithmetic function, then call one of the
1265 // jump functions with the overflow_dst register as the second parameter.
1266
1267 inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1268 Label* overflow_label, Register scratch = at) {
1269 AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1270 }
1271
1272 inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1273 Label* no_overflow_label, Register scratch = at) {
1274 AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1275 }
1276
1277 void AddBranchOvf(Register dst, Register left, const Operand& right,
1278 Label* overflow_label, Label* no_overflow_label,
1279 Register scratch = at);
1280
1281 void AddBranchOvf(Register dst, Register left, Register right,
1282 Label* overflow_label, Label* no_overflow_label,
1283 Register scratch = at);
1284
1285 inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1286 Label* overflow_label, Register scratch = at) {
1287 SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1288 }
1289
1290 inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1291 Label* no_overflow_label, Register scratch = at) {
1292 SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1293 }
1294
1295 void SubBranchOvf(Register dst, Register left, const Operand& right,
1296 Label* overflow_label, Label* no_overflow_label,
1297 Register scratch = at);
1298
1299 void SubBranchOvf(Register dst, Register left, Register right,
1300 Label* overflow_label, Label* no_overflow_label,
1301 Register scratch = at);
1302
1303 inline void MulBranchOvf(Register dst, Register left, const Operand& right,
1304 Label* overflow_label, Register scratch = at) {
1305 MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1306 }
1307
1308 inline void MulBranchNoOvf(Register dst, Register left, const Operand& right,
1309 Label* no_overflow_label, Register scratch = at) {
1310 MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1311 }
1312
1313 void MulBranchOvf(Register dst, Register left, const Operand& right,
1314 Label* overflow_label, Label* no_overflow_label,
1315 Register scratch = at);
1316
1317 void MulBranchOvf(Register dst, Register left, Register right,
1318 Label* overflow_label, Label* no_overflow_label,
1319 Register scratch = at);
1320
1321 inline void DaddBranchOvf(Register dst, Register left, const Operand& right,
1322 Label* overflow_label, Register scratch = at) {
1323 DaddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1324 }
1325
1326 inline void DaddBranchNoOvf(Register dst, Register left, const Operand& right,
1327 Label* no_overflow_label, Register scratch = at) {
1328 DaddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1329 }
1330
1331 void DaddBranchOvf(Register dst, Register left, const Operand& right,
1332 Label* overflow_label, Label* no_overflow_label,
1333 Register scratch = at);
1334
1335 void DaddBranchOvf(Register dst, Register left, Register right,
1336 Label* overflow_label, Label* no_overflow_label,
1337 Register scratch = at);
1338
1339 inline void DsubBranchOvf(Register dst, Register left, const Operand& right,
1340 Label* overflow_label, Register scratch = at) {
1341 DsubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1342 }
1343
1344 inline void DsubBranchNoOvf(Register dst, Register left, const Operand& right,
1345 Label* no_overflow_label, Register scratch = at) {
1346 DsubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1347 }
1348
1349 void DsubBranchOvf(Register dst, Register left, const Operand& right,
1350 Label* overflow_label, Label* no_overflow_label,
1351 Register scratch = at);
1352
1353 void DsubBranchOvf(Register dst, Register left, Register right,
1354 Label* overflow_label, Label* no_overflow_label,
1355 Register scratch = at);
1356
1357 void BranchOnOverflow(Label* label,
1358 Register overflow_check,
1359 BranchDelaySlot bd = PROTECT) {
1360 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1361 }
1362
1363 void BranchOnNoOverflow(Label* label,
1364 Register overflow_check,
1365 BranchDelaySlot bd = PROTECT) {
1366 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1367 }
1368
1369 void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1370 Ret(lt, overflow_check, Operand(zero_reg), bd);
1371 }
1372
1373 void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1374 Ret(ge, overflow_check, Operand(zero_reg), bd);
1375 }
1376
1377 // Perform a floating-point min or max operation with the
1378 // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
1379 // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
1380 // handled in out-of-line code. The specific behaviour depends on supported
1381 // instructions.
1382 //
1383 // These functions assume (and assert) that !src1.is(src2). It is permitted
1384 // for the result to alias either input register.
1385 void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
1386 Label* out_of_line);
1387 void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
1388 Label* out_of_line);
1389 void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2,
1390 Label* out_of_line);
1391 void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2,
1392 Label* out_of_line);
1393
1394 // Generate out-of-line cases for the macros above.
1395 void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1396 void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1397 void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1398 void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1399
1400 // -------------------------------------------------------------------------
1401 // Runtime calls.
1402
1403 // See comments at the beginning of CEntryStub::Generate.
PrepareCEntryArgs(int num_args)1404 inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1405
PrepareCEntryFunction(const ExternalReference & ref)1406 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1407 li(a1, Operand(ref));
1408 }
1409
1410 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1411 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1412
1413 // Call a code stub.
1414 void CallStub(CodeStub* stub,
1415 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1416 COND_ARGS);
1417
1418 // Tail call a code stub (jump).
1419 void TailCallStub(CodeStub* stub, COND_ARGS);
1420
1421 #undef COND_ARGS
1422
1423 void CallJSExitStub(CodeStub* stub);
1424
1425 // Call a runtime routine.
1426 void CallRuntime(const Runtime::Function* f, int num_arguments,
1427 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1428 BranchDelaySlot bd = PROTECT);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1429 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1430 const Runtime::Function* function = Runtime::FunctionForId(fid);
1431 CallRuntime(function, function->nargs, kSaveFPRegs);
1432 }
1433
1434 // Convenience function: Same as above, but takes the fid instead.
1435 void CallRuntime(Runtime::FunctionId fid,
1436 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1437 BranchDelaySlot bd = PROTECT) {
1438 const Runtime::Function* function = Runtime::FunctionForId(fid);
1439 CallRuntime(function, function->nargs, save_doubles, bd);
1440 }
1441
1442 // Convenience function: Same as above, but takes the fid instead.
1443 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1444 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1445 BranchDelaySlot bd = PROTECT) {
1446 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles, bd);
1447 }
1448
1449 // Convenience function: call an external reference.
1450 void CallExternalReference(const ExternalReference& ext,
1451 int num_arguments,
1452 BranchDelaySlot bd = PROTECT);
1453
1454 // Convenience function: tail call a runtime routine (jump).
1455 void TailCallRuntime(Runtime::FunctionId fid);
1456
1457 int CalculateStackPassedWords(int num_reg_arguments,
1458 int num_double_arguments);
1459
1460 // Before calling a C-function from generated code, align arguments on stack
1461 // and add space for the four mips argument slots.
1462 // After aligning the frame, non-register arguments must be stored on the
1463 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1464 // The argument count assumes all arguments are word sized.
1465 // Some compilers/platforms require the stack to be aligned when calling
1466 // C++ code.
1467 // Needs a scratch register to do some arithmetic. This register will be
1468 // trashed.
1469 void PrepareCallCFunction(int num_reg_arguments,
1470 int num_double_registers,
1471 Register scratch);
1472 void PrepareCallCFunction(int num_reg_arguments,
1473 Register scratch);
1474
1475 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1476 // Arguments 5..n are stored to stack using following:
1477 // sw(a4, CFunctionArgumentOperand(5));
1478
1479 // Calls a C function and cleans up the space for arguments allocated
1480 // by PrepareCallCFunction. The called function is not allowed to trigger a
1481 // garbage collection, since that might move the code and invalidate the
1482 // return address (unless this is somehow accounted for by the called
1483 // function).
1484 void CallCFunction(ExternalReference function, int num_arguments);
1485 void CallCFunction(Register function, int num_arguments);
1486 void CallCFunction(ExternalReference function,
1487 int num_reg_arguments,
1488 int num_double_arguments);
1489 void CallCFunction(Register function,
1490 int num_reg_arguments,
1491 int num_double_arguments);
1492 void MovFromFloatResult(DoubleRegister dst);
1493 void MovFromFloatParameter(DoubleRegister dst);
1494
1495 // There are two ways of passing double arguments on MIPS, depending on
1496 // whether soft or hard floating point ABI is used. These functions
1497 // abstract parameter passing for the three different ways we call
1498 // C functions from generated code.
1499 void MovToFloatParameter(DoubleRegister src);
1500 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1501 void MovToFloatResult(DoubleRegister src);
1502
1503 // Jump to the builtin routine.
1504 void JumpToExternalReference(const ExternalReference& builtin,
1505 BranchDelaySlot bd = PROTECT,
1506 bool builtin_exit_frame = false);
1507
1508 struct Unresolved {
1509 int pc;
1510 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1511 const char* name;
1512 };
1513
CodeObject()1514 Handle<Object> CodeObject() {
1515 DCHECK(!code_object_.is_null());
1516 return code_object_;
1517 }
1518
1519 // Emit code for a truncating division by a constant. The dividend register is
1520 // unchanged and at gets clobbered. Dividend and result must be different.
1521 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1522
1523 // -------------------------------------------------------------------------
1524 // StatsCounter support.
1525
1526 void SetCounter(StatsCounter* counter, int value,
1527 Register scratch1, Register scratch2);
1528 void IncrementCounter(StatsCounter* counter, int value,
1529 Register scratch1, Register scratch2);
1530 void DecrementCounter(StatsCounter* counter, int value,
1531 Register scratch1, Register scratch2);
1532
1533
1534 // -------------------------------------------------------------------------
1535 // Debugging.
1536
1537 // Calls Abort(msg) if the condition cc is not satisfied.
1538 // Use --debug_code to enable.
1539 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1540 void AssertFastElements(Register elements);
1541
1542 // Like Assert(), but always enabled.
1543 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1544
1545 // Print a message to stdout and abort execution.
1546 void Abort(BailoutReason msg);
1547
1548 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1549 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1550 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1551 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1552 bool has_frame() { return has_frame_; }
1553 inline bool AllowThisStubCall(CodeStub* stub);
1554
1555 // ---------------------------------------------------------------------------
1556 // Number utilities.
1557
1558 // Check whether the value of reg is a power of two and not zero. If not
1559 // control continues at the label not_power_of_two. If reg is a power of two
1560 // the register scratch contains the value of (reg - 1) when control falls
1561 // through.
1562 void JumpIfNotPowerOfTwoOrZero(Register reg,
1563 Register scratch,
1564 Label* not_power_of_two_or_zero);
1565
1566 // -------------------------------------------------------------------------
1567 // Smi utilities.
1568
1569 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1570 void SmiTagCheckOverflow(Register reg, Register overflow);
1571 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1572
SmiTag(Register dst,Register src)1573 void SmiTag(Register dst, Register src) {
1574 STATIC_ASSERT(kSmiTag == 0);
1575 if (SmiValuesAre32Bits()) {
1576 STATIC_ASSERT(kSmiShift == 32);
1577 dsll32(dst, src, 0);
1578 } else {
1579 Addu(dst, src, src);
1580 }
1581 }
1582
SmiTag(Register reg)1583 void SmiTag(Register reg) {
1584 SmiTag(reg, reg);
1585 }
1586
1587 // Try to convert int32 to smi. If the value is to large, preserve
1588 // the original value and jump to not_a_smi. Destroys scratch and
1589 // sets flags.
TrySmiTag(Register reg,Register scratch,Label * not_a_smi)1590 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1591 TrySmiTag(reg, reg, scratch, not_a_smi);
1592 }
1593
TrySmiTag(Register dst,Register src,Register scratch,Label * not_a_smi)1594 void TrySmiTag(Register dst,
1595 Register src,
1596 Register scratch,
1597 Label* not_a_smi) {
1598 if (SmiValuesAre32Bits()) {
1599 SmiTag(dst, src);
1600 } else {
1601 SmiTagCheckOverflow(at, src, scratch);
1602 BranchOnOverflow(not_a_smi, scratch);
1603 mov(dst, at);
1604 }
1605 }
1606
SmiUntag(Register dst,Register src)1607 void SmiUntag(Register dst, Register src) {
1608 if (SmiValuesAre32Bits()) {
1609 STATIC_ASSERT(kSmiShift == 32);
1610 dsra32(dst, src, 0);
1611 } else {
1612 sra(dst, src, kSmiTagSize);
1613 }
1614 }
1615
SmiUntag(Register reg)1616 void SmiUntag(Register reg) {
1617 SmiUntag(reg, reg);
1618 }
1619
1620 // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)1621 void SmiScale(Register dst, Register src, int scale) {
1622 if (SmiValuesAre32Bits()) {
1623 // The int portion is upper 32-bits of 64-bit word.
1624 dsra(dst, src, kSmiShift - scale);
1625 } else {
1626 DCHECK(scale >= kSmiTagSize);
1627 sll(dst, src, scale - kSmiTagSize);
1628 }
1629 }
1630
1631 // Combine load with untagging or scaling.
1632 void SmiLoadUntag(Register dst, MemOperand src);
1633
1634 void SmiLoadScale(Register dst, MemOperand src, int scale);
1635
1636 // Returns 2 values: the Smi and a scaled version of the int within the Smi.
1637 void SmiLoadWithScale(Register d_smi,
1638 Register d_scaled,
1639 MemOperand src,
1640 int scale);
1641
1642 // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
1643 void SmiLoadUntagWithScale(Register d_int,
1644 Register d_scaled,
1645 MemOperand src,
1646 int scale);
1647
1648
1649 // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1650 inline void SmiTst(Register value, Register scratch) {
1651 And(scratch, value, Operand(kSmiTagMask));
1652 }
NonNegativeSmiTst(Register value,Register scratch)1653 inline void NonNegativeSmiTst(Register value, Register scratch) {
1654 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1655 }
1656
1657 // Untag the source value into destination and jump if source is a smi.
1658 // Source and destination can be the same register.
1659 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1660
1661 // Jump the register contains a smi.
1662 void JumpIfSmi(Register value,
1663 Label* smi_label,
1664 Register scratch = at,
1665 BranchDelaySlot bd = PROTECT);
1666
1667 // Jump if the register contains a non-smi.
1668 void JumpIfNotSmi(Register value,
1669 Label* not_smi_label,
1670 Register scratch = at,
1671 BranchDelaySlot bd = PROTECT);
1672
1673 // Jump if either of the registers contain a non-smi.
1674 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1675 // Jump if either of the registers contain a smi.
1676 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1677
1678 // Abort execution if argument is a number, enabled via --debug-code.
1679 void AssertNotNumber(Register object);
1680
1681 // Abort execution if argument is a smi, enabled via --debug-code.
1682 void AssertNotSmi(Register object);
1683 void AssertSmi(Register object);
1684
1685 // Abort execution if argument is not a string, enabled via --debug-code.
1686 void AssertString(Register object);
1687
1688 // Abort execution if argument is not a name, enabled via --debug-code.
1689 void AssertName(Register object);
1690
1691 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1692 void AssertFunction(Register object);
1693
1694 // Abort execution if argument is not a JSBoundFunction,
1695 // enabled via --debug-code.
1696 void AssertBoundFunction(Register object);
1697
1698 // Abort execution if argument is not a JSGeneratorObject,
1699 // enabled via --debug-code.
1700 void AssertGeneratorObject(Register object);
1701
1702 // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1703 void AssertReceiver(Register object);
1704
1705 // Abort execution if argument is not undefined or an AllocationSite, enabled
1706 // via --debug-code.
1707 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1708
1709 // Abort execution if reg is not the root value with the given index,
1710 // enabled via --debug-code.
1711 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1712
1713 // ---------------------------------------------------------------------------
1714 // HeapNumber utilities.
1715
1716 void JumpIfNotHeapNumber(Register object,
1717 Register heap_number_map,
1718 Register scratch,
1719 Label* on_not_heap_number);
1720
1721 // -------------------------------------------------------------------------
1722 // String utilities.
1723
1724 // Checks if both instance types are sequential one-byte strings and jumps to
1725 // label if either is not.
1726 void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1727 Register first_object_instance_type, Register second_object_instance_type,
1728 Register scratch1, Register scratch2, Label* failure);
1729
1730 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1731
1732 void EmitSeqStringSetCharCheck(Register string,
1733 Register index,
1734 Register value,
1735 Register scratch,
1736 uint32_t encoding_mask);
1737
1738 // Checks if both objects are sequential one-byte strings and jumps to label
1739 // if either is not. Assumes that neither object is a smi.
1740 void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1741 Register second,
1742 Register scratch1,
1743 Register scratch2,
1744 Label* failure);
1745
1746 // Checks if both objects are sequential one-byte strings and jumps to label
1747 // if either is not.
1748 void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1749 Register scratch1,
1750 Register scratch2,
1751 Label* not_flat_one_byte_strings);
1752
1753 void ClampUint8(Register output_reg, Register input_reg);
1754
1755 void ClampDoubleToUint8(Register result_reg,
1756 DoubleRegister input_reg,
1757 DoubleRegister temp_double_reg);
1758
1759
1760 void LoadInstanceDescriptors(Register map, Register descriptors);
1761 void EnumLength(Register dst, Register map);
1762 void NumberOfOwnDescriptors(Register dst, Register map);
1763 void LoadAccessor(Register dst, Register holder, int accessor_index,
1764 AccessorComponent accessor);
1765
1766 template<typename Field>
DecodeField(Register dst,Register src)1767 void DecodeField(Register dst, Register src) {
1768 Ext(dst, src, Field::kShift, Field::kSize);
1769 }
1770
1771 template<typename Field>
DecodeField(Register reg)1772 void DecodeField(Register reg) {
1773 DecodeField<Field>(reg, reg);
1774 }
1775
1776 template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1777 void DecodeFieldToSmi(Register dst, Register src) {
1778 static const int shift = Field::kShift;
1779 static const int mask = Field::kMask >> shift;
1780 dsrl(dst, src, shift);
1781 And(dst, dst, Operand(mask));
1782 dsll32(dst, dst, 0);
1783 }
1784
1785 template<typename Field>
DecodeFieldToSmi(Register reg)1786 void DecodeFieldToSmi(Register reg) {
1787 DecodeField<Field>(reg, reg);
1788 }
1789 // Generates function and stub prologue code.
1790 void StubPrologue(StackFrame::Type type);
1791 void Prologue(bool code_pre_aging);
1792
1793 // Load the type feedback vector from a JavaScript frame.
1794 void EmitLoadFeedbackVector(Register vector);
1795
1796 // Activation support.
1797 void EnterFrame(StackFrame::Type type);
1798 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1799 void LeaveFrame(StackFrame::Type type);
1800
1801 void EnterBuiltinFrame(Register context, Register target, Register argc);
1802 void LeaveBuiltinFrame(Register context, Register target, Register argc);
1803
1804 // Expects object in a0 and returns map with validated enum cache
1805 // in a0. Assumes that any other register can be used as a scratch.
1806 void CheckEnumCache(Label* call_runtime);
1807
1808 // AllocationMemento support. Arrays may have an associated AllocationMemento
1809 // object that can be checked for in order to pretransition to another type.
1810 // On entry, receiver_reg should point to the array object. scratch_reg gets
1811 // clobbered. If no info is present jump to no_memento_found, otherwise fall
1812 // through.
1813 void TestJSArrayForAllocationMemento(Register receiver_reg,
1814 Register scratch_reg,
1815 Label* no_memento_found);
1816
IsDoubleZeroRegSet()1817 bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1818
1819 private:
1820 void CallCFunctionHelper(Register function,
1821 int num_reg_arguments,
1822 int num_double_arguments);
1823
1824 inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1825 inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1826 void BranchShortHelperR6(int32_t offset, Label* L);
1827 void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1828 bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1829 Register rs, const Operand& rt);
1830 bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1831 const Operand& rt, BranchDelaySlot bdslot);
1832 bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1833 const Operand& rt, BranchDelaySlot bdslot);
1834
1835 void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1836 void BranchAndLinkShortHelper(int16_t offset, Label* L,
1837 BranchDelaySlot bdslot);
1838 void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1839 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1840 bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1841 Register rs, const Operand& rt);
1842 bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1843 Register rs, const Operand& rt,
1844 BranchDelaySlot bdslot);
1845 bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1846 Register rs, const Operand& rt,
1847 BranchDelaySlot bdslot);
1848 void BranchLong(Label* L, BranchDelaySlot bdslot);
1849 void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1850
1851 // Common implementation of BranchF functions for the different formats.
1852 void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1853 Condition cc, FPURegister cmp1, FPURegister cmp2,
1854 BranchDelaySlot bd = PROTECT);
1855
1856 void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1857 FPURegister cmp1, FPURegister cmp2,
1858 BranchDelaySlot bd = PROTECT);
1859
1860
1861 // Helper functions for generating invokes.
1862 void InvokePrologue(const ParameterCount& expected,
1863 const ParameterCount& actual,
1864 Label* done,
1865 bool* definitely_mismatches,
1866 InvokeFlag flag,
1867 const CallWrapper& call_wrapper);
1868
1869 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1870 void InNewSpace(Register object, Register scratch,
1871 Condition cond, // ne for new space, eq otherwise.
1872 Label* branch);
1873
1874 // Helper for finding the mark bits for an address. Afterwards, the
1875 // bitmap register points at the word with the mark bits and the mask
1876 // the position of the first bit. Leaves addr_reg unchanged.
1877 inline void GetMarkBits(Register addr_reg,
1878 Register bitmap_reg,
1879 Register mask_reg);
1880
1881 // Compute memory operands for safepoint stack slots.
1882 static int SafepointRegisterStackIndex(int reg_code);
1883 MemOperand SafepointRegisterSlot(Register reg);
1884 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1885
1886 bool generating_stub_;
1887 bool has_frame_;
1888 bool has_double_zero_reg_set_;
1889 // This handle will be patched with the code object on installation.
1890 Handle<Object> code_object_;
1891
1892 // Needs access to SafepointRegisterStackIndex for compiled frame
1893 // traversal.
1894 friend class StandardFrame;
1895 };
1896
1897
1898 // The code patcher is used to patch (typically) small parts of code e.g. for
1899 // debugging and other types of instrumentation. When using the code patcher
1900 // the exact number of bytes specified must be emitted. It is not legal to emit
1901 // relocation information. If any of these constraints are violated it causes
1902 // an assertion to fail.
1903 class CodePatcher {
1904 public:
1905 enum FlushICache {
1906 FLUSH,
1907 DONT_FLUSH
1908 };
1909
1910 CodePatcher(Isolate* isolate, byte* address, int instructions,
1911 FlushICache flush_cache = FLUSH);
1912 ~CodePatcher();
1913
1914 // Macro assembler to emit code.
masm()1915 MacroAssembler* masm() { return &masm_; }
1916
1917 // Emit an instruction directly.
1918 void Emit(Instr instr);
1919
1920 // Emit an address directly.
1921 void Emit(Address addr);
1922
1923 // Change the condition part of an instruction leaving the rest of the current
1924 // instruction unchanged.
1925 void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
1926
1927 private:
1928 byte* address_; // The address of the code being patched.
1929 int size_; // Number of bytes of the expected patch size.
1930 MacroAssembler masm_; // Macro assembler used to generate the code.
1931 FlushICache flush_cache_; // Whether to flush the I cache after patching.
1932 };
1933
1934 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)1935 void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
1936 Func GetLabelFunction) {
1937 // Ensure that dd-ed labels following this instruction use 8 bytes aligned
1938 // addresses.
1939 if (kArchVariant >= kMips64r6) {
1940 BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
1941 kSwitchTablePrologueSize);
1942 // Opposite of Align(8) as we have odd number of instructions in this case.
1943 if ((pc_offset() & 7) == 0) {
1944 nop();
1945 }
1946 addiupc(at, 5);
1947 Dlsa(at, at, index, kPointerSizeLog2);
1948 ld(at, MemOperand(at));
1949 } else {
1950 Label here;
1951 BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
1952 kSwitchTablePrologueSize);
1953 Align(8);
1954 push(ra);
1955 bal(&here);
1956 dsll(at, index, kPointerSizeLog2); // Branch delay slot.
1957 bind(&here);
1958 daddu(at, at, ra);
1959 pop(ra);
1960 ld(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
1961 }
1962 jr(at);
1963 nop(); // Branch delay slot nop.
1964 for (size_t index = 0; index < case_count; ++index) {
1965 dd(GetLabelFunction(index));
1966 }
1967 }
1968
1969 #define ACCESS_MASM(masm) masm->
1970
1971 } // namespace internal
1972 } // namespace v8
1973
1974 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
1975