• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7 
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips64/assembler-mips64.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // Give alias names to registers for calling conventions.
16 const Register kReturnRegister0 = {Register::kCode_v0};
17 const Register kReturnRegister1 = {Register::kCode_v1};
18 const Register kReturnRegister2 = {Register::kCode_a0};
19 const Register kJSFunctionRegister = {Register::kCode_a1};
20 const Register kContextRegister = {Register::kCpRegister};
21 const Register kAllocateSizeRegister = {Register::kCode_a0};
22 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t0};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t1};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_t2};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30 
31 // Forward declaration.
32 class JumpTarget;
33 
34 // Reserved Register Usage Summary.
35 //
36 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
37 //
38 // The programmer should know that the MacroAssembler may clobber these three,
39 // but won't touch other registers except in special cases.
40 //
41 // Per the MIPS ABI, register t9 must be used for indirect function call
42 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43 // trying to update gp register for position-independent-code. Whenever
44 // MIPS generated code calls C code, it must be via t9 register.
45 
46 
47 // Flags used for LeaveExitFrame function.
48 enum LeaveExitFrameMode {
49   EMIT_RETURN = true,
50   NO_EMIT_RETURN = false
51 };
52 
53 // Flags used for AllocateHeapNumber
54 enum TaggingMode {
55   // Tag the result.
56   TAG_RESULT,
57   // Don't tag
58   DONT_TAG_RESULT
59 };
60 
61 // Flags used for the ObjectToDoubleFPURegister function.
62 enum ObjectToDoubleFlags {
63   // No special flags.
64   NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65   // Object is known to be a non smi.
66   OBJECT_NOT_SMI = 1 << 0,
67   // Don't load NaNs or infinities, branch to the non number case instead.
68   AVOID_NANS_AND_INFINITIES = 1 << 1
69 };
70 
71 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72 enum BranchDelaySlot {
73   USE_DELAY_SLOT,
74   PROTECT
75 };
76 
77 // Flags used for the li macro-assembler function.
78 enum LiFlags {
79   // If the constant value can be represented in just 16 bits, then
80   // optimize the li to use a single instruction, rather than lui/ori/dsll
81   // sequence.
82   OPTIMIZE_SIZE = 0,
83   // Always use 6 instructions (lui/ori/dsll sequence), even if the constant
84   // could be loaded with just one, so that this value is patchable later.
85   CONSTANT_SIZE = 1,
86   // For address loads only 4 instruction are required. Used to mark
87   // constant load that will be used as address without relocation
88   // information. It ensures predictable code size, so specific sites
89   // in code are patchable.
90   ADDRESS_LOAD  = 2
91 };
92 
93 
94 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
95 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
96 enum PointersToHereCheck {
97   kPointersToHereMaybeInteresting,
98   kPointersToHereAreAlwaysInteresting
99 };
100 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
101 
102 Register GetRegisterThatIsNotOneOf(Register reg1,
103                                    Register reg2 = no_reg,
104                                    Register reg3 = no_reg,
105                                    Register reg4 = no_reg,
106                                    Register reg5 = no_reg,
107                                    Register reg6 = no_reg);
108 
109 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
110                 Register reg4 = no_reg, Register reg5 = no_reg,
111                 Register reg6 = no_reg, Register reg7 = no_reg,
112                 Register reg8 = no_reg, Register reg9 = no_reg,
113                 Register reg10 = no_reg);
114 
115 
116 // -----------------------------------------------------------------------------
117 // Static helper functions.
118 
119 #if defined(V8_TARGET_LITTLE_ENDIAN)
120 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
121 #else
122 #define SmiWordOffset(offset) offset
123 #endif
124 
125 
ContextMemOperand(Register context,int index)126 inline MemOperand ContextMemOperand(Register context, int index) {
127   return MemOperand(context, Context::SlotOffset(index));
128 }
129 
130 
NativeContextMemOperand()131 inline MemOperand NativeContextMemOperand() {
132   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
133 }
134 
135 
136 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)137 inline MemOperand FieldMemOperand(Register object, int offset) {
138   return MemOperand(object, offset - kHeapObjectTag);
139 }
140 
141 
UntagSmiMemOperand(Register rm,int offset)142 inline MemOperand UntagSmiMemOperand(Register rm, int offset) {
143   // Assumes that Smis are shifted by 32 bits.
144   STATIC_ASSERT(kSmiShift == 32);
145   return MemOperand(rm, SmiWordOffset(offset));
146 }
147 
148 
UntagSmiFieldMemOperand(Register rm,int offset)149 inline MemOperand UntagSmiFieldMemOperand(Register rm, int offset) {
150   return UntagSmiMemOperand(rm, offset - kHeapObjectTag);
151 }
152 
153 
154 // Generate a MemOperand for storing arguments 5..N on the stack
155 // when calling CallCFunction().
156 // TODO(plind): Currently ONLY used for O32. Should be fixed for
157 //              n64, and used in RegExp code, and other places
158 //              with more than 8 arguments.
CFunctionArgumentOperand(int index)159 inline MemOperand CFunctionArgumentOperand(int index) {
160   DCHECK(index > kCArgSlotCount);
161   // Argument 5 takes the slot just past the four Arg-slots.
162   int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
163   return MemOperand(sp, offset);
164 }
165 
166 
167 // MacroAssembler implements a collection of frequently used macros.
168 class MacroAssembler: public Assembler {
169  public:
170   MacroAssembler(Isolate* isolate, void* buffer, int size,
171                  CodeObjectRequired create_code_object);
172 
173   // Arguments macros.
174 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
175 #define COND_ARGS cond, r1, r2
176 
177   // Cases when relocation is not needed.
178 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
179   void Name(target_type target, BranchDelaySlot bd = PROTECT); \
180   inline void Name(BranchDelaySlot bd, target_type target) { \
181     Name(target, bd); \
182   } \
183   void Name(target_type target, \
184             COND_TYPED_ARGS, \
185             BranchDelaySlot bd = PROTECT); \
186   inline void Name(BranchDelaySlot bd, \
187                    target_type target, \
188                    COND_TYPED_ARGS) { \
189     Name(target, COND_ARGS, bd); \
190   }
191 
192 #define DECLARE_BRANCH_PROTOTYPES(Name)   \
193   DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
194   DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
195 
196   DECLARE_BRANCH_PROTOTYPES(Branch)
197   DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
198   DECLARE_BRANCH_PROTOTYPES(BranchShort)
199 
200 #undef DECLARE_BRANCH_PROTOTYPES
201 #undef COND_TYPED_ARGS
202 #undef COND_ARGS
203 
204 
205   // Jump, Call, and Ret pseudo instructions implementing inter-working.
206 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
207   const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
208 
209   void Jump(Register target, COND_ARGS);
210   void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
211   void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
212   void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
213   static int CallSize(Register target, COND_ARGS);
214   void Call(Register target, COND_ARGS);
215   static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
216   void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
217   int CallSize(Handle<Code> code,
218                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
219                TypeFeedbackId ast_id = TypeFeedbackId::None(),
220                COND_ARGS);
221   void Call(Handle<Code> code,
222             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
223             TypeFeedbackId ast_id = TypeFeedbackId::None(),
224             COND_ARGS);
225   void Ret(COND_ARGS);
226   inline void Ret(BranchDelaySlot bd, Condition cond = al,
227     Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
228     Ret(cond, rs, rt, bd);
229   }
230 
231   bool IsNear(Label* L, Condition cond, int rs_reg);
232 
233   void Branch(Label* L,
234               Condition cond,
235               Register rs,
236               Heap::RootListIndex index,
237               BranchDelaySlot bdslot = PROTECT);
238 
239 // Number of instructions needed for calculation of switch table entry address
240 #ifdef _MIPS_ARCH_MIPS64R6
241   static const int kSwitchTablePrologueSize = 6;
242 #else
243   static const int kSwitchTablePrologueSize = 11;
244 #endif
245 
246   // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
247   // functor/function with 'Label *func(size_t index)' declaration.
248   template <typename Func>
249   void GenerateSwitchTable(Register index, size_t case_count,
250                            Func GetLabelFunction);
251 #undef COND_ARGS
252 
253   // Emit code that loads |parameter_index|'th parameter from the stack to
254   // the register according to the CallInterfaceDescriptor definition.
255   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
256   // below the caller's sp.
257   template <class Descriptor>
258   void LoadParameterFromStack(
259       Register reg, typename Descriptor::ParameterIndices parameter_index,
260       int sp_to_ra_offset_in_words = 0) {
261     DCHECK(Descriptor::kPassLastArgsOnStack);
262     UNIMPLEMENTED();
263   }
264 
265   // Emit code to discard a non-negative number of pointer-sized elements
266   // from the stack, clobbering only the sp register.
267   void Drop(int count,
268             Condition cond = cc_always,
269             Register reg = no_reg,
270             const Operand& op = Operand(no_reg));
271 
272   // Trivial case of DropAndRet that utilizes the delay slot and only emits
273   // 2 instructions.
274   void DropAndRet(int drop);
275 
276   void DropAndRet(int drop,
277                   Condition cond,
278                   Register reg,
279                   const Operand& op);
280 
281   // Swap two registers.  If the scratch register is omitted then a slightly
282   // less efficient form using xor instead of mov is emitted.
283   void Swap(Register reg1, Register reg2, Register scratch = no_reg);
284 
285   void Call(Label* target);
286 
Move(Register dst,Handle<Object> handle)287   inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
Move(Register dst,Smi * smi)288   inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
289 
Move(Register dst,Register src)290   inline void Move(Register dst, Register src) {
291     if (!dst.is(src)) {
292       mov(dst, src);
293     }
294   }
295 
Move_d(FPURegister dst,FPURegister src)296   inline void Move_d(FPURegister dst, FPURegister src) {
297     if (!dst.is(src)) {
298       mov_d(dst, src);
299     }
300   }
301 
Move_s(FPURegister dst,FPURegister src)302   inline void Move_s(FPURegister dst, FPURegister src) {
303     if (!dst.is(src)) {
304       mov_s(dst, src);
305     }
306   }
307 
Move(FPURegister dst,FPURegister src)308   inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
309 
Move(Register dst_low,Register dst_high,FPURegister src)310   inline void Move(Register dst_low, Register dst_high, FPURegister src) {
311     mfc1(dst_low, src);
312     mfhc1(dst_high, src);
313   }
314 
Move(Register dst,FPURegister src)315   inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
316 
Move(FPURegister dst,Register src)317   inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
318 
FmoveHigh(Register dst_high,FPURegister src)319   inline void FmoveHigh(Register dst_high, FPURegister src) {
320     mfhc1(dst_high, src);
321   }
322 
FmoveHigh(FPURegister dst,Register src_high)323   inline void FmoveHigh(FPURegister dst, Register src_high) {
324     mthc1(src_high, dst);
325   }
326 
FmoveLow(Register dst_low,FPURegister src)327   inline void FmoveLow(Register dst_low, FPURegister src) {
328     mfc1(dst_low, src);
329   }
330 
331   void FmoveLow(FPURegister dst, Register src_low);
332 
Move(FPURegister dst,Register src_low,Register src_high)333   inline void Move(FPURegister dst, Register src_low, Register src_high) {
334     mtc1(src_low, dst);
335     mthc1(src_high, dst);
336   }
337 
338   void Move(FPURegister dst, float imm);
339   void Move(FPURegister dst, double imm);
340 
341   // Conditional move.
342   void Movz(Register rd, Register rs, Register rt);
343   void Movn(Register rd, Register rs, Register rt);
344   void Movt(Register rd, Register rs, uint16_t cc = 0);
345   void Movf(Register rd, Register rs, uint16_t cc = 0);
346 
347   void Clz(Register rd, Register rs);
348 
349   // Jump unconditionally to given label.
350   // We NEED a nop in the branch delay slot, as it used by v8, for example in
351   // CodeGenerator::ProcessDeferred().
352   // Currently the branch delay slot is filled by the MacroAssembler.
353   // Use rather b(Label) for code generation.
jmp(Label * L)354   void jmp(Label* L) {
355     Branch(L);
356   }
357 
358   void Load(Register dst, const MemOperand& src, Representation r);
359   void Store(Register src, const MemOperand& dst, Representation r);
360 
PushRoot(Heap::RootListIndex index)361   void PushRoot(Heap::RootListIndex index) {
362     LoadRoot(at, index);
363     Push(at);
364   }
365 
366   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)367   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
368     LoadRoot(at, index);
369     Branch(if_equal, eq, with, Operand(at));
370   }
371 
372   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)373   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
374                      Label* if_not_equal) {
375     LoadRoot(at, index);
376     Branch(if_not_equal, ne, with, Operand(at));
377   }
378 
379   // Load an object from the root table.
380   void LoadRoot(Register destination,
381                 Heap::RootListIndex index);
382   void LoadRoot(Register destination,
383                 Heap::RootListIndex index,
384                 Condition cond, Register src1, const Operand& src2);
385 
386   // Store an object to the root table.
387   void StoreRoot(Register source,
388                  Heap::RootListIndex index);
389   void StoreRoot(Register source,
390                  Heap::RootListIndex index,
391                  Condition cond, Register src1, const Operand& src2);
392 
393   // ---------------------------------------------------------------------------
394   // GC Support
395 
396   void IncrementalMarkingRecordWriteHelper(Register object,
397                                            Register value,
398                                            Register address);
399 
400   enum RememberedSetFinalAction {
401     kReturnAtEnd,
402     kFallThroughAtEnd
403   };
404 
405 
406   // Record in the remembered set the fact that we have a pointer to new space
407   // at the address pointed to by the addr register.  Only works if addr is not
408   // in new space.
409   void RememberedSetHelper(Register object,  // Used for debug code.
410                            Register addr,
411                            Register scratch,
412                            SaveFPRegsMode save_fp,
413                            RememberedSetFinalAction and_then);
414 
415   void CheckPageFlag(Register object,
416                      Register scratch,
417                      int mask,
418                      Condition cc,
419                      Label* condition_met);
420 
421   // Check if object is in new space.  Jumps if the object is not in new space.
422   // The register scratch can be object itself, but it will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)423   void JumpIfNotInNewSpace(Register object,
424                            Register scratch,
425                            Label* branch) {
426     InNewSpace(object, scratch, eq, branch);
427   }
428 
429   // Check if object is in new space.  Jumps if the object is in new space.
430   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)431   void JumpIfInNewSpace(Register object,
432                         Register scratch,
433                         Label* branch) {
434     InNewSpace(object, scratch, ne, branch);
435   }
436 
437   // Check if an object has a given incremental marking color.
438   void HasColor(Register object,
439                 Register scratch0,
440                 Register scratch1,
441                 Label* has_color,
442                 int first_bit,
443                 int second_bit);
444 
445   void JumpIfBlack(Register object,
446                    Register scratch0,
447                    Register scratch1,
448                    Label* on_black);
449 
450   // Checks the color of an object.  If the object is white we jump to the
451   // incremental marker.
452   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
453                    Register scratch3, Label* value_is_white);
454 
455   // Notify the garbage collector that we wrote a pointer into an object.
456   // |object| is the object being stored into, |value| is the object being
457   // stored.  value and scratch registers are clobbered by the operation.
458   // The offset is the offset from the start of the object, not the offset from
459   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
460   void RecordWriteField(
461       Register object,
462       int offset,
463       Register value,
464       Register scratch,
465       RAStatus ra_status,
466       SaveFPRegsMode save_fp,
467       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
468       SmiCheck smi_check = INLINE_SMI_CHECK,
469       PointersToHereCheck pointers_to_here_check_for_value =
470           kPointersToHereMaybeInteresting);
471 
472   // As above, but the offset has the tag presubtracted.  For use with
473   // MemOperand(reg, off).
474   inline void RecordWriteContextSlot(
475       Register context,
476       int offset,
477       Register value,
478       Register scratch,
479       RAStatus ra_status,
480       SaveFPRegsMode save_fp,
481       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
482       SmiCheck smi_check = INLINE_SMI_CHECK,
483       PointersToHereCheck pointers_to_here_check_for_value =
484           kPointersToHereMaybeInteresting) {
485     RecordWriteField(context,
486                      offset + kHeapObjectTag,
487                      value,
488                      scratch,
489                      ra_status,
490                      save_fp,
491                      remembered_set_action,
492                      smi_check,
493                      pointers_to_here_check_for_value);
494   }
495 
496   // Notify the garbage collector that we wrote a code entry into a
497   // JSFunction. Only scratch is clobbered by the operation.
498   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
499                                  Register scratch);
500 
501   void RecordWriteForMap(
502       Register object,
503       Register map,
504       Register dst,
505       RAStatus ra_status,
506       SaveFPRegsMode save_fp);
507 
508   // For a given |object| notify the garbage collector that the slot |address|
509   // has been written.  |value| is the object being stored. The value and
510   // address registers are clobbered by the operation.
511   void RecordWrite(
512       Register object,
513       Register address,
514       Register value,
515       RAStatus ra_status,
516       SaveFPRegsMode save_fp,
517       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
518       SmiCheck smi_check = INLINE_SMI_CHECK,
519       PointersToHereCheck pointers_to_here_check_for_value =
520           kPointersToHereMaybeInteresting);
521 
522 
523   // ---------------------------------------------------------------------------
524   // Inline caching support.
525 
526   void GetNumberHash(Register reg0, Register scratch);
527 
MarkCode(NopMarkerTypes type)528   inline void MarkCode(NopMarkerTypes type) {
529     nop(type);
530   }
531 
532   // Check if the given instruction is a 'type' marker.
533   // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
534   // nop(type)). These instructions are generated to mark special location in
535   // the code, like some special IC code.
IsMarkedCode(Instr instr,int type)536   static inline bool IsMarkedCode(Instr instr, int type) {
537     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
538     return IsNop(instr, type);
539   }
540 
541 
GetCodeMarker(Instr instr)542   static inline int GetCodeMarker(Instr instr) {
543     uint32_t opcode = ((instr & kOpcodeMask));
544     uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
545     uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
546     uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
547 
548     // Return <n> if we have a sll zero_reg, zero_reg, n
549     // else return -1.
550     bool sllzz = (opcode == SLL &&
551                   rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
552                   rs == static_cast<uint32_t>(ToNumber(zero_reg)));
553     int type =
554         (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
555     DCHECK((type == -1) ||
556            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
557     return type;
558   }
559 
560 
561 
562   // ---------------------------------------------------------------------------
563   // Allocation support.
564 
565   // Allocate an object in new space or old space. The object_size is
566   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
567   // is passed. If the space is exhausted control continues at the gc_required
568   // label. The allocated object is returned in result. If the flag
569   // tag_allocated_object is true the result is tagged as as a heap object.
570   // All registers are clobbered also when control continues at the gc_required
571   // label.
572   void Allocate(int object_size,
573                 Register result,
574                 Register scratch1,
575                 Register scratch2,
576                 Label* gc_required,
577                 AllocationFlags flags);
578 
579   void Allocate(Register object_size, Register result, Register result_end,
580                 Register scratch, Label* gc_required, AllocationFlags flags);
581 
582   // FastAllocate is right now only used for folded allocations. It just
583   // increments the top pointer without checking against limit. This can only
584   // be done if it was proved earlier that the allocation will succeed.
585   void FastAllocate(int object_size, Register result, Register scratch1,
586                     Register scratch2, AllocationFlags flags);
587 
588   void FastAllocate(Register object_size, Register result, Register result_new,
589                     Register scratch, AllocationFlags flags);
590 
591   // Allocates a heap number or jumps to the gc_required label if the young
592   // space is full and a scavenge is needed. All registers are clobbered also
593   // when control continues at the gc_required label.
594   void AllocateHeapNumber(Register result,
595                           Register scratch1,
596                           Register scratch2,
597                           Register heap_number_map,
598                           Label* gc_required,
599                           MutableMode mode = IMMUTABLE);
600 
601   void AllocateHeapNumberWithValue(Register result,
602                                    FPURegister value,
603                                    Register scratch1,
604                                    Register scratch2,
605                                    Label* gc_required);
606 
607   // Allocate and initialize a JSValue wrapper with the specified {constructor}
608   // and {value}.
609   void AllocateJSValue(Register result, Register constructor, Register value,
610                        Register scratch1, Register scratch2,
611                        Label* gc_required);
612 
613   // ---------------------------------------------------------------------------
614   // Instruction macros.
615 
616 #define DEFINE_INSTRUCTION(instr)                                              \
617   void instr(Register rd, Register rs, const Operand& rt);                     \
618   void instr(Register rd, Register rs, Register rt) {                          \
619     instr(rd, rs, Operand(rt));                                                \
620   }                                                                            \
621   void instr(Register rs, Register rt, int32_t j) {                            \
622     instr(rs, rt, Operand(j));                                                 \
623   }
624 
625 #define DEFINE_INSTRUCTION2(instr)                                             \
626   void instr(Register rs, const Operand& rt);                                  \
627   void instr(Register rs, Register rt) {                                       \
628     instr(rs, Operand(rt));                                                    \
629   }                                                                            \
630   void instr(Register rs, int32_t j) {                                         \
631     instr(rs, Operand(j));                                                     \
632   }
633 
634   DEFINE_INSTRUCTION(Addu);
635   DEFINE_INSTRUCTION(Daddu);
636   DEFINE_INSTRUCTION(Div);
637   DEFINE_INSTRUCTION(Divu);
638   DEFINE_INSTRUCTION(Ddivu);
639   DEFINE_INSTRUCTION(Mod);
640   DEFINE_INSTRUCTION(Modu);
641   DEFINE_INSTRUCTION(Ddiv);
642   DEFINE_INSTRUCTION(Subu);
643   DEFINE_INSTRUCTION(Dsubu);
644   DEFINE_INSTRUCTION(Dmod);
645   DEFINE_INSTRUCTION(Dmodu);
646   DEFINE_INSTRUCTION(Mul);
647   DEFINE_INSTRUCTION(Mulh);
648   DEFINE_INSTRUCTION(Mulhu);
649   DEFINE_INSTRUCTION(Dmul);
650   DEFINE_INSTRUCTION(Dmulh);
651   DEFINE_INSTRUCTION2(Mult);
652   DEFINE_INSTRUCTION2(Dmult);
653   DEFINE_INSTRUCTION2(Multu);
654   DEFINE_INSTRUCTION2(Dmultu);
655   DEFINE_INSTRUCTION2(Div);
656   DEFINE_INSTRUCTION2(Ddiv);
657   DEFINE_INSTRUCTION2(Divu);
658   DEFINE_INSTRUCTION2(Ddivu);
659 
660   DEFINE_INSTRUCTION(And);
661   DEFINE_INSTRUCTION(Or);
662   DEFINE_INSTRUCTION(Xor);
663   DEFINE_INSTRUCTION(Nor);
664   DEFINE_INSTRUCTION2(Neg);
665 
666   DEFINE_INSTRUCTION(Slt);
667   DEFINE_INSTRUCTION(Sltu);
668 
669   // MIPS32 R2 instruction macro.
670   DEFINE_INSTRUCTION(Ror);
671   DEFINE_INSTRUCTION(Dror);
672 
673 #undef DEFINE_INSTRUCTION
674 #undef DEFINE_INSTRUCTION2
675 #undef DEFINE_INSTRUCTION3
676 
677   // Load Scaled Address instructions. Parameter sa (shift argument) must be
678   // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
679   // may be clobbered.
680   void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
681            Register scratch = at);
682   void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
683             Register scratch = at);
684 
685   void Pref(int32_t hint, const MemOperand& rs);
686 
687 
688   // ---------------------------------------------------------------------------
689   // Pseudo-instructions.
690 
691   // Change endianness
692   void ByteSwapSigned(Register dest, Register src, int operand_size);
693   void ByteSwapUnsigned(Register dest, Register src, int operand_size);
694 
mov(Register rd,Register rt)695   void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
696 
697   void Ulh(Register rd, const MemOperand& rs);
698   void Ulhu(Register rd, const MemOperand& rs);
699   void Ush(Register rd, const MemOperand& rs, Register scratch);
700 
701   void Ulw(Register rd, const MemOperand& rs);
702   void Ulwu(Register rd, const MemOperand& rs);
703   void Usw(Register rd, const MemOperand& rs);
704 
705   void Uld(Register rd, const MemOperand& rs);
706   void Usd(Register rd, const MemOperand& rs);
707 
708   void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
709   void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
710 
711   void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
712   void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
713 
714   void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
715   void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
716 
717   // Load int32 in the rd register.
718   void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
719   inline bool LiLower32BitHelper(Register rd, Operand j);
720   inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
721     li(rd, Operand(j), mode);
722   }
723   void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
724 
725   // Push multiple registers on the stack.
726   // Registers are saved in numerical order, with higher numbered registers
727   // saved in higher memory addresses.
728   void MultiPush(RegList regs);
729   void MultiPushReversed(RegList regs);
730 
731   void MultiPushFPU(RegList regs);
732   void MultiPushReversedFPU(RegList regs);
733 
push(Register src)734   void push(Register src) {
735     Daddu(sp, sp, Operand(-kPointerSize));
736     sd(src, MemOperand(sp, 0));
737   }
Push(Register src)738   void Push(Register src) { push(src); }
739 
740   // Push a handle.
741   void Push(Handle<Object> handle);
Push(Smi * smi)742   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
743 
744   // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)745   void Push(Register src1, Register src2) {
746     Dsubu(sp, sp, Operand(2 * kPointerSize));
747     sd(src1, MemOperand(sp, 1 * kPointerSize));
748     sd(src2, MemOperand(sp, 0 * kPointerSize));
749   }
750 
751   // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)752   void Push(Register src1, Register src2, Register src3) {
753     Dsubu(sp, sp, Operand(3 * kPointerSize));
754     sd(src1, MemOperand(sp, 2 * kPointerSize));
755     sd(src2, MemOperand(sp, 1 * kPointerSize));
756     sd(src3, MemOperand(sp, 0 * kPointerSize));
757   }
758 
759   // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)760   void Push(Register src1, Register src2, Register src3, Register src4) {
761     Dsubu(sp, sp, Operand(4 * kPointerSize));
762     sd(src1, MemOperand(sp, 3 * kPointerSize));
763     sd(src2, MemOperand(sp, 2 * kPointerSize));
764     sd(src3, MemOperand(sp, 1 * kPointerSize));
765     sd(src4, MemOperand(sp, 0 * kPointerSize));
766   }
767 
768   // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)769   void Push(Register src1, Register src2, Register src3, Register src4,
770             Register src5) {
771     Dsubu(sp, sp, Operand(5 * kPointerSize));
772     sd(src1, MemOperand(sp, 4 * kPointerSize));
773     sd(src2, MemOperand(sp, 3 * kPointerSize));
774     sd(src3, MemOperand(sp, 2 * kPointerSize));
775     sd(src4, MemOperand(sp, 1 * kPointerSize));
776     sd(src5, MemOperand(sp, 0 * kPointerSize));
777   }
778 
Push(Register src,Condition cond,Register tst1,Register tst2)779   void Push(Register src, Condition cond, Register tst1, Register tst2) {
780     // Since we don't have conditional execution we use a Branch.
781     Branch(3, cond, tst1, Operand(tst2));
782     Dsubu(sp, sp, Operand(kPointerSize));
783     sd(src, MemOperand(sp, 0));
784   }
785 
786   void PushRegisterAsTwoSmis(Register src, Register scratch = at);
787   void PopRegisterAsTwoSmis(Register dst, Register scratch = at);
788 
789   // Pops multiple values from the stack and load them in the
790   // registers specified in regs. Pop order is the opposite as in MultiPush.
791   void MultiPop(RegList regs);
792   void MultiPopReversed(RegList regs);
793 
794   void MultiPopFPU(RegList regs);
795   void MultiPopReversedFPU(RegList regs);
796 
pop(Register dst)797   void pop(Register dst) {
798     ld(dst, MemOperand(sp, 0));
799     Daddu(sp, sp, Operand(kPointerSize));
800   }
Pop(Register dst)801   void Pop(Register dst) { pop(dst); }
802 
803   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)804   void Pop(Register src1, Register src2) {
805     DCHECK(!src1.is(src2));
806     ld(src2, MemOperand(sp, 0 * kPointerSize));
807     ld(src1, MemOperand(sp, 1 * kPointerSize));
808     Daddu(sp, sp, 2 * kPointerSize);
809   }
810 
811   // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)812   void Pop(Register src1, Register src2, Register src3) {
813     ld(src3, MemOperand(sp, 0 * kPointerSize));
814     ld(src2, MemOperand(sp, 1 * kPointerSize));
815     ld(src1, MemOperand(sp, 2 * kPointerSize));
816     Daddu(sp, sp, 3 * kPointerSize);
817   }
818 
819   void Pop(uint32_t count = 1) {
820     Daddu(sp, sp, Operand(count * kPointerSize));
821   }
822 
823   // Push a fixed frame, consisting of ra, fp.
824   void PushCommonFrame(Register marker_reg = no_reg);
825 
826   // Push a standard frame, consisting of ra, fp, context and JS function.
827   void PushStandardFrame(Register function_reg);
828 
829   void PopCommonFrame(Register marker_reg = no_reg);
830 
831   // Push and pop the registers that can hold pointers, as defined by the
832   // RegList constant kSafepointSavedRegisters.
833   void PushSafepointRegisters();
834   void PopSafepointRegisters();
835   // Store value in register src in the safepoint stack slot for
836   // register dst.
837   void StoreToSafepointRegisterSlot(Register src, Register dst);
838   // Load the value of the src register from its safepoint stack slot
839   // into register dst.
840   void LoadFromSafepointRegisterSlot(Register dst, Register src);
841 
842   // MIPS64 R2 instruction macro.
843   void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
844   void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
845   void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
846 
847   void ExtractBits(Register rt, Register rs, uint16_t pos, uint16_t size);
848 
849   void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
850   void Dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
851   void Dextu(Register rt, Register rs, uint16_t pos, uint16_t size);
852   void Neg_s(FPURegister fd, FPURegister fs);
853   void Neg_d(FPURegister fd, FPURegister fs);
854 
855   // MIPS64 R6 instruction macros.
856   void Bovc(Register rt, Register rs, Label* L);
857   void Bnvc(Register rt, Register rs, Label* L);
858 
859   // ---------------------------------------------------------------------------
860   // FPU macros. These do not handle special cases like NaN or +- inf.
861 
862   // Convert unsigned word to double.
863   void Cvt_d_uw(FPURegister fd, FPURegister fs);
864   void Cvt_d_uw(FPURegister fd, Register rs);
865 
866   // Convert unsigned long to double.
867   void Cvt_d_ul(FPURegister fd, FPURegister fs);
868   void Cvt_d_ul(FPURegister fd, Register rs);
869 
870   // Convert unsigned word to float.
871   void Cvt_s_uw(FPURegister fd, FPURegister fs);
872   void Cvt_s_uw(FPURegister fd, Register rs);
873 
874   // Convert unsigned long to float.
875   void Cvt_s_ul(FPURegister fd, FPURegister fs);
876   void Cvt_s_ul(FPURegister fd, Register rs);
877 
878   // Convert double to unsigned long.
879   void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
880 
881   void Trunc_l_d(FPURegister fd, FPURegister fs);
882   void Round_l_d(FPURegister fd, FPURegister fs);
883   void Floor_l_d(FPURegister fd, FPURegister fs);
884   void Ceil_l_d(FPURegister fd, FPURegister fs);
885 
886   // Convert double to unsigned word.
887   void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
888   void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
889 
890   // Convert single to unsigned word.
891   void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
892   void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
893 
894   // Convert double to unsigned long.
895   void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
896                   Register result = no_reg);
897   void Trunc_ul_d(FPURegister fd, Register rs, FPURegister scratch,
898                   Register result = no_reg);
899 
900   // Convert single to unsigned long.
901   void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
902                   Register result = no_reg);
903   void Trunc_ul_s(FPURegister fd, Register rs, FPURegister scratch,
904                   Register result = no_reg);
905 
906   void Trunc_w_d(FPURegister fd, FPURegister fs);
907   void Round_w_d(FPURegister fd, FPURegister fs);
908   void Floor_w_d(FPURegister fd, FPURegister fs);
909   void Ceil_w_d(FPURegister fd, FPURegister fs);
910 
911   // Preserve value of a NaN operand
912   void SubNanPreservePayloadAndSign_s(FPURegister fd, FPURegister fs,
913                                       FPURegister ft);
914   void SubNanPreservePayloadAndSign_d(FPURegister fd, FPURegister fs,
915                                       FPURegister ft);
916 
917   void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
918               FPURegister scratch);
919   void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
920               FPURegister scratch);
921   void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
922               FPURegister scratch);
923   void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
924               FPURegister scratch);
925 
926   // Wrapper functions for the different cmp/branch types.
927   inline void BranchF32(Label* target, Label* nan, Condition cc,
928                         FPURegister cmp1, FPURegister cmp2,
929                         BranchDelaySlot bd = PROTECT) {
930     BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
931   }
932 
933   inline void BranchF64(Label* target, Label* nan, Condition cc,
934                         FPURegister cmp1, FPURegister cmp2,
935                         BranchDelaySlot bd = PROTECT) {
936     BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
937   }
938 
939   // Alternate (inline) version for better readability with USE_DELAY_SLOT.
BranchF64(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)940   inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
941                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
942     BranchF64(target, nan, cc, cmp1, cmp2, bd);
943   }
944 
BranchF32(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)945   inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
946                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
947     BranchF32(target, nan, cc, cmp1, cmp2, bd);
948   }
949 
950   // Alias functions for backward compatibility.
951   inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
952                       FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
953     BranchF64(target, nan, cc, cmp1, cmp2, bd);
954   }
955 
BranchF(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)956   inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
957                       Condition cc, FPURegister cmp1, FPURegister cmp2) {
958     BranchF64(bd, target, nan, cc, cmp1, cmp2);
959   }
960 
961   // Truncates a double using a specific rounding mode, and writes the value
962   // to the result register.
963   // The except_flag will contain any exceptions caused by the instruction.
964   // If check_inexact is kDontCheckForInexactConversion, then the inexact
965   // exception is masked.
966   void EmitFPUTruncate(FPURoundingMode rounding_mode,
967                        Register result,
968                        DoubleRegister double_input,
969                        Register scratch,
970                        DoubleRegister double_scratch,
971                        Register except_flag,
972                        CheckForInexactConversion check_inexact
973                            = kDontCheckForInexactConversion);
974 
975   // Performs a truncating conversion of a floating point number as used by
976   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
977   // succeeds, otherwise falls through if result is saturated. On return
978   // 'result' either holds answer, or is clobbered on fall through.
979   //
980   // Only public for the test code in test-code-stubs-arm.cc.
981   void TryInlineTruncateDoubleToI(Register result,
982                                   DoubleRegister input,
983                                   Label* done);
984 
985   // Performs a truncating conversion of a floating point number as used by
986   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
987   // Exits with 'result' holding the answer.
988   void TruncateDoubleToI(Register result, DoubleRegister double_input);
989 
990   // Performs a truncating conversion of a heap number as used by
991   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
992   // must be different registers. Exits with 'result' holding the answer.
993   void TruncateHeapNumberToI(Register result, Register object);
994 
995   // Converts the smi or heap number in object to an int32 using the rules
996   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
997   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
998   // different registers.
999   void TruncateNumberToI(Register object,
1000                          Register result,
1001                          Register heap_number_map,
1002                          Register scratch,
1003                          Label* not_int32);
1004 
1005   // Loads the number from object into dst register.
1006   // If |object| is neither smi nor heap number, |not_number| is jumped to
1007   // with |object| still intact.
1008   void LoadNumber(Register object,
1009                   FPURegister dst,
1010                   Register heap_number_map,
1011                   Register scratch,
1012                   Label* not_number);
1013 
1014   // Loads the number from object into double_dst in the double format.
1015   // Control will jump to not_int32 if the value cannot be exactly represented
1016   // by a 32-bit integer.
1017   // Floating point value in the 32-bit integer range that are not exact integer
1018   // won't be loaded.
1019   void LoadNumberAsInt32Double(Register object,
1020                                DoubleRegister double_dst,
1021                                Register heap_number_map,
1022                                Register scratch1,
1023                                Register scratch2,
1024                                FPURegister double_scratch,
1025                                Label* not_int32);
1026 
1027   // Loads the number from object into dst as a 32-bit integer.
1028   // Control will jump to not_int32 if the object cannot be exactly represented
1029   // by a 32-bit integer.
1030   // Floating point value in the 32-bit integer range that are not exact integer
1031   // won't be converted.
1032   void LoadNumberAsInt32(Register object,
1033                          Register dst,
1034                          Register heap_number_map,
1035                          Register scratch1,
1036                          Register scratch2,
1037                          FPURegister double_scratch0,
1038                          FPURegister double_scratch1,
1039                          Label* not_int32);
1040 
1041   // Enter exit frame.
1042   // argc - argument count to be dropped by LeaveExitFrame.
1043   // save_doubles - saves FPU registers on stack, currently disabled.
1044   // stack_space - extra stack space.
1045   void EnterExitFrame(bool save_doubles, int stack_space = 0,
1046                       StackFrame::Type frame_type = StackFrame::EXIT);
1047 
1048   // Leave the current exit frame.
1049   void LeaveExitFrame(bool save_doubles, Register arg_count,
1050                       bool restore_context, bool do_return = NO_EMIT_RETURN,
1051                       bool argument_count_is_length = false);
1052 
1053   // Get the actual activation frame alignment for target environment.
1054   static int ActivationFrameAlignment();
1055 
1056   // Make sure the stack is aligned. Only emits code in debug mode.
1057   void AssertStackIsAligned();
1058 
1059   void LoadContext(Register dst, int context_chain_length);
1060 
1061   // Load the global object from the current context.
LoadGlobalObject(Register dst)1062   void LoadGlobalObject(Register dst) {
1063     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1064   }
1065 
1066   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1067   void LoadGlobalProxy(Register dst) {
1068     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1069   }
1070 
1071   void LoadNativeContextSlot(int index, Register dst);
1072 
1073   // Load the initial map from the global function. The registers
1074   // function and map can be the same, function is then overwritten.
1075   void LoadGlobalFunctionInitialMap(Register function,
1076                                     Register map,
1077                                     Register scratch);
1078 
InitializeRootRegister()1079   void InitializeRootRegister() {
1080     ExternalReference roots_array_start =
1081         ExternalReference::roots_array_start(isolate());
1082     li(kRootRegister, Operand(roots_array_start));
1083   }
1084 
1085   // -------------------------------------------------------------------------
1086   // JavaScript invokes.
1087 
1088   // Removes current frame and its arguments from the stack preserving
1089   // the arguments and a return address pushed to the stack for the next call.
1090   // Both |callee_args_count| and |caller_args_count_reg| do not include
1091   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1092   // is trashed.
1093   void PrepareForTailCall(const ParameterCount& callee_args_count,
1094                           Register caller_args_count_reg, Register scratch0,
1095                           Register scratch1);
1096 
1097   // Invoke the JavaScript function code by either calling or jumping.
1098   void InvokeFunctionCode(Register function, Register new_target,
1099                           const ParameterCount& expected,
1100                           const ParameterCount& actual, InvokeFlag flag,
1101                           const CallWrapper& call_wrapper);
1102 
1103   // On function call, call into the debugger if necessary.
1104   void CheckDebugHook(Register fun, Register new_target,
1105                       const ParameterCount& expected,
1106                       const ParameterCount& actual);
1107 
1108   // Invoke the JavaScript function in the given register. Changes the
1109   // current context to the context in the function before invoking.
1110   void InvokeFunction(Register function,
1111                       Register new_target,
1112                       const ParameterCount& actual,
1113                       InvokeFlag flag,
1114                       const CallWrapper& call_wrapper);
1115 
1116   void InvokeFunction(Register function,
1117                       const ParameterCount& expected,
1118                       const ParameterCount& actual,
1119                       InvokeFlag flag,
1120                       const CallWrapper& call_wrapper);
1121 
1122   void InvokeFunction(Handle<JSFunction> function,
1123                       const ParameterCount& expected,
1124                       const ParameterCount& actual,
1125                       InvokeFlag flag,
1126                       const CallWrapper& call_wrapper);
1127 
1128 
1129   void IsObjectJSStringType(Register object,
1130                             Register scratch,
1131                             Label* fail);
1132 
1133   void IsObjectNameType(Register object,
1134                         Register scratch,
1135                         Label* fail);
1136 
1137   // Frame restart support.
1138   void MaybeDropFrames();
1139 
1140   // Exception handling.
1141 
1142   // Push a new stack handler and link into stack handler chain.
1143   void PushStackHandler();
1144 
1145   // Unlink the stack handler on top of the stack from the stack handler chain.
1146   // Must preserve the result register.
1147   void PopStackHandler();
1148 
1149   // Initialize fields with filler values.  Fields starting at |current_address|
1150   // not including |end_address| are overwritten with the value in |filler|.  At
1151   // the end the loop, |current_address| takes the value of |end_address|.
1152   void InitializeFieldsWithFiller(Register current_address,
1153                                   Register end_address, Register filler);
1154 
1155   // -------------------------------------------------------------------------
1156   // Support functions.
1157 
1158   // Machine code version of Map::GetConstructor().
1159   // |temp| holds |result|'s map when done, and |temp2| its instance type.
1160   void GetMapConstructor(Register result, Register map, Register temp,
1161                          Register temp2);
1162 
1163   void GetObjectType(Register function,
1164                      Register map,
1165                      Register type_reg);
1166 
GetInstanceType(Register object_map,Register object_instance_type)1167   void GetInstanceType(Register object_map, Register object_instance_type) {
1168     lbu(object_instance_type,
1169         FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1170   }
1171 
1172   // Compare an object's map with the specified map and its transitioned
1173   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1174   // "branch_to" if the result of the comparison is "cond". If multiple map
1175   // compares are required, the compare sequences branches to early_success.
1176   void CompareMapAndBranch(Register obj,
1177                            Register scratch,
1178                            Handle<Map> map,
1179                            Label* early_success,
1180                            Condition cond,
1181                            Label* branch_to);
1182 
1183   // As above, but the map of the object is already loaded into the register
1184   // which is preserved by the code generated.
1185   void CompareMapAndBranch(Register obj_map,
1186                            Handle<Map> map,
1187                            Label* early_success,
1188                            Condition cond,
1189                            Label* branch_to);
1190 
1191   // Check if the map of an object is equal to a specified map and branch to
1192   // label if not. Skip the smi check if not required (object is known to be a
1193   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1194   // against maps that are ElementsKind transition maps of the specificed map.
1195   void CheckMap(Register obj,
1196                 Register scratch,
1197                 Handle<Map> map,
1198                 Label* fail,
1199                 SmiCheckType smi_check_type);
1200 
1201 
1202   void CheckMap(Register obj,
1203                 Register scratch,
1204                 Heap::RootListIndex index,
1205                 Label* fail,
1206                 SmiCheckType smi_check_type);
1207 
1208   // Check if the map of an object is equal to a specified weak map and branch
1209   // to a specified target if equal. Skip the smi check if not required
1210   // (object is known to be a heap object)
1211   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1212                        Handle<WeakCell> cell, Handle<Code> success,
1213                        SmiCheckType smi_check_type);
1214 
1215   // If the value is a NaN, canonicalize the value else, do nothing.
1216   void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1217 
1218 
1219   // Get value of the weak cell.
1220   void GetWeakValue(Register value, Handle<WeakCell> cell);
1221 
1222   // Load the value of the weak cell in the value register. Branch to the
1223   // given miss label is the weak cell was cleared.
1224   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1225 
1226   // Load and check the instance type of an object for being a string.
1227   // Loads the type into the second argument register.
1228   // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type,Register result)1229   Condition IsObjectStringType(Register obj,
1230                                Register type,
1231                                Register result) {
1232     ld(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1233     lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1234     And(type, type, Operand(kIsNotStringMask));
1235     DCHECK_EQ(0u, kStringTag);
1236     return eq;
1237   }
1238 
1239   // Get the number of least significant bits from a register.
1240   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1241   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1242 
1243   // Load the value of a number object into a FPU double register. If the
1244   // object is not a number a jump to the label not_number is performed
1245   // and the FPU double register is unchanged.
1246   void ObjectToDoubleFPURegister(
1247       Register object,
1248       FPURegister value,
1249       Register scratch1,
1250       Register scratch2,
1251       Register heap_number_map,
1252       Label* not_number,
1253       ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1254 
1255   // Load the value of a smi object into a FPU double register. The register
1256   // scratch1 can be the same register as smi in which case smi will hold the
1257   // untagged value afterwards.
1258   void SmiToDoubleFPURegister(Register smi,
1259                               FPURegister value,
1260                               Register scratch1);
1261 
1262   // -------------------------------------------------------------------------
1263   // Overflow handling functions.
1264   // Usage: first call the appropriate arithmetic function, then call one of the
1265   // jump functions with the overflow_dst register as the second parameter.
1266 
1267   inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1268                            Label* overflow_label, Register scratch = at) {
1269     AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1270   }
1271 
1272   inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1273                              Label* no_overflow_label, Register scratch = at) {
1274     AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1275   }
1276 
1277   void AddBranchOvf(Register dst, Register left, const Operand& right,
1278                     Label* overflow_label, Label* no_overflow_label,
1279                     Register scratch = at);
1280 
1281   void AddBranchOvf(Register dst, Register left, Register right,
1282                     Label* overflow_label, Label* no_overflow_label,
1283                     Register scratch = at);
1284 
1285   inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1286                            Label* overflow_label, Register scratch = at) {
1287     SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1288   }
1289 
1290   inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1291                              Label* no_overflow_label, Register scratch = at) {
1292     SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1293   }
1294 
1295   void SubBranchOvf(Register dst, Register left, const Operand& right,
1296                     Label* overflow_label, Label* no_overflow_label,
1297                     Register scratch = at);
1298 
1299   void SubBranchOvf(Register dst, Register left, Register right,
1300                     Label* overflow_label, Label* no_overflow_label,
1301                     Register scratch = at);
1302 
1303   inline void MulBranchOvf(Register dst, Register left, const Operand& right,
1304                            Label* overflow_label, Register scratch = at) {
1305     MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1306   }
1307 
1308   inline void MulBranchNoOvf(Register dst, Register left, const Operand& right,
1309                              Label* no_overflow_label, Register scratch = at) {
1310     MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1311   }
1312 
1313   void MulBranchOvf(Register dst, Register left, const Operand& right,
1314                     Label* overflow_label, Label* no_overflow_label,
1315                     Register scratch = at);
1316 
1317   void MulBranchOvf(Register dst, Register left, Register right,
1318                     Label* overflow_label, Label* no_overflow_label,
1319                     Register scratch = at);
1320 
1321   inline void DaddBranchOvf(Register dst, Register left, const Operand& right,
1322                             Label* overflow_label, Register scratch = at) {
1323     DaddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1324   }
1325 
1326   inline void DaddBranchNoOvf(Register dst, Register left, const Operand& right,
1327                               Label* no_overflow_label, Register scratch = at) {
1328     DaddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1329   }
1330 
1331   void DaddBranchOvf(Register dst, Register left, const Operand& right,
1332                      Label* overflow_label, Label* no_overflow_label,
1333                      Register scratch = at);
1334 
1335   void DaddBranchOvf(Register dst, Register left, Register right,
1336                      Label* overflow_label, Label* no_overflow_label,
1337                      Register scratch = at);
1338 
1339   inline void DsubBranchOvf(Register dst, Register left, const Operand& right,
1340                             Label* overflow_label, Register scratch = at) {
1341     DsubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1342   }
1343 
1344   inline void DsubBranchNoOvf(Register dst, Register left, const Operand& right,
1345                               Label* no_overflow_label, Register scratch = at) {
1346     DsubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1347   }
1348 
1349   void DsubBranchOvf(Register dst, Register left, const Operand& right,
1350                      Label* overflow_label, Label* no_overflow_label,
1351                      Register scratch = at);
1352 
1353   void DsubBranchOvf(Register dst, Register left, Register right,
1354                      Label* overflow_label, Label* no_overflow_label,
1355                      Register scratch = at);
1356 
1357   void BranchOnOverflow(Label* label,
1358                         Register overflow_check,
1359                         BranchDelaySlot bd = PROTECT) {
1360     Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1361   }
1362 
1363   void BranchOnNoOverflow(Label* label,
1364                           Register overflow_check,
1365                           BranchDelaySlot bd = PROTECT) {
1366     Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1367   }
1368 
1369   void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1370     Ret(lt, overflow_check, Operand(zero_reg), bd);
1371   }
1372 
1373   void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1374     Ret(ge, overflow_check, Operand(zero_reg), bd);
1375   }
1376 
1377   // Perform a floating-point min or max operation with the
1378   // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
1379   // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
1380   // handled in out-of-line code. The specific behaviour depends on supported
1381   // instructions.
1382   //
1383   // These functions assume (and assert) that !src1.is(src2). It is permitted
1384   // for the result to alias either input register.
1385   void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
1386                   Label* out_of_line);
1387   void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
1388                   Label* out_of_line);
1389   void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2,
1390                   Label* out_of_line);
1391   void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2,
1392                   Label* out_of_line);
1393 
1394   // Generate out-of-line cases for the macros above.
1395   void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1396   void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1397   void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1398   void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1399 
1400   // -------------------------------------------------------------------------
1401   // Runtime calls.
1402 
1403   // See comments at the beginning of CEntryStub::Generate.
PrepareCEntryArgs(int num_args)1404   inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1405 
PrepareCEntryFunction(const ExternalReference & ref)1406   inline void PrepareCEntryFunction(const ExternalReference& ref) {
1407     li(a1, Operand(ref));
1408   }
1409 
1410 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1411 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1412 
1413   // Call a code stub.
1414   void CallStub(CodeStub* stub,
1415                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1416                 COND_ARGS);
1417 
1418   // Tail call a code stub (jump).
1419   void TailCallStub(CodeStub* stub, COND_ARGS);
1420 
1421 #undef COND_ARGS
1422 
1423   void CallJSExitStub(CodeStub* stub);
1424 
1425   // Call a runtime routine.
1426   void CallRuntime(const Runtime::Function* f, int num_arguments,
1427                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1428                    BranchDelaySlot bd = PROTECT);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1429   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1430     const Runtime::Function* function = Runtime::FunctionForId(fid);
1431     CallRuntime(function, function->nargs, kSaveFPRegs);
1432   }
1433 
1434   // Convenience function: Same as above, but takes the fid instead.
1435   void CallRuntime(Runtime::FunctionId fid,
1436                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1437                    BranchDelaySlot bd = PROTECT) {
1438     const Runtime::Function* function = Runtime::FunctionForId(fid);
1439     CallRuntime(function, function->nargs, save_doubles, bd);
1440   }
1441 
1442   // Convenience function: Same as above, but takes the fid instead.
1443   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1444                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1445                    BranchDelaySlot bd = PROTECT) {
1446     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles, bd);
1447   }
1448 
1449   // Convenience function: call an external reference.
1450   void CallExternalReference(const ExternalReference& ext,
1451                              int num_arguments,
1452                              BranchDelaySlot bd = PROTECT);
1453 
1454   // Convenience function: tail call a runtime routine (jump).
1455   void TailCallRuntime(Runtime::FunctionId fid);
1456 
1457   int CalculateStackPassedWords(int num_reg_arguments,
1458                                 int num_double_arguments);
1459 
1460   // Before calling a C-function from generated code, align arguments on stack
1461   // and add space for the four mips argument slots.
1462   // After aligning the frame, non-register arguments must be stored on the
1463   // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1464   // The argument count assumes all arguments are word sized.
1465   // Some compilers/platforms require the stack to be aligned when calling
1466   // C++ code.
1467   // Needs a scratch register to do some arithmetic. This register will be
1468   // trashed.
1469   void PrepareCallCFunction(int num_reg_arguments,
1470                             int num_double_registers,
1471                             Register scratch);
1472   void PrepareCallCFunction(int num_reg_arguments,
1473                             Register scratch);
1474 
1475   // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1476   // Arguments 5..n are stored to stack using following:
1477   //  sw(a4, CFunctionArgumentOperand(5));
1478 
1479   // Calls a C function and cleans up the space for arguments allocated
1480   // by PrepareCallCFunction. The called function is not allowed to trigger a
1481   // garbage collection, since that might move the code and invalidate the
1482   // return address (unless this is somehow accounted for by the called
1483   // function).
1484   void CallCFunction(ExternalReference function, int num_arguments);
1485   void CallCFunction(Register function, int num_arguments);
1486   void CallCFunction(ExternalReference function,
1487                      int num_reg_arguments,
1488                      int num_double_arguments);
1489   void CallCFunction(Register function,
1490                      int num_reg_arguments,
1491                      int num_double_arguments);
1492   void MovFromFloatResult(DoubleRegister dst);
1493   void MovFromFloatParameter(DoubleRegister dst);
1494 
1495   // There are two ways of passing double arguments on MIPS, depending on
1496   // whether soft or hard floating point ABI is used. These functions
1497   // abstract parameter passing for the three different ways we call
1498   // C functions from generated code.
1499   void MovToFloatParameter(DoubleRegister src);
1500   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1501   void MovToFloatResult(DoubleRegister src);
1502 
1503   // Jump to the builtin routine.
1504   void JumpToExternalReference(const ExternalReference& builtin,
1505                                BranchDelaySlot bd = PROTECT,
1506                                bool builtin_exit_frame = false);
1507 
1508   struct Unresolved {
1509     int pc;
1510     uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
1511     const char* name;
1512   };
1513 
CodeObject()1514   Handle<Object> CodeObject() {
1515     DCHECK(!code_object_.is_null());
1516     return code_object_;
1517   }
1518 
1519   // Emit code for a truncating division by a constant. The dividend register is
1520   // unchanged and at gets clobbered. Dividend and result must be different.
1521   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1522 
1523   // -------------------------------------------------------------------------
1524   // StatsCounter support.
1525 
1526   void SetCounter(StatsCounter* counter, int value,
1527                   Register scratch1, Register scratch2);
1528   void IncrementCounter(StatsCounter* counter, int value,
1529                         Register scratch1, Register scratch2);
1530   void DecrementCounter(StatsCounter* counter, int value,
1531                         Register scratch1, Register scratch2);
1532 
1533 
1534   // -------------------------------------------------------------------------
1535   // Debugging.
1536 
1537   // Calls Abort(msg) if the condition cc is not satisfied.
1538   // Use --debug_code to enable.
1539   void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1540   void AssertFastElements(Register elements);
1541 
1542   // Like Assert(), but always enabled.
1543   void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1544 
1545   // Print a message to stdout and abort execution.
1546   void Abort(BailoutReason msg);
1547 
1548   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1549   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1550   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1551   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1552   bool has_frame() { return has_frame_; }
1553   inline bool AllowThisStubCall(CodeStub* stub);
1554 
1555   // ---------------------------------------------------------------------------
1556   // Number utilities.
1557 
1558   // Check whether the value of reg is a power of two and not zero. If not
1559   // control continues at the label not_power_of_two. If reg is a power of two
1560   // the register scratch contains the value of (reg - 1) when control falls
1561   // through.
1562   void JumpIfNotPowerOfTwoOrZero(Register reg,
1563                                  Register scratch,
1564                                  Label* not_power_of_two_or_zero);
1565 
1566   // -------------------------------------------------------------------------
1567   // Smi utilities.
1568 
1569   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1570   void SmiTagCheckOverflow(Register reg, Register overflow);
1571   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1572 
SmiTag(Register dst,Register src)1573   void SmiTag(Register dst, Register src) {
1574     STATIC_ASSERT(kSmiTag == 0);
1575     if (SmiValuesAre32Bits()) {
1576       STATIC_ASSERT(kSmiShift == 32);
1577       dsll32(dst, src, 0);
1578     } else {
1579       Addu(dst, src, src);
1580     }
1581   }
1582 
SmiTag(Register reg)1583   void SmiTag(Register reg) {
1584     SmiTag(reg, reg);
1585   }
1586 
1587   // Try to convert int32 to smi. If the value is to large, preserve
1588   // the original value and jump to not_a_smi. Destroys scratch and
1589   // sets flags.
TrySmiTag(Register reg,Register scratch,Label * not_a_smi)1590   void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1591     TrySmiTag(reg, reg, scratch, not_a_smi);
1592   }
1593 
TrySmiTag(Register dst,Register src,Register scratch,Label * not_a_smi)1594   void TrySmiTag(Register dst,
1595                  Register src,
1596                  Register scratch,
1597                  Label* not_a_smi) {
1598     if (SmiValuesAre32Bits()) {
1599       SmiTag(dst, src);
1600     } else {
1601       SmiTagCheckOverflow(at, src, scratch);
1602       BranchOnOverflow(not_a_smi, scratch);
1603       mov(dst, at);
1604     }
1605   }
1606 
SmiUntag(Register dst,Register src)1607   void SmiUntag(Register dst, Register src) {
1608     if (SmiValuesAre32Bits()) {
1609       STATIC_ASSERT(kSmiShift == 32);
1610       dsra32(dst, src, 0);
1611     } else {
1612       sra(dst, src, kSmiTagSize);
1613     }
1614   }
1615 
SmiUntag(Register reg)1616   void SmiUntag(Register reg) {
1617     SmiUntag(reg, reg);
1618   }
1619 
1620   // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)1621   void SmiScale(Register dst, Register src, int scale) {
1622     if (SmiValuesAre32Bits()) {
1623       // The int portion is upper 32-bits of 64-bit word.
1624       dsra(dst, src, kSmiShift - scale);
1625     } else {
1626       DCHECK(scale >= kSmiTagSize);
1627       sll(dst, src, scale - kSmiTagSize);
1628     }
1629   }
1630 
1631   // Combine load with untagging or scaling.
1632   void SmiLoadUntag(Register dst, MemOperand src);
1633 
1634   void SmiLoadScale(Register dst, MemOperand src, int scale);
1635 
1636   // Returns 2 values: the Smi and a scaled version of the int within the Smi.
1637   void SmiLoadWithScale(Register d_smi,
1638                         Register d_scaled,
1639                         MemOperand src,
1640                         int scale);
1641 
1642   // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
1643   void SmiLoadUntagWithScale(Register d_int,
1644                              Register d_scaled,
1645                              MemOperand src,
1646                              int scale);
1647 
1648 
1649   // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1650   inline void SmiTst(Register value, Register scratch) {
1651     And(scratch, value, Operand(kSmiTagMask));
1652   }
NonNegativeSmiTst(Register value,Register scratch)1653   inline void NonNegativeSmiTst(Register value, Register scratch) {
1654     And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1655   }
1656 
1657   // Untag the source value into destination and jump if source is a smi.
1658   // Source and destination can be the same register.
1659   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1660 
1661   // Jump the register contains a smi.
1662   void JumpIfSmi(Register value,
1663                  Label* smi_label,
1664                  Register scratch = at,
1665                  BranchDelaySlot bd = PROTECT);
1666 
1667   // Jump if the register contains a non-smi.
1668   void JumpIfNotSmi(Register value,
1669                     Label* not_smi_label,
1670                     Register scratch = at,
1671                     BranchDelaySlot bd = PROTECT);
1672 
1673   // Jump if either of the registers contain a non-smi.
1674   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1675   // Jump if either of the registers contain a smi.
1676   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1677 
1678   // Abort execution if argument is a number, enabled via --debug-code.
1679   void AssertNotNumber(Register object);
1680 
1681   // Abort execution if argument is a smi, enabled via --debug-code.
1682   void AssertNotSmi(Register object);
1683   void AssertSmi(Register object);
1684 
1685   // Abort execution if argument is not a string, enabled via --debug-code.
1686   void AssertString(Register object);
1687 
1688   // Abort execution if argument is not a name, enabled via --debug-code.
1689   void AssertName(Register object);
1690 
1691   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1692   void AssertFunction(Register object);
1693 
1694   // Abort execution if argument is not a JSBoundFunction,
1695   // enabled via --debug-code.
1696   void AssertBoundFunction(Register object);
1697 
1698   // Abort execution if argument is not a JSGeneratorObject,
1699   // enabled via --debug-code.
1700   void AssertGeneratorObject(Register object);
1701 
1702   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1703   void AssertReceiver(Register object);
1704 
1705   // Abort execution if argument is not undefined or an AllocationSite, enabled
1706   // via --debug-code.
1707   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1708 
1709   // Abort execution if reg is not the root value with the given index,
1710   // enabled via --debug-code.
1711   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1712 
1713   // ---------------------------------------------------------------------------
1714   // HeapNumber utilities.
1715 
1716   void JumpIfNotHeapNumber(Register object,
1717                            Register heap_number_map,
1718                            Register scratch,
1719                            Label* on_not_heap_number);
1720 
1721   // -------------------------------------------------------------------------
1722   // String utilities.
1723 
1724   // Checks if both instance types are sequential one-byte strings and jumps to
1725   // label if either is not.
1726   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1727       Register first_object_instance_type, Register second_object_instance_type,
1728       Register scratch1, Register scratch2, Label* failure);
1729 
1730   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1731 
1732   void EmitSeqStringSetCharCheck(Register string,
1733                                  Register index,
1734                                  Register value,
1735                                  Register scratch,
1736                                  uint32_t encoding_mask);
1737 
1738   // Checks if both objects are sequential one-byte strings and jumps to label
1739   // if either is not. Assumes that neither object is a smi.
1740   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1741                                                     Register second,
1742                                                     Register scratch1,
1743                                                     Register scratch2,
1744                                                     Label* failure);
1745 
1746   // Checks if both objects are sequential one-byte strings and jumps to label
1747   // if either is not.
1748   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1749                                              Register scratch1,
1750                                              Register scratch2,
1751                                              Label* not_flat_one_byte_strings);
1752 
1753   void ClampUint8(Register output_reg, Register input_reg);
1754 
1755   void ClampDoubleToUint8(Register result_reg,
1756                           DoubleRegister input_reg,
1757                           DoubleRegister temp_double_reg);
1758 
1759 
1760   void LoadInstanceDescriptors(Register map, Register descriptors);
1761   void EnumLength(Register dst, Register map);
1762   void NumberOfOwnDescriptors(Register dst, Register map);
1763   void LoadAccessor(Register dst, Register holder, int accessor_index,
1764                     AccessorComponent accessor);
1765 
1766   template<typename Field>
DecodeField(Register dst,Register src)1767   void DecodeField(Register dst, Register src) {
1768     Ext(dst, src, Field::kShift, Field::kSize);
1769   }
1770 
1771   template<typename Field>
DecodeField(Register reg)1772   void DecodeField(Register reg) {
1773     DecodeField<Field>(reg, reg);
1774   }
1775 
1776   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1777   void DecodeFieldToSmi(Register dst, Register src) {
1778     static const int shift = Field::kShift;
1779     static const int mask = Field::kMask >> shift;
1780     dsrl(dst, src, shift);
1781     And(dst, dst, Operand(mask));
1782     dsll32(dst, dst, 0);
1783   }
1784 
1785   template<typename Field>
DecodeFieldToSmi(Register reg)1786   void DecodeFieldToSmi(Register reg) {
1787     DecodeField<Field>(reg, reg);
1788   }
1789   // Generates function and stub prologue code.
1790   void StubPrologue(StackFrame::Type type);
1791   void Prologue(bool code_pre_aging);
1792 
1793   // Load the type feedback vector from a JavaScript frame.
1794   void EmitLoadFeedbackVector(Register vector);
1795 
1796   // Activation support.
1797   void EnterFrame(StackFrame::Type type);
1798   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1799   void LeaveFrame(StackFrame::Type type);
1800 
1801   void EnterBuiltinFrame(Register context, Register target, Register argc);
1802   void LeaveBuiltinFrame(Register context, Register target, Register argc);
1803 
1804   // Expects object in a0 and returns map with validated enum cache
1805   // in a0.  Assumes that any other register can be used as a scratch.
1806   void CheckEnumCache(Label* call_runtime);
1807 
1808   // AllocationMemento support. Arrays may have an associated AllocationMemento
1809   // object that can be checked for in order to pretransition to another type.
1810   // On entry, receiver_reg should point to the array object. scratch_reg gets
1811   // clobbered. If no info is present jump to no_memento_found, otherwise fall
1812   // through.
1813   void TestJSArrayForAllocationMemento(Register receiver_reg,
1814                                        Register scratch_reg,
1815                                        Label* no_memento_found);
1816 
IsDoubleZeroRegSet()1817   bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1818 
1819  private:
1820   void CallCFunctionHelper(Register function,
1821                            int num_reg_arguments,
1822                            int num_double_arguments);
1823 
1824   inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1825   inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1826   void BranchShortHelperR6(int32_t offset, Label* L);
1827   void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1828   bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1829                            Register rs, const Operand& rt);
1830   bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1831                          const Operand& rt, BranchDelaySlot bdslot);
1832   bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1833                         const Operand& rt, BranchDelaySlot bdslot);
1834 
1835   void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1836   void BranchAndLinkShortHelper(int16_t offset, Label* L,
1837                                 BranchDelaySlot bdslot);
1838   void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1839   void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1840   bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1841                                   Register rs, const Operand& rt);
1842   bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1843                                 Register rs, const Operand& rt,
1844                                 BranchDelaySlot bdslot);
1845   bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1846                                Register rs, const Operand& rt,
1847                                BranchDelaySlot bdslot);
1848   void BranchLong(Label* L, BranchDelaySlot bdslot);
1849   void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1850 
1851   // Common implementation of BranchF functions for the different formats.
1852   void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1853                      Condition cc, FPURegister cmp1, FPURegister cmp2,
1854                      BranchDelaySlot bd = PROTECT);
1855 
1856   void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1857                     FPURegister cmp1, FPURegister cmp2,
1858                     BranchDelaySlot bd = PROTECT);
1859 
1860 
1861   // Helper functions for generating invokes.
1862   void InvokePrologue(const ParameterCount& expected,
1863                       const ParameterCount& actual,
1864                       Label* done,
1865                       bool* definitely_mismatches,
1866                       InvokeFlag flag,
1867                       const CallWrapper& call_wrapper);
1868 
1869   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1870   void InNewSpace(Register object, Register scratch,
1871                   Condition cond,  // ne for new space, eq otherwise.
1872                   Label* branch);
1873 
1874   // Helper for finding the mark bits for an address.  Afterwards, the
1875   // bitmap register points at the word with the mark bits and the mask
1876   // the position of the first bit.  Leaves addr_reg unchanged.
1877   inline void GetMarkBits(Register addr_reg,
1878                           Register bitmap_reg,
1879                           Register mask_reg);
1880 
1881   // Compute memory operands for safepoint stack slots.
1882   static int SafepointRegisterStackIndex(int reg_code);
1883   MemOperand SafepointRegisterSlot(Register reg);
1884   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1885 
1886   bool generating_stub_;
1887   bool has_frame_;
1888   bool has_double_zero_reg_set_;
1889   // This handle will be patched with the code object on installation.
1890   Handle<Object> code_object_;
1891 
1892   // Needs access to SafepointRegisterStackIndex for compiled frame
1893   // traversal.
1894   friend class StandardFrame;
1895 };
1896 
1897 
1898 // The code patcher is used to patch (typically) small parts of code e.g. for
1899 // debugging and other types of instrumentation. When using the code patcher
1900 // the exact number of bytes specified must be emitted. It is not legal to emit
1901 // relocation information. If any of these constraints are violated it causes
1902 // an assertion to fail.
1903 class CodePatcher {
1904  public:
1905   enum FlushICache {
1906     FLUSH,
1907     DONT_FLUSH
1908   };
1909 
1910   CodePatcher(Isolate* isolate, byte* address, int instructions,
1911               FlushICache flush_cache = FLUSH);
1912   ~CodePatcher();
1913 
1914   // Macro assembler to emit code.
masm()1915   MacroAssembler* masm() { return &masm_; }
1916 
1917   // Emit an instruction directly.
1918   void Emit(Instr instr);
1919 
1920   // Emit an address directly.
1921   void Emit(Address addr);
1922 
1923   // Change the condition part of an instruction leaving the rest of the current
1924   // instruction unchanged.
1925   void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
1926 
1927  private:
1928   byte* address_;  // The address of the code being patched.
1929   int size_;  // Number of bytes of the expected patch size.
1930   MacroAssembler masm_;  // Macro assembler used to generate the code.
1931   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1932 };
1933 
1934 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)1935 void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
1936                                          Func GetLabelFunction) {
1937   // Ensure that dd-ed labels following this instruction use 8 bytes aligned
1938   // addresses.
1939   if (kArchVariant >= kMips64r6) {
1940     BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
1941                            kSwitchTablePrologueSize);
1942     // Opposite of Align(8) as we have odd number of instructions in this case.
1943     if ((pc_offset() & 7) == 0) {
1944       nop();
1945     }
1946     addiupc(at, 5);
1947     Dlsa(at, at, index, kPointerSizeLog2);
1948     ld(at, MemOperand(at));
1949   } else {
1950     Label here;
1951     BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
1952                            kSwitchTablePrologueSize);
1953     Align(8);
1954     push(ra);
1955     bal(&here);
1956     dsll(at, index, kPointerSizeLog2);  // Branch delay slot.
1957     bind(&here);
1958     daddu(at, at, ra);
1959     pop(ra);
1960     ld(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
1961   }
1962   jr(at);
1963   nop();  // Branch delay slot nop.
1964   for (size_t index = 0; index < case_count; ++index) {
1965     dd(GetLabelFunction(index));
1966   }
1967 }
1968 
1969 #define ACCESS_MASM(masm) masm->
1970 
1971 }  // namespace internal
1972 }  // namespace v8
1973 
1974 #endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
1975