• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_MIPS64
6 
7 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
8 
9 #include "src/code-stubs.h"
10 #include "src/log.h"
11 #include "src/macro-assembler.h"
12 #include "src/regexp/regexp-macro-assembler.h"
13 #include "src/regexp/regexp-stack.h"
14 #include "src/unicode.h"
15 
16 namespace v8 {
17 namespace internal {
18 
19 #ifndef V8_INTERPRETED_REGEXP
20 /*
21  * This assembler uses the following register assignment convention
22  * - t3 : Temporarily stores the index of capture start after a matching pass
23  *        for a global regexp.
24  * - a5 : Pointer to current code object (Code*) including heap object tag.
25  * - a6 : Current position in input, as negative offset from end of string.
26  *        Please notice that this is the byte offset, not the character offset!
27  * - a7 : Currently loaded character. Must be loaded using
28  *        LoadCurrentCharacter before using any of the dispatch methods.
29  * - t0 : Points to tip of backtrack stack
30  * - t1 : Unused.
31  * - t2 : End of input (points to byte after last character in input).
32  * - fp : Frame pointer. Used to access arguments, local variables and
33  *         RegExp registers.
34  * - sp : Points to tip of C stack.
35  *
36  * The remaining registers are free for computations.
37  * Each call to a public method should retain this convention.
38  *
39  * TODO(plind): O32 documented here with intent of having single 32/64 codebase
40  *              in the future.
41  *
42  * The O32 stack will have the following structure:
43  *
44  *  - fp[76]  Isolate* isolate   (address of the current isolate)
45  *  - fp[72]  direct_call  (if 1, direct call from JavaScript code,
46  *                          if 0, call through the runtime system).
47  *  - fp[68]  stack_area_base (High end of the memory area to use as
48  *                             backtracking stack).
49  *  - fp[64]  capture array size (may fit multiple sets of matches)
50  *  - fp[60]  int* capture_array (int[num_saved_registers_], for output).
51  *  - fp[44..59]  MIPS O32 four argument slots
52  *  - fp[40]  secondary link/return address used by native call.
53  *  --- sp when called ---
54  *  - fp[36]  return address      (lr).
55  *  - fp[32]  old frame pointer   (r11).
56  *  - fp[0..31]  backup of registers s0..s7.
57  *  --- frame pointer ----
58  *  - fp[-4]  end of input       (address of end of string).
59  *  - fp[-8]  start of input     (address of first character in string).
60  *  - fp[-12] start index        (character index of start).
61  *  - fp[-16] void* input_string (location of a handle containing the string).
62  *  - fp[-20] success counter    (only for global regexps to count matches).
63  *  - fp[-24] Offset of location before start of input (effectively character
64  *            string start - 1). Used to initialize capture registers to a
65  *            non-position.
66  *  - fp[-28] At start (if 1, we are starting at the start of the
67  *    string, otherwise 0)
68  *  - fp[-32] register 0         (Only positions must be stored in the first
69  *  -         register 1          num_saved_registers_ registers)
70  *  -         ...
71  *  -         register num_registers-1
72  *  --- sp ---
73  *
74  *
75  * The N64 stack will have the following structure:
76  *
77  *  - fp[88]  Isolate* isolate   (address of the current isolate)               kIsolate
78  *  - fp[80]  secondary link/return address used by exit frame on native call.  kSecondaryReturnAddress
79                                                                                 kStackFrameHeader
80  *  --- sp when called ---
81  *  - fp[72]  ra                 Return from RegExp code (ra).                  kReturnAddress
82  *  - fp[64]  s9, old-fp         Old fp, callee saved(s9).
83  *  - fp[0..63]  s0..s7          Callee-saved registers s0..s7.
84  *  --- frame pointer ----
85  *  - fp[-8]  direct_call        (1 = direct call from JS, 0 = from runtime)    kDirectCall
86  *  - fp[-16] stack_base         (Top of backtracking stack).                   kStackHighEnd
87  *  - fp[-24] capture array size (may fit multiple sets of matches)             kNumOutputRegisters
88  *  - fp[-32] int* capture_array (int[num_saved_registers_], for output).       kRegisterOutput
89  *  - fp[-40] end of input       (address of end of string).                    kInputEnd
90  *  - fp[-48] start of input     (address of first character in string).        kInputStart
91  *  - fp[-56] start index        (character index of start).                    kStartIndex
92  *  - fp[-64] void* input_string (location of a handle containing the string).  kInputString
93  *  - fp[-72] success counter    (only for global regexps to count matches).    kSuccessfulCaptures
94  *  - fp[-80] Offset of location before start of input (effectively character   kStringStartMinusOne
95  *            position -1). Used to initialize capture registers to a
96  *            non-position.
97  *  --------- The following output registers are 32-bit values. ---------
98  *  - fp[-88] register 0         (Only positions must be stored in the first    kRegisterZero
99  *  -         register 1          num_saved_registers_ registers)
100  *  -         ...
101  *  -         register num_registers-1
102  *  --- sp ---
103  *
104  * The first num_saved_registers_ registers are initialized to point to
105  * "character -1" in the string (i.e., char_size() bytes before the first
106  * character of the string). The remaining registers start out as garbage.
107  *
108  * The data up to the return address must be placed there by the calling
109  * code and the remaining arguments are passed in registers, e.g. by calling the
110  * code entry as cast to a function with the signature:
111  * int (*match)(String* input_string,
112  *              int start_index,
113  *              Address start,
114  *              Address end,
115  *              Address secondary_return_address,  // Only used by native call.
116  *              int* capture_output_array,
117  *              byte* stack_area_base,
118  *              bool direct_call = false,
119  *              void* return_address,
120  *              Isolate* isolate);
121  * The call is performed by NativeRegExpMacroAssembler::Execute()
122  * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
123  * in mips/simulator-mips.h.
124  * When calling as a non-direct call (i.e., from C++ code), the return address
125  * area is overwritten with the ra register by the RegExp code. When doing a
126  * direct call from generated code, the return address is placed there by
127  * the calling code, as in a normal exit frame.
128  */
129 
130 #define __ ACCESS_MASM(masm_)
131 
RegExpMacroAssemblerMIPS(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)132 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
133                                                    Mode mode,
134                                                    int registers_to_save)
135     : NativeRegExpMacroAssembler(isolate, zone),
136       masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
137                                CodeObjectRequired::kYes)),
138       mode_(mode),
139       num_registers_(registers_to_save),
140       num_saved_registers_(registers_to_save),
141       entry_label_(),
142       start_label_(),
143       success_label_(),
144       backtrack_label_(),
145       exit_label_(),
146       internal_failure_label_() {
147   DCHECK_EQ(0, registers_to_save % 2);
148   __ jmp(&entry_label_);   // We'll write the entry code later.
149   // If the code gets too big or corrupted, an internal exception will be
150   // raised, and we will exit right away.
151   __ bind(&internal_failure_label_);
152   __ li(v0, Operand(FAILURE));
153   __ Ret();
154   __ bind(&start_label_);  // And then continue from here.
155 }
156 
157 
~RegExpMacroAssemblerMIPS()158 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
159   delete masm_;
160   // Unuse labels in case we throw away the assembler without calling GetCode.
161   entry_label_.Unuse();
162   start_label_.Unuse();
163   success_label_.Unuse();
164   backtrack_label_.Unuse();
165   exit_label_.Unuse();
166   check_preempt_label_.Unuse();
167   stack_overflow_label_.Unuse();
168   internal_failure_label_.Unuse();
169 }
170 
171 
stack_limit_slack()172 int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
173   return RegExpStack::kStackLimitSlack;
174 }
175 
176 
AdvanceCurrentPosition(int by)177 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
178   if (by != 0) {
179     __ Daddu(current_input_offset(),
180             current_input_offset(), Operand(by * char_size()));
181   }
182 }
183 
184 
AdvanceRegister(int reg,int by)185 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
186   DCHECK(reg >= 0);
187   DCHECK(reg < num_registers_);
188   if (by != 0) {
189     __ ld(a0, register_location(reg));
190     __ Daddu(a0, a0, Operand(by));
191     __ sd(a0, register_location(reg));
192   }
193 }
194 
195 
Backtrack()196 void RegExpMacroAssemblerMIPS::Backtrack() {
197   CheckPreemption();
198   // Pop Code* offset from backtrack stack, add Code* and jump to location.
199   Pop(a0);
200   __ Daddu(a0, a0, code_pointer());
201   __ Jump(a0);
202 }
203 
204 
Bind(Label * label)205 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
206   __ bind(label);
207 }
208 
209 
CheckCharacter(uint32_t c,Label * on_equal)210 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
211   BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
212 }
213 
214 
CheckCharacterGT(uc16 limit,Label * on_greater)215 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
216   BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
217 }
218 
219 
CheckAtStart(Label * on_at_start)220 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
221   __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
222   __ Daddu(a0, current_input_offset(), Operand(-char_size()));
223   BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
224 }
225 
226 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)227 void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
228                                                Label* on_not_at_start) {
229   __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
230   __ Daddu(a0, current_input_offset(),
231            Operand(-char_size() + cp_offset * char_size()));
232   BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
233 }
234 
235 
CheckCharacterLT(uc16 limit,Label * on_less)236 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
237   BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
238 }
239 
240 
CheckGreedyLoop(Label * on_equal)241 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
242   Label backtrack_non_equal;
243   __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
244   __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
245   __ Daddu(backtrack_stackpointer(),
246           backtrack_stackpointer(),
247           Operand(kIntSize));
248   __ bind(&backtrack_non_equal);
249   BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
250 }
251 
252 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,bool unicode,Label * on_no_match)253 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
254     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
255   Label fallthrough;
256   __ ld(a0, register_location(start_reg));  // Index of start of capture.
257   __ ld(a1, register_location(start_reg + 1));  // Index of end of capture.
258   __ Dsubu(a1, a1, a0);  // Length of capture.
259 
260   // At this point, the capture registers are either both set or both cleared.
261   // If the capture length is zero, then the capture is either empty or cleared.
262   // Fall through in both cases.
263   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
264 
265   if (read_backward) {
266     __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
267     __ Daddu(t1, t1, a1);
268     BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
269   } else {
270     __ Daddu(t1, a1, current_input_offset());
271     // Check that there are enough characters left in the input.
272     BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
273   }
274 
275   if (mode_ == LATIN1) {
276     Label success;
277     Label fail;
278     Label loop_check;
279 
280     // a0 - offset of start of capture.
281     // a1 - length of capture.
282     __ Daddu(a0, a0, Operand(end_of_input_address()));
283     __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
284     if (read_backward) {
285       __ Dsubu(a2, a2, Operand(a1));
286     }
287     __ Daddu(a1, a0, Operand(a1));
288 
289     // a0 - Address of start of capture.
290     // a1 - Address of end of capture.
291     // a2 - Address of current input position.
292 
293     Label loop;
294     __ bind(&loop);
295     __ lbu(a3, MemOperand(a0, 0));
296     __ daddiu(a0, a0, char_size());
297     __ lbu(a4, MemOperand(a2, 0));
298     __ daddiu(a2, a2, char_size());
299 
300     __ Branch(&loop_check, eq, a4, Operand(a3));
301 
302     // Mismatch, try case-insensitive match (converting letters to lower-case).
303     __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
304     __ Or(a4, a4, Operand(0x20));  // Also convert input character.
305     __ Branch(&fail, ne, a4, Operand(a3));
306     __ Dsubu(a3, a3, Operand('a'));
307     __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
308     // Latin-1: Check for values in range [224,254] but not 247.
309     __ Dsubu(a3, a3, Operand(224 - 'a'));
310     // Weren't Latin-1 letters.
311     __ Branch(&fail, hi, a3, Operand(254 - 224));
312     // Check for 247.
313     __ Branch(&fail, eq, a3, Operand(247 - 224));
314 
315     __ bind(&loop_check);
316     __ Branch(&loop, lt, a0, Operand(a1));
317     __ jmp(&success);
318 
319     __ bind(&fail);
320     GoTo(on_no_match);
321 
322     __ bind(&success);
323     // Compute new value of character position after the matched part.
324     __ Dsubu(current_input_offset(), a2, end_of_input_address());
325     if (read_backward) {
326       __ ld(t1, register_location(start_reg));  // Index of start of capture.
327       __ ld(a2, register_location(start_reg + 1));  // Index of end of capture.
328       __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
329       __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
330     }
331   } else {
332     DCHECK(mode_ == UC16);
333     // Put regexp engine registers on stack.
334     RegList regexp_registers_to_retain = current_input_offset().bit() |
335         current_character().bit() | backtrack_stackpointer().bit();
336     __ MultiPush(regexp_registers_to_retain);
337 
338     int argument_count = 4;
339     __ PrepareCallCFunction(argument_count, a2);
340 
341     // a0 - offset of start of capture.
342     // a1 - length of capture.
343 
344     // Put arguments into arguments registers.
345     // Parameters are
346     //   a0: Address byte_offset1 - Address captured substring's start.
347     //   a1: Address byte_offset2 - Address of current character position.
348     //   a2: size_t byte_length - length of capture in bytes(!).
349     //   a3: Isolate* isolate or 0 if unicode flag.
350 
351     // Address of start of capture.
352     __ Daddu(a0, a0, Operand(end_of_input_address()));
353     // Length of capture.
354     __ mov(a2, a1);
355     // Save length in callee-save register for use on return.
356     __ mov(s3, a1);
357     // Address of current input position.
358     __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
359     if (read_backward) {
360       __ Dsubu(a1, a1, Operand(s3));
361     }
362     // Isolate.
363 #ifdef V8_I18N_SUPPORT
364     if (unicode) {
365       __ mov(a3, zero_reg);
366     } else  // NOLINT
367 #endif      // V8_I18N_SUPPORT
368     {
369       __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
370     }
371 
372     {
373       AllowExternalCallThatCantCauseGC scope(masm_);
374       ExternalReference function =
375           ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
376       __ CallCFunction(function, argument_count);
377     }
378 
379     // Restore regexp engine registers.
380     __ MultiPop(regexp_registers_to_retain);
381     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
382     __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
383 
384     // Check if function returned non-zero for success or zero for failure.
385     BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
386     // On success, increment position by length of capture.
387     if (read_backward) {
388       __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
389     } else {
390       __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
391     }
392   }
393 
394   __ bind(&fallthrough);
395 }
396 
397 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)398 void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
399                                                      bool read_backward,
400                                                      Label* on_no_match) {
401   Label fallthrough;
402   Label success;
403 
404   // Find length of back-referenced capture.
405   __ ld(a0, register_location(start_reg));
406   __ ld(a1, register_location(start_reg + 1));
407   __ Dsubu(a1, a1, a0);  // Length to check.
408 
409   // At this point, the capture registers are either both set or both cleared.
410   // If the capture length is zero, then the capture is either empty or cleared.
411   // Fall through in both cases.
412   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
413 
414   if (read_backward) {
415     __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
416     __ Daddu(t1, t1, a1);
417     BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
418   } else {
419     __ Daddu(t1, a1, current_input_offset());
420     // Check that there are enough characters left in the input.
421     BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
422   }
423 
424   // Compute pointers to match string and capture string.
425   __ Daddu(a0, a0, Operand(end_of_input_address()));
426   __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
427   if (read_backward) {
428     __ Dsubu(a2, a2, Operand(a1));
429   }
430   __ Daddu(a1, a1, Operand(a0));
431 
432   Label loop;
433   __ bind(&loop);
434   if (mode_ == LATIN1) {
435     __ lbu(a3, MemOperand(a0, 0));
436     __ daddiu(a0, a0, char_size());
437     __ lbu(a4, MemOperand(a2, 0));
438     __ daddiu(a2, a2, char_size());
439   } else {
440     DCHECK(mode_ == UC16);
441     __ lhu(a3, MemOperand(a0, 0));
442     __ daddiu(a0, a0, char_size());
443     __ lhu(a4, MemOperand(a2, 0));
444     __ daddiu(a2, a2, char_size());
445   }
446   BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
447   __ Branch(&loop, lt, a0, Operand(a1));
448 
449   // Move current character position to position after match.
450   __ Dsubu(current_input_offset(), a2, end_of_input_address());
451   if (read_backward) {
452     __ ld(t1, register_location(start_reg));      // Index of start of capture.
453     __ ld(a2, register_location(start_reg + 1));  // Index of end of capture.
454     __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
455     __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
456   }
457   __ bind(&fallthrough);
458 }
459 
460 
CheckNotCharacter(uint32_t c,Label * on_not_equal)461 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
462                                                  Label* on_not_equal) {
463   BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
464 }
465 
466 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)467 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
468                                                       uint32_t mask,
469                                                       Label* on_equal) {
470   __ And(a0, current_character(), Operand(mask));
471   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
472   BranchOrBacktrack(on_equal, eq, a0, rhs);
473 }
474 
475 
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)476 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
477                                                          uint32_t mask,
478                                                          Label* on_not_equal) {
479   __ And(a0, current_character(), Operand(mask));
480   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
481   BranchOrBacktrack(on_not_equal, ne, a0, rhs);
482 }
483 
484 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)485 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
486     uc16 c,
487     uc16 minus,
488     uc16 mask,
489     Label* on_not_equal) {
490   DCHECK(minus < String::kMaxUtf16CodeUnit);
491   __ Dsubu(a0, current_character(), Operand(minus));
492   __ And(a0, a0, Operand(mask));
493   BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
494 }
495 
496 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)497 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
498     uc16 from,
499     uc16 to,
500     Label* on_in_range) {
501   __ Dsubu(a0, current_character(), Operand(from));
502   // Unsigned lower-or-same condition.
503   BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
504 }
505 
506 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)507 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
508     uc16 from,
509     uc16 to,
510     Label* on_not_in_range) {
511   __ Dsubu(a0, current_character(), Operand(from));
512   // Unsigned higher condition.
513   BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
514 }
515 
516 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)517 void RegExpMacroAssemblerMIPS::CheckBitInTable(
518     Handle<ByteArray> table,
519     Label* on_bit_set) {
520   __ li(a0, Operand(table));
521   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
522     __ And(a1, current_character(), Operand(kTableSize - 1));
523     __ Daddu(a0, a0, a1);
524   } else {
525     __ Daddu(a0, a0, current_character());
526   }
527 
528   __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
529   BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
530 }
531 
532 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)533 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
534                                                           Label* on_no_match) {
535   // Range checks (c in min..max) are generally implemented by an unsigned
536   // (c - min) <= (max - min) check.
537   switch (type) {
538   case 's':
539     // Match space-characters.
540     if (mode_ == LATIN1) {
541       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
542       Label success;
543       __ Branch(&success, eq, current_character(), Operand(' '));
544       // Check range 0x09..0x0d.
545       __ Dsubu(a0, current_character(), Operand('\t'));
546       __ Branch(&success, ls, a0, Operand('\r' - '\t'));
547       // \u00a0 (NBSP).
548       BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
549       __ bind(&success);
550       return true;
551     }
552     return false;
553   case 'S':
554     // The emitted code for generic character classes is good enough.
555     return false;
556   case 'd':
557     // Match Latin1 digits ('0'..'9').
558     __ Dsubu(a0, current_character(), Operand('0'));
559     BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
560     return true;
561   case 'D':
562     // Match non Latin1-digits.
563     __ Dsubu(a0, current_character(), Operand('0'));
564     BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
565     return true;
566   case '.': {
567     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
568     __ Xor(a0, current_character(), Operand(0x01));
569     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
570     __ Dsubu(a0, a0, Operand(0x0b));
571     BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
572     if (mode_ == UC16) {
573       // Compare original value to 0x2028 and 0x2029, using the already
574       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
575       // 0x201d (0x2028 - 0x0b) or 0x201e.
576       __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
577       BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
578     }
579     return true;
580   }
581   case 'n': {
582     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
583     __ Xor(a0, current_character(), Operand(0x01));
584     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
585     __ Dsubu(a0, a0, Operand(0x0b));
586     if (mode_ == LATIN1) {
587       BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
588     } else {
589       Label done;
590       BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
591       // Compare original value to 0x2028 and 0x2029, using the already
592       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
593       // 0x201d (0x2028 - 0x0b) or 0x201e.
594       __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
595       BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
596       __ bind(&done);
597     }
598     return true;
599   }
600   case 'w': {
601     if (mode_ != LATIN1) {
602       // Table is 256 entries, so all Latin1 characters can be tested.
603       BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
604     }
605     ExternalReference map = ExternalReference::re_word_character_map();
606     __ li(a0, Operand(map));
607     __ Daddu(a0, a0, current_character());
608     __ lbu(a0, MemOperand(a0, 0));
609     BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
610     return true;
611   }
612   case 'W': {
613     Label done;
614     if (mode_ != LATIN1) {
615       // Table is 256 entries, so all Latin1 characters can be tested.
616       __ Branch(&done, hi, current_character(), Operand('z'));
617     }
618     ExternalReference map = ExternalReference::re_word_character_map();
619     __ li(a0, Operand(map));
620     __ Daddu(a0, a0, current_character());
621     __ lbu(a0, MemOperand(a0, 0));
622     BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
623     if (mode_ != LATIN1) {
624       __ bind(&done);
625     }
626     return true;
627   }
628   case '*':
629     // Match any character.
630     return true;
631   // No custom implementation (yet): s(UC16), S(UC16).
632   default:
633     return false;
634   }
635 }
636 
637 
Fail()638 void RegExpMacroAssemblerMIPS::Fail() {
639   __ li(v0, Operand(FAILURE));
640   __ jmp(&exit_label_);
641 }
642 
643 
GetCode(Handle<String> source)644 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
645   Label return_v0;
646   if (masm_->has_exception()) {
647     // If the code gets corrupted due to long regular expressions and lack of
648     // space on trampolines, an internal exception flag is set. If this case
649     // is detected, we will jump into exit sequence right away.
650     __ bind_to(&entry_label_, internal_failure_label_.pos());
651   } else {
652     // Finalize code - write the entry point code now we know how many
653     // registers we need.
654 
655     // Entry code:
656     __ bind(&entry_label_);
657 
658     // Tell the system that we have a stack frame.  Because the type is MANUAL,
659     // no is generated.
660     FrameScope scope(masm_, StackFrame::MANUAL);
661 
662     // Actually emit code to start a new stack frame.
663     // Push arguments
664     // Save callee-save registers.
665     // Start new stack frame.
666     // Store link register in existing stack-cell.
667     // Order here should correspond to order of offset constants in header file.
668     // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
669     // or dont save.
670     RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
671         s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
672     RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
673 
674     argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
675 
676     __ MultiPush(argument_registers | registers_to_retain | ra.bit());
677     // Set frame pointer in space for it if this is not a direct call
678     // from generated code.
679     // TODO(plind): this 8 is the # of argument regs, should have definition.
680     __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
681     __ mov(a0, zero_reg);
682     __ push(a0);  // Make room for success counter and initialize it to 0.
683     __ push(a0);  // Make room for "string start - 1" constant.
684 
685     // Check if we have space on the stack for registers.
686     Label stack_limit_hit;
687     Label stack_ok;
688 
689     ExternalReference stack_limit =
690         ExternalReference::address_of_stack_limit(masm_->isolate());
691     __ li(a0, Operand(stack_limit));
692     __ ld(a0, MemOperand(a0));
693     __ Dsubu(a0, sp, a0);
694     // Handle it if the stack pointer is already below the stack limit.
695     __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
696     // Check if there is room for the variable number of registers above
697     // the stack limit.
698     __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
699     // Exit with OutOfMemory exception. There is not enough space on the stack
700     // for our working registers.
701     __ li(v0, Operand(EXCEPTION));
702     __ jmp(&return_v0);
703 
704     __ bind(&stack_limit_hit);
705     CallCheckStackGuardState(a0);
706     // If returned value is non-zero, we exit with the returned value as result.
707     __ Branch(&return_v0, ne, v0, Operand(zero_reg));
708 
709     __ bind(&stack_ok);
710     // Allocate space on stack for registers.
711     __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
712     // Load string end.
713     __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
714     // Load input start.
715     __ ld(a0, MemOperand(frame_pointer(), kInputStart));
716     // Find negative length (offset of start relative to end).
717     __ Dsubu(current_input_offset(), a0, end_of_input_address());
718     // Set a0 to address of char before start of the input string
719     // (effectively string position -1).
720     __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
721     __ Dsubu(a0, current_input_offset(), Operand(char_size()));
722     __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
723     __ Dsubu(a0, a0, t1);
724     // Store this value in a local variable, for use when clearing
725     // position registers.
726     __ sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
727 
728     // Initialize code pointer register
729     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
730 
731     Label load_char_start_regexp, start_regexp;
732     // Load newline if index is at start, previous character otherwise.
733     __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
734     __ li(current_character(), Operand('\n'));
735     __ jmp(&start_regexp);
736 
737     // Global regexp restarts matching here.
738     __ bind(&load_char_start_regexp);
739     // Load previous char as initial value of current character register.
740     LoadCurrentCharacterUnchecked(-1, 1);
741     __ bind(&start_regexp);
742 
743     // Initialize on-stack registers.
744     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
745       // Fill saved registers with initial value = start offset - 1.
746       if (num_saved_registers_ > 8) {
747         // Address of register 0.
748         __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
749         __ li(a2, Operand(num_saved_registers_));
750         Label init_loop;
751         __ bind(&init_loop);
752         __ sd(a0, MemOperand(a1));
753         __ Daddu(a1, a1, Operand(-kPointerSize));
754         __ Dsubu(a2, a2, Operand(1));
755         __ Branch(&init_loop, ne, a2, Operand(zero_reg));
756       } else {
757         for (int i = 0; i < num_saved_registers_; i++) {
758           __ sd(a0, register_location(i));
759         }
760       }
761     }
762 
763     // Initialize backtrack stack pointer.
764     __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
765 
766     __ jmp(&start_label_);
767 
768 
769     // Exit code:
770     if (success_label_.is_linked()) {
771       // Save captures when successful.
772       __ bind(&success_label_);
773       if (num_saved_registers_ > 0) {
774         // Copy captures to output.
775         __ ld(a1, MemOperand(frame_pointer(), kInputStart));
776         __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
777         __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
778         __ Dsubu(a1, end_of_input_address(), a1);
779         // a1 is length of input in bytes.
780         if (mode_ == UC16) {
781           __ dsrl(a1, a1, 1);
782         }
783         // a1 is length of input in characters.
784         __ Daddu(a1, a1, Operand(a2));
785         // a1 is length of string in characters.
786 
787         DCHECK_EQ(0, num_saved_registers_ % 2);
788         // Always an even number of capture registers. This allows us to
789         // unroll the loop once to add an operation between a load of a register
790         // and the following use of that register.
791         for (int i = 0; i < num_saved_registers_; i += 2) {
792           __ ld(a2, register_location(i));
793           __ ld(a3, register_location(i + 1));
794           if (i == 0 && global_with_zero_length_check()) {
795             // Keep capture start in a4 for the zero-length check later.
796             __ mov(t3, a2);
797           }
798           if (mode_ == UC16) {
799             __ dsra(a2, a2, 1);
800             __ Daddu(a2, a2, a1);
801             __ dsra(a3, a3, 1);
802             __ Daddu(a3, a3, a1);
803           } else {
804             __ Daddu(a2, a1, Operand(a2));
805             __ Daddu(a3, a1, Operand(a3));
806           }
807           // V8 expects the output to be an int32_t array.
808           __ sw(a2, MemOperand(a0));
809           __ Daddu(a0, a0, kIntSize);
810           __ sw(a3, MemOperand(a0));
811           __ Daddu(a0, a0, kIntSize);
812         }
813       }
814 
815       if (global()) {
816         // Restart matching if the regular expression is flagged as global.
817         __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
818         __ ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
819         __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
820         // Increment success counter.
821         __ Daddu(a0, a0, 1);
822         __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
823         // Capture results have been stored, so the number of remaining global
824         // output registers is reduced by the number of stored captures.
825         __ Dsubu(a1, a1, num_saved_registers_);
826         // Check whether we have enough room for another set of capture results.
827         __ mov(v0, a0);
828         __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
829 
830         __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
831         // Advance the location for output.
832         __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
833         __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
834 
835         // Prepare a0 to initialize registers with its value in the next run.
836         __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
837 
838         if (global_with_zero_length_check()) {
839           // Special case for zero-length matches.
840           // t3: capture start index
841           // Not a zero-length match, restart.
842           __ Branch(
843               &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
844           // Offset from the end is zero if we already reached the end.
845           __ Branch(&exit_label_, eq, current_input_offset(),
846                     Operand(zero_reg));
847           // Advance current position after a zero-length match.
848           Label advance;
849           __ bind(&advance);
850           __ Daddu(current_input_offset(),
851                   current_input_offset(),
852                   Operand((mode_ == UC16) ? 2 : 1));
853           if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
854         }
855 
856         __ Branch(&load_char_start_regexp);
857       } else {
858         __ li(v0, Operand(SUCCESS));
859       }
860     }
861     // Exit and return v0.
862     __ bind(&exit_label_);
863     if (global()) {
864       __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
865     }
866 
867     __ bind(&return_v0);
868     // Skip sp past regexp registers and local variables..
869     __ mov(sp, frame_pointer());
870     // Restore registers s0..s7 and return (restoring ra to pc).
871     __ MultiPop(registers_to_retain | ra.bit());
872     __ Ret();
873 
874     // Backtrack code (branch target for conditional backtracks).
875     if (backtrack_label_.is_linked()) {
876       __ bind(&backtrack_label_);
877       Backtrack();
878     }
879 
880     Label exit_with_exception;
881 
882     // Preempt-code.
883     if (check_preempt_label_.is_linked()) {
884       SafeCallTarget(&check_preempt_label_);
885       // Put regexp engine registers on stack.
886       RegList regexp_registers_to_retain = current_input_offset().bit() |
887           current_character().bit() | backtrack_stackpointer().bit();
888       __ MultiPush(regexp_registers_to_retain);
889       CallCheckStackGuardState(a0);
890       __ MultiPop(regexp_registers_to_retain);
891       // If returning non-zero, we should end execution with the given
892       // result as return value.
893       __ Branch(&return_v0, ne, v0, Operand(zero_reg));
894 
895       // String might have moved: Reload end of string from frame.
896       __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
897       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
898       SafeReturn();
899     }
900 
901     // Backtrack stack overflow code.
902     if (stack_overflow_label_.is_linked()) {
903       SafeCallTarget(&stack_overflow_label_);
904       // Reached if the backtrack-stack limit has been hit.
905       // Put regexp engine registers on stack first.
906       RegList regexp_registers = current_input_offset().bit() |
907           current_character().bit();
908       __ MultiPush(regexp_registers);
909       Label grow_failed;
910       // Call GrowStack(backtrack_stackpointer(), &stack_base)
911       static const int num_arguments = 3;
912       __ PrepareCallCFunction(num_arguments, a0);
913       __ mov(a0, backtrack_stackpointer());
914       __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
915       __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
916       ExternalReference grow_stack =
917           ExternalReference::re_grow_stack(masm_->isolate());
918       __ CallCFunction(grow_stack, num_arguments);
919       // Restore regexp registers.
920       __ MultiPop(regexp_registers);
921       // If return NULL, we have failed to grow the stack, and
922       // must exit with a stack-overflow exception.
923       __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
924       // Otherwise use return value as new stack pointer.
925       __ mov(backtrack_stackpointer(), v0);
926       // Restore saved registers and continue.
927       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
928       __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
929       SafeReturn();
930     }
931 
932     if (exit_with_exception.is_linked()) {
933       // If any of the code above needed to exit with an exception.
934       __ bind(&exit_with_exception);
935       // Exit with Result EXCEPTION(-1) to signal thrown exception.
936       __ li(v0, Operand(EXCEPTION));
937       __ jmp(&return_v0);
938     }
939   }
940 
941   CodeDesc code_desc;
942   masm_->GetCode(&code_desc);
943   Handle<Code> code = isolate()->factory()->NewCode(
944       code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
945   LOG(masm_->isolate(),
946       RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
947   return Handle<HeapObject>::cast(code);
948 }
949 
950 
GoTo(Label * to)951 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
952   if (to == NULL) {
953     Backtrack();
954     return;
955   }
956   __ jmp(to);
957   return;
958 }
959 
960 
IfRegisterGE(int reg,int comparand,Label * if_ge)961 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
962                                             int comparand,
963                                             Label* if_ge) {
964   __ ld(a0, register_location(reg));
965     BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
966 }
967 
968 
IfRegisterLT(int reg,int comparand,Label * if_lt)969 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
970                                             int comparand,
971                                             Label* if_lt) {
972   __ ld(a0, register_location(reg));
973   BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
974 }
975 
976 
IfRegisterEqPos(int reg,Label * if_eq)977 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
978                                                Label* if_eq) {
979   __ ld(a0, register_location(reg));
980   BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
981 }
982 
983 
984 RegExpMacroAssembler::IrregexpImplementation
Implementation()985     RegExpMacroAssemblerMIPS::Implementation() {
986   return kMIPSImplementation;
987 }
988 
989 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)990 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
991                                                     Label* on_end_of_input,
992                                                     bool check_bounds,
993                                                     int characters) {
994   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
995   if (check_bounds) {
996     if (cp_offset >= 0) {
997       CheckPosition(cp_offset + characters - 1, on_end_of_input);
998     } else {
999       CheckPosition(cp_offset, on_end_of_input);
1000     }
1001   }
1002   LoadCurrentCharacterUnchecked(cp_offset, characters);
1003 }
1004 
1005 
PopCurrentPosition()1006 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
1007   Pop(current_input_offset());
1008 }
1009 
1010 
PopRegister(int register_index)1011 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
1012   Pop(a0);
1013   __ sd(a0, register_location(register_index));
1014 }
1015 
1016 
PushBacktrack(Label * label)1017 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
1018   if (label->is_bound()) {
1019     int target = label->pos();
1020     __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
1021   } else {
1022     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
1023     Label after_constant;
1024     __ Branch(&after_constant);
1025     int offset = masm_->pc_offset();
1026     int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
1027     __ emit(0);
1028     masm_->label_at_put(label, offset);
1029     __ bind(&after_constant);
1030     if (is_int16(cp_offset)) {
1031       __ lwu(a0, MemOperand(code_pointer(), cp_offset));
1032     } else {
1033       __ Daddu(a0, code_pointer(), cp_offset);
1034       __ lwu(a0, MemOperand(a0, 0));
1035     }
1036   }
1037   Push(a0);
1038   CheckStackLimit();
1039 }
1040 
1041 
PushCurrentPosition()1042 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1043   Push(current_input_offset());
1044 }
1045 
1046 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1047 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1048                                             StackCheckFlag check_stack_limit) {
1049   __ ld(a0, register_location(register_index));
1050   Push(a0);
1051   if (check_stack_limit) CheckStackLimit();
1052 }
1053 
1054 
ReadCurrentPositionFromRegister(int reg)1055 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1056   __ ld(current_input_offset(), register_location(reg));
1057 }
1058 
1059 
ReadStackPointerFromRegister(int reg)1060 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1061   __ ld(backtrack_stackpointer(), register_location(reg));
1062   __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
1063   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1064 }
1065 
1066 
SetCurrentPositionFromEnd(int by)1067 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1068   Label after_position;
1069   __ Branch(&after_position,
1070             ge,
1071             current_input_offset(),
1072             Operand(-by * char_size()));
1073   __ li(current_input_offset(), -by * char_size());
1074   // On RegExp code entry (where this operation is used), the character before
1075   // the current position is expected to be already loaded.
1076   // We have advanced the position, so it's safe to read backwards.
1077   LoadCurrentCharacterUnchecked(-1, 1);
1078   __ bind(&after_position);
1079 }
1080 
1081 
SetRegister(int register_index,int to)1082 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1083   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1084   __ li(a0, Operand(to));
1085   __ sd(a0, register_location(register_index));
1086 }
1087 
1088 
Succeed()1089 bool RegExpMacroAssemblerMIPS::Succeed() {
1090   __ jmp(&success_label_);
1091   return global();
1092 }
1093 
1094 
WriteCurrentPositionToRegister(int reg,int cp_offset)1095 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1096                                                               int cp_offset) {
1097   if (cp_offset == 0) {
1098     __ sd(current_input_offset(), register_location(reg));
1099   } else {
1100     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1101     __ sd(a0, register_location(reg));
1102   }
1103 }
1104 
1105 
ClearRegisters(int reg_from,int reg_to)1106 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1107   DCHECK(reg_from <= reg_to);
1108   __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
1109   for (int reg = reg_from; reg <= reg_to; reg++) {
1110     __ sd(a0, register_location(reg));
1111   }
1112 }
1113 
1114 
WriteStackPointerToRegister(int reg)1115 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1116   __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
1117   __ Dsubu(a0, backtrack_stackpointer(), a1);
1118   __ sd(a0, register_location(reg));
1119 }
1120 
1121 
CanReadUnaligned()1122 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1123   return false;
1124 }
1125 
1126 
1127 // Private methods:
1128 
CallCheckStackGuardState(Register scratch)1129 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1130   int stack_alignment = base::OS::ActivationFrameAlignment();
1131 
1132   // Align the stack pointer and save the original sp value on the stack.
1133   __ mov(scratch, sp);
1134   __ Dsubu(sp, sp, Operand(kPointerSize));
1135   DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
1136   __ And(sp, sp, Operand(-stack_alignment));
1137   __ sd(scratch, MemOperand(sp));
1138 
1139   __ mov(a2, frame_pointer());
1140   // Code* of self.
1141   __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1142 
1143   // We need to make room for the return address on the stack.
1144   DCHECK(IsAligned(stack_alignment, kPointerSize));
1145   __ Dsubu(sp, sp, Operand(stack_alignment));
1146 
1147   // Stack pointer now points to cell where return address is to be written.
1148   // Arguments are in registers, meaning we teat the return address as
1149   // argument 5. Since DirectCEntryStub will handleallocating space for the C
1150   // argument slots, we don't need to care about that here. This is how the
1151   // stack will look (sp meaning the value of sp at this moment):
1152   // [sp + 3] - empty slot if needed for alignment.
1153   // [sp + 2] - saved sp.
1154   // [sp + 1] - second word reserved for return value.
1155   // [sp + 0] - first word reserved for return value.
1156 
1157   // a0 will point to the return address, placed by DirectCEntry.
1158   __ mov(a0, sp);
1159 
1160   ExternalReference stack_guard_check =
1161       ExternalReference::re_check_stack_guard_state(masm_->isolate());
1162   __ li(t9, Operand(stack_guard_check));
1163   DirectCEntryStub stub(isolate());
1164   stub.GenerateCall(masm_, t9);
1165 
1166   // DirectCEntryStub allocated space for the C argument slots so we have to
1167   // drop them with the return address from the stack with loading saved sp.
1168   // At this point stack must look:
1169   // [sp + 7] - empty slot if needed for alignment.
1170   // [sp + 6] - saved sp.
1171   // [sp + 5] - second word reserved for return value.
1172   // [sp + 4] - first word reserved for return value.
1173   // [sp + 3] - C argument slot.
1174   // [sp + 2] - C argument slot.
1175   // [sp + 1] - C argument slot.
1176   // [sp + 0] - C argument slot.
1177   __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1178 
1179   __ li(code_pointer(), Operand(masm_->CodeObject()));
1180 }
1181 
1182 
1183 // Helper function for reading a value out of a stack frame.
1184 template <typename T>
frame_entry(Address re_frame,int frame_offset)1185 static T& frame_entry(Address re_frame, int frame_offset) {
1186   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1187 }
1188 
1189 
1190 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1191 static T* frame_entry_address(Address re_frame, int frame_offset) {
1192   return reinterpret_cast<T*>(re_frame + frame_offset);
1193 }
1194 
1195 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1196 int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1197                                                        Code* re_code,
1198                                                        Address re_frame) {
1199   return NativeRegExpMacroAssembler::CheckStackGuardState(
1200       frame_entry<Isolate*>(re_frame, kIsolate),
1201       static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
1202       frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code,
1203       frame_entry_address<String*>(re_frame, kInputString),
1204       frame_entry_address<const byte*>(re_frame, kInputStart),
1205       frame_entry_address<const byte*>(re_frame, kInputEnd));
1206 }
1207 
1208 
register_location(int register_index)1209 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1210   DCHECK(register_index < (1<<30));
1211   if (num_registers_ <= register_index) {
1212     num_registers_ = register_index + 1;
1213   }
1214   return MemOperand(frame_pointer(),
1215                     kRegisterZero - register_index * kPointerSize);
1216 }
1217 
1218 
CheckPosition(int cp_offset,Label * on_outside_input)1219 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1220                                              Label* on_outside_input) {
1221   if (cp_offset >= 0) {
1222     BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
1223                       Operand(-cp_offset * char_size()));
1224   } else {
1225     __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
1226     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1227     BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
1228   }
1229 }
1230 
1231 
BranchOrBacktrack(Label * to,Condition condition,Register rs,const Operand & rt)1232 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1233                                                  Condition condition,
1234                                                  Register rs,
1235                                                  const Operand& rt) {
1236   if (condition == al) {  // Unconditional.
1237     if (to == NULL) {
1238       Backtrack();
1239       return;
1240     }
1241     __ jmp(to);
1242     return;
1243   }
1244   if (to == NULL) {
1245     __ Branch(&backtrack_label_, condition, rs, rt);
1246     return;
1247   }
1248   __ Branch(to, condition, rs, rt);
1249 }
1250 
1251 
SafeCall(Label * to,Condition cond,Register rs,const Operand & rt)1252 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1253                                         Condition cond,
1254                                         Register rs,
1255                                         const Operand& rt) {
1256   __ BranchAndLink(to, cond, rs, rt);
1257 }
1258 
1259 
SafeReturn()1260 void RegExpMacroAssemblerMIPS::SafeReturn() {
1261   __ pop(ra);
1262   __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1263   __ Jump(t1);
1264 }
1265 
1266 
SafeCallTarget(Label * name)1267 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1268   __ bind(name);
1269   __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1270   __ push(ra);
1271 }
1272 
1273 
Push(Register source)1274 void RegExpMacroAssemblerMIPS::Push(Register source) {
1275   DCHECK(!source.is(backtrack_stackpointer()));
1276   __ Daddu(backtrack_stackpointer(),
1277           backtrack_stackpointer(),
1278           Operand(-kIntSize));
1279   __ sw(source, MemOperand(backtrack_stackpointer()));
1280 }
1281 
1282 
Pop(Register target)1283 void RegExpMacroAssemblerMIPS::Pop(Register target) {
1284   DCHECK(!target.is(backtrack_stackpointer()));
1285   __ lw(target, MemOperand(backtrack_stackpointer()));
1286   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1287 }
1288 
1289 
CheckPreemption()1290 void RegExpMacroAssemblerMIPS::CheckPreemption() {
1291   // Check for preemption.
1292   ExternalReference stack_limit =
1293       ExternalReference::address_of_stack_limit(masm_->isolate());
1294   __ li(a0, Operand(stack_limit));
1295   __ ld(a0, MemOperand(a0));
1296   SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1297 }
1298 
1299 
CheckStackLimit()1300 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1301   ExternalReference stack_limit =
1302       ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1303 
1304   __ li(a0, Operand(stack_limit));
1305   __ ld(a0, MemOperand(a0));
1306   SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1307 }
1308 
1309 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1310 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1311                                                              int characters) {
1312   Register offset = current_input_offset();
1313   if (cp_offset != 0) {
1314     // t3 is not being used to store the capture start index at this point.
1315     __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1316     offset = t3;
1317   }
1318   // We assume that we cannot do unaligned loads on MIPS, so this function
1319   // must only be used to load a single character at a time.
1320   DCHECK(characters == 1);
1321   __ Daddu(t1, end_of_input_address(), Operand(offset));
1322   if (mode_ == LATIN1) {
1323     __ lbu(current_character(), MemOperand(t1, 0));
1324   } else {
1325     DCHECK(mode_ == UC16);
1326     __ lhu(current_character(), MemOperand(t1, 0));
1327   }
1328 }
1329 
1330 #undef __
1331 
1332 #endif  // V8_INTERPRETED_REGEXP
1333 
1334 }  // namespace internal
1335 }  // namespace v8
1336 
1337 #endif  // V8_TARGET_ARCH_MIPS64
1338