• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright 2014 the V8 project authors. All rights reserved.
2  // Use of this source code is governed by a BSD-style license that can be
3  // found in the LICENSE file.
4  
5  #ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
6  #define V8_S390_MACRO_ASSEMBLER_S390_H_
7  
8  #include "src/assembler.h"
9  #include "src/bailout-reason.h"
10  #include "src/frames.h"
11  #include "src/globals.h"
12  
13  namespace v8 {
14  namespace internal {
15  
16  // Give alias names to registers for calling conventions.
17  const Register kReturnRegister0 = {Register::kCode_r2};
18  const Register kReturnRegister1 = {Register::kCode_r3};
19  const Register kReturnRegister2 = {Register::kCode_r4};
20  const Register kJSFunctionRegister = {Register::kCode_r3};
21  const Register kContextRegister = {Register::kCode_r13};
22  const Register kAllocateSizeRegister = {Register::kCode_r3};
23  const Register kInterpreterAccumulatorRegister = {Register::kCode_r2};
24  const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r6};
25  const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r7};
26  const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
27  const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2};
28  const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5};
29  const Register kRuntimeCallFunctionRegister = {Register::kCode_r3};
30  const Register kRuntimeCallArgCountRegister = {Register::kCode_r2};
31  
32  // ----------------------------------------------------------------------------
33  // Static helper functions
34  
35  // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)36  inline MemOperand FieldMemOperand(Register object, int offset) {
37    return MemOperand(object, offset - kHeapObjectTag);
38  }
39  
40  // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,Register index,int offset)41  inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
42    return MemOperand(object, index, offset - kHeapObjectTag);
43  }
44  
45  // Generate a MemOperand for loading a field from Root register
RootMemOperand(Heap::RootListIndex index)46  inline MemOperand RootMemOperand(Heap::RootListIndex index) {
47    return MemOperand(kRootRegister, index << kPointerSizeLog2);
48  }
49  
50  // Flags used for AllocateHeapNumber
51  enum TaggingMode {
52    // Tag the result.
53    TAG_RESULT,
54    // Don't tag
55    DONT_TAG_RESULT
56  };
57  
58  enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
59  enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
60  enum PointersToHereCheck {
61    kPointersToHereMaybeInteresting,
62    kPointersToHereAreAlwaysInteresting
63  };
64  enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
65  
66  Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
67                                     Register reg3 = no_reg,
68                                     Register reg4 = no_reg,
69                                     Register reg5 = no_reg,
70                                     Register reg6 = no_reg);
71  
72  #ifdef DEBUG
73  bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
74                  Register reg4 = no_reg, Register reg5 = no_reg,
75                  Register reg6 = no_reg, Register reg7 = no_reg,
76                  Register reg8 = no_reg, Register reg9 = no_reg,
77                  Register reg10 = no_reg);
78  #endif
79  
80  // These exist to provide portability between 32 and 64bit
81  #if V8_TARGET_ARCH_S390X
82  #define Div divd
83  
84  // The length of the arithmetic operation is the length
85  // of the register.
86  
87  // Length:
88  // H = halfword
89  // W = word
90  
91  // arithmetics and bitwise
92  #define AddMI agsi
93  #define AddRR agr
94  #define SubRR sgr
95  #define AndRR ngr
96  #define OrRR ogr
97  #define XorRR xgr
98  #define LoadComplementRR lcgr
99  #define LoadNegativeRR lngr
100  
101  // Distinct Operands
102  #define AddP_RRR agrk
103  #define AddPImm_RRI aghik
104  #define AddLogicalP_RRR algrk
105  #define SubP_RRR sgrk
106  #define SubLogicalP_RRR slgrk
107  #define AndP_RRR ngrk
108  #define OrP_RRR ogrk
109  #define XorP_RRR xgrk
110  
111  // Load / Store
112  #define LoadRR lgr
113  #define LoadAndTestRR ltgr
114  #define LoadImmP lghi
115  
116  // Compare
117  #define CmpPH cghi
118  #define CmpLogicalPW clgfi
119  
120  // Shifts
121  #define ShiftLeftP sllg
122  #define ShiftRightP srlg
123  #define ShiftLeftArithP slag
124  #define ShiftRightArithP srag
125  #else
126  
127  // arithmetics and bitwise
128  // Reg2Reg
129  #define AddMI asi
130  #define AddRR ar
131  #define SubRR sr
132  #define AndRR nr
133  #define OrRR or_z
134  #define XorRR xr
135  #define LoadComplementRR lcr
136  #define LoadNegativeRR lnr
137  
138  // Distinct Operands
139  #define AddP_RRR ark
140  #define AddPImm_RRI ahik
141  #define AddLogicalP_RRR alrk
142  #define SubP_RRR srk
143  #define SubLogicalP_RRR slrk
144  #define AndP_RRR nrk
145  #define OrP_RRR ork
146  #define XorP_RRR xrk
147  
148  // Load / Store
149  #define LoadRR lr
150  #define LoadAndTestRR ltr
151  #define LoadImmP lhi
152  
153  // Compare
154  #define CmpPH chi
155  #define CmpLogicalPW clfi
156  
157  // Shifts
158  #define ShiftLeftP ShiftLeft
159  #define ShiftRightP ShiftRight
160  #define ShiftLeftArithP ShiftLeftArith
161  #define ShiftRightArithP ShiftRightArith
162  
163  #endif
164  
165  // MacroAssembler implements a collection of frequently used macros.
166  class MacroAssembler : public Assembler {
167   public:
168    MacroAssembler(Isolate* isolate, void* buffer, int size,
169                   CodeObjectRequired create_code_object);
170  
171    // Returns the size of a call in instructions.
172    static int CallSize(Register target);
173    int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
174    static int CallSizeNotPredictableCodeSize(Address target,
175                                              RelocInfo::Mode rmode,
176                                              Condition cond = al);
177  
178    // Jump, Call, and Ret pseudo instructions implementing inter-working.
179    void Jump(Register target);
180    void JumpToJSEntry(Register target);
181    void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
182              CRegister cr = cr7);
183    void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
184    void Call(Register target);
185    void CallJSEntry(Register target);
186    void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
187    int CallSize(Handle<Code> code,
188                 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
189                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
190                 Condition cond = al);
191    void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
192              TypeFeedbackId ast_id = TypeFeedbackId::None(),
193              Condition cond = al);
Ret()194    void Ret() { b(r14); }
Ret(Condition cond)195    void Ret(Condition cond) { b(cond, r14); }
196  
197    // Emit code that loads |parameter_index|'th parameter from the stack to
198    // the register according to the CallInterfaceDescriptor definition.
199    // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
200    // below the caller's sp.
201    template <class Descriptor>
202    void LoadParameterFromStack(
203        Register reg, typename Descriptor::ParameterIndices parameter_index,
204        int sp_to_ra_offset_in_words = 0) {
205      DCHECK(Descriptor::kPassLastArgsOnStack);
206      UNIMPLEMENTED();
207    }
208  
209    // Emit code to discard a non-negative number of pointer-sized elements
210    // from the stack, clobbering only the sp register.
211    void Drop(int count);
212    void Drop(Register count, Register scratch = r0);
213  
Ret(int drop)214    void Ret(int drop) {
215      Drop(drop);
216      Ret();
217    }
218  
219    void Call(Label* target);
220  
221    // Register move. May do nothing if the registers are identical.
Move(Register dst,Smi * smi)222    void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
223    void Move(Register dst, Handle<Object> value);
224    void Move(Register dst, Register src, Condition cond = al);
225    void Move(DoubleRegister dst, DoubleRegister src);
226  
227    void MultiPush(RegList regs, Register location = sp);
228    void MultiPop(RegList regs, Register location = sp);
229  
230    void MultiPushDoubles(RegList dregs, Register location = sp);
231    void MultiPopDoubles(RegList dregs, Register location = sp);
232  
233    // Load an object from the root table.
234    void LoadRoot(Register destination, Heap::RootListIndex index,
235                  Condition cond = al);
236    // Store an object to the root table.
237    void StoreRoot(Register source, Heap::RootListIndex index,
238                   Condition cond = al);
239  
240    //--------------------------------------------------------------------------
241    // S390 Macro Assemblers for Instructions
242    //--------------------------------------------------------------------------
243  
244    // Arithmetic Operations
245  
246    // Add (Register - Immediate)
247    void Add32(Register dst, const Operand& imm);
248    void Add32_RI(Register dst, const Operand& imm);
249    void AddP(Register dst, const Operand& imm);
250    void Add32(Register dst, Register src, const Operand& imm);
251    void Add32_RRI(Register dst, Register src, const Operand& imm);
252    void AddP(Register dst, Register src, const Operand& imm);
253  
254    // Add (Register - Register)
255    void Add32(Register dst, Register src);
256    void AddP(Register dst, Register src);
257    void AddP_ExtendSrc(Register dst, Register src);
258    void Add32(Register dst, Register src1, Register src2);
259    void AddP(Register dst, Register src1, Register src2);
260    void AddP_ExtendSrc(Register dst, Register src1, Register src2);
261  
262    // Add (Register - Mem)
263    void Add32(Register dst, const MemOperand& opnd);
264    void AddP(Register dst, const MemOperand& opnd);
265    void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
266  
267    // Add (Mem - Immediate)
268    void Add32(const MemOperand& opnd, const Operand& imm);
269    void AddP(const MemOperand& opnd, const Operand& imm);
270  
271    // Add Logical (Register - Register)
272    void AddLogical32(Register dst, Register src1, Register src2);
273  
274    // Add Logical With Carry (Register - Register)
275    void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
276  
277    // Add Logical (Register - Immediate)
278    void AddLogical(Register dst, const Operand& imm);
279    void AddLogicalP(Register dst, const Operand& imm);
280  
281    // Add Logical (Register - Mem)
282    void AddLogical(Register dst, const MemOperand& opnd);
283    void AddLogicalP(Register dst, const MemOperand& opnd);
284  
285    // Subtract (Register - Immediate)
286    void Sub32(Register dst, const Operand& imm);
Sub32_RI(Register dst,const Operand & imm)287    void Sub32_RI(Register dst, const Operand& imm) { Sub32(dst, imm); }
288    void SubP(Register dst, const Operand& imm);
289    void Sub32(Register dst, Register src, const Operand& imm);
Sub32_RRI(Register dst,Register src,const Operand & imm)290    void Sub32_RRI(Register dst, Register src, const Operand& imm) {
291      Sub32(dst, src, imm);
292    }
293    void SubP(Register dst, Register src, const Operand& imm);
294  
295    // Subtract (Register - Register)
296    void Sub32(Register dst, Register src);
297    void SubP(Register dst, Register src);
298    void SubP_ExtendSrc(Register dst, Register src);
299    void Sub32(Register dst, Register src1, Register src2);
300    void SubP(Register dst, Register src1, Register src2);
301    void SubP_ExtendSrc(Register dst, Register src1, Register src2);
302  
303    // Subtract (Register - Mem)
304    void Sub32(Register dst, const MemOperand& opnd);
305    void SubP(Register dst, const MemOperand& opnd);
306    void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
307  
308    // Subtract Logical (Register - Mem)
309    void SubLogical(Register dst, const MemOperand& opnd);
310    void SubLogicalP(Register dst, const MemOperand& opnd);
311    void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
312    // Subtract Logical 32-bit
313    void SubLogical32(Register dst, Register src1, Register src2);
314    // Subtract Logical With Borrow 32-bit
315    void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
316  
317    // Multiply
318    void MulP(Register dst, const Operand& opnd);
319    void MulP(Register dst, Register src);
320    void MulP(Register dst, const MemOperand& opnd);
321    void Mul(Register dst, Register src1, Register src2);
322    void Mul32(Register dst, const MemOperand& src1);
323    void Mul32(Register dst, Register src1);
324    void Mul32(Register dst, const Operand& src1);
325    void MulHigh32(Register dst, Register src1, const MemOperand& src2);
326    void MulHigh32(Register dst, Register src1, Register src2);
327    void MulHigh32(Register dst, Register src1, const Operand& src2);
328    void MulHighU32(Register dst, Register src1, const MemOperand& src2);
329    void MulHighU32(Register dst, Register src1, Register src2);
330    void MulHighU32(Register dst, Register src1, const Operand& src2);
331    void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
332                                      const MemOperand& src2);
333    void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, Register src2);
334    void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
335                                      const Operand& src2);
336    void Mul64(Register dst, const MemOperand& src1);
337    void Mul64(Register dst, Register src1);
338    void Mul64(Register dst, const Operand& src1);
339    void MulPWithCondition(Register dst, Register src1, Register src2);
340  
341    // Divide
342    void DivP(Register dividend, Register divider);
343    void Div32(Register dst, Register src1, const MemOperand& src2);
344    void Div32(Register dst, Register src1, Register src2);
345    void Div32(Register dst, Register src1, const Operand& src2);
346    void DivU32(Register dst, Register src1, const MemOperand& src2);
347    void DivU32(Register dst, Register src1, Register src2);
348    void DivU32(Register dst, Register src1, const Operand& src2);
349  
350    // Mod
351    void Mod32(Register dst, Register src1, const MemOperand& src2);
352    void Mod32(Register dst, Register src1, Register src2);
353    void Mod32(Register dst, Register src1, const Operand& src2);
354    void ModU32(Register dst, Register src1, const MemOperand& src2);
355    void ModU32(Register dst, Register src1, Register src2);
356    void ModU32(Register dst, Register src1, const Operand& src2);
357  
358    // Square root
359    void Sqrt(DoubleRegister result, DoubleRegister input);
360    void Sqrt(DoubleRegister result, const MemOperand& input);
361  
362    // Compare
363    void Cmp32(Register src1, Register src2);
364    void CmpP(Register src1, Register src2);
365    void Cmp32(Register dst, const Operand& opnd);
366    void CmpP(Register dst, const Operand& opnd);
367    void Cmp32(Register dst, const MemOperand& opnd);
368    void CmpP(Register dst, const MemOperand& opnd);
369  
370    // Compare Logical
371    void CmpLogical32(Register src1, Register src2);
372    void CmpLogicalP(Register src1, Register src2);
373    void CmpLogical32(Register src1, const Operand& opnd);
374    void CmpLogicalP(Register src1, const Operand& opnd);
375    void CmpLogical32(Register dst, const MemOperand& opnd);
376    void CmpLogicalP(Register dst, const MemOperand& opnd);
377  
378    // Compare Logical Byte (CLI/CLIY)
379    void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
380  
381    // Load 32bit
382    void Load(Register dst, const MemOperand& opnd);
383    void Load(Register dst, const Operand& opnd);
384    void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
385    void LoadW(Register dst, Register src);
386    void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
387    void LoadlW(Register dst, Register src);
388    void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd);
389    void LoadLogicalHalfWordP(Register dst, Register src);
390    void LoadB(Register dst, const MemOperand& opnd);
391    void LoadB(Register dst, Register src);
392    void LoadlB(Register dst, const MemOperand& opnd);
393    void LoadlB(Register dst, Register src);
394  
395    void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd);
396    void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd);
397  
398    // Load And Test
399    void LoadAndTest32(Register dst, Register src);
400    void LoadAndTestP_ExtendSrc(Register dst, Register src);
401    void LoadAndTestP(Register dst, Register src);
402  
403    void LoadAndTest32(Register dst, const MemOperand& opnd);
404    void LoadAndTestP(Register dst, const MemOperand& opnd);
405  
406    // Load Floating Point
407    void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
408    void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
409    void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
410  
411    // Load On Condition
412    void LoadOnConditionP(Condition cond, Register dst, Register src);
413  
414    void LoadPositiveP(Register result, Register input);
415    void LoadPositive32(Register result, Register input);
416  
417    // Store Floating Point
418    void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
419    void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
420    void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
421                              DoubleRegister scratch);
422  
423    void Branch(Condition c, const Operand& opnd);
424    void BranchOnCount(Register r1, Label* l);
425  
426    // Shifts
427    void ShiftLeft(Register dst, Register src, Register val);
428    void ShiftLeft(Register dst, Register src, const Operand& val);
429    void ShiftRight(Register dst, Register src, Register val);
430    void ShiftRight(Register dst, Register src, const Operand& val);
431    void ShiftLeftArith(Register dst, Register src, Register shift);
432    void ShiftLeftArith(Register dst, Register src, const Operand& val);
433    void ShiftRightArith(Register dst, Register src, Register shift);
434    void ShiftRightArith(Register dst, Register src, const Operand& val);
435  
436    void ClearRightImm(Register dst, Register src, const Operand& val);
437  
438    // Bitwise operations
439    void And(Register dst, Register src);
440    void AndP(Register dst, Register src);
441    void And(Register dst, Register src1, Register src2);
442    void AndP(Register dst, Register src1, Register src2);
443    void And(Register dst, const MemOperand& opnd);
444    void AndP(Register dst, const MemOperand& opnd);
445    void And(Register dst, const Operand& opnd);
446    void AndP(Register dst, const Operand& opnd);
447    void And(Register dst, Register src, const Operand& opnd);
448    void AndP(Register dst, Register src, const Operand& opnd);
449    void Or(Register dst, Register src);
450    void OrP(Register dst, Register src);
451    void Or(Register dst, Register src1, Register src2);
452    void OrP(Register dst, Register src1, Register src2);
453    void Or(Register dst, const MemOperand& opnd);
454    void OrP(Register dst, const MemOperand& opnd);
455    void Or(Register dst, const Operand& opnd);
456    void OrP(Register dst, const Operand& opnd);
457    void Or(Register dst, Register src, const Operand& opnd);
458    void OrP(Register dst, Register src, const Operand& opnd);
459    void Xor(Register dst, Register src);
460    void XorP(Register dst, Register src);
461    void Xor(Register dst, Register src1, Register src2);
462    void XorP(Register dst, Register src1, Register src2);
463    void Xor(Register dst, const MemOperand& opnd);
464    void XorP(Register dst, const MemOperand& opnd);
465    void Xor(Register dst, const Operand& opnd);
466    void XorP(Register dst, const Operand& opnd);
467    void Xor(Register dst, Register src, const Operand& opnd);
468    void XorP(Register dst, Register src, const Operand& opnd);
469    void Popcnt32(Register dst, Register src);
470    void Not32(Register dst, Register src = no_reg);
471    void Not64(Register dst, Register src = no_reg);
472    void NotP(Register dst, Register src = no_reg);
473  
474  #ifdef V8_TARGET_ARCH_S390X
475    void Popcnt64(Register dst, Register src);
476  #endif
477  
478    void mov(Register dst, const Operand& src);
479  
CleanUInt32(Register x)480    void CleanUInt32(Register x) {
481  #ifdef V8_TARGET_ARCH_S390X
482      llgfr(x, x);
483  #endif
484    }
485  
486    // ---------------------------------------------------------------------------
487    // GC Support
488  
489    void IncrementalMarkingRecordWriteHelper(Register object, Register value,
490                                             Register address);
491  
492    enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
493  
494    // Record in the remembered set the fact that we have a pointer to new space
495    // at the address pointed to by the addr register.  Only works if addr is not
496    // in new space.
497    void RememberedSetHelper(Register object,  // Used for debug code.
498                             Register addr, Register scratch,
499                             SaveFPRegsMode save_fp,
500                             RememberedSetFinalAction and_then);
501  
502    void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
503                       Label* condition_met);
504  
505    // Check if object is in new space.  Jumps if the object is not in new space.
506    // The register scratch can be object itself, but scratch will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)507    void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
508      InNewSpace(object, scratch, eq, branch);
509    }
510  
511    // Check if object is in new space.  Jumps if the object is in new space.
512    // The register scratch can be object itself, but it will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)513    void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
514      InNewSpace(object, scratch, ne, branch);
515    }
516  
517    // Check if an object has a given incremental marking color.
518    void HasColor(Register object, Register scratch0, Register scratch1,
519                  Label* has_color, int first_bit, int second_bit);
520  
521    void JumpIfBlack(Register object, Register scratch0, Register scratch1,
522                     Label* on_black);
523  
524    // Checks the color of an object.  If the object is white we jump to the
525    // incremental marker.
526    void JumpIfWhite(Register value, Register scratch1, Register scratch2,
527                     Register scratch3, Label* value_is_white);
528  
529    // Notify the garbage collector that we wrote a pointer into an object.
530    // |object| is the object being stored into, |value| is the object being
531    // stored.  value and scratch registers are clobbered by the operation.
532    // The offset is the offset from the start of the object, not the offset from
533    // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
534    void RecordWriteField(
535        Register object, int offset, Register value, Register scratch,
536        LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
537        RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
538        SmiCheck smi_check = INLINE_SMI_CHECK,
539        PointersToHereCheck pointers_to_here_check_for_value =
540            kPointersToHereMaybeInteresting);
541  
542    // As above, but the offset has the tag presubtracted.  For use with
543    // MemOperand(reg, off).
544    inline void RecordWriteContextSlot(
545        Register context, int offset, Register value, Register scratch,
546        LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
547        RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
548        SmiCheck smi_check = INLINE_SMI_CHECK,
549        PointersToHereCheck pointers_to_here_check_for_value =
550            kPointersToHereMaybeInteresting) {
551      RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
552                       lr_status, save_fp, remembered_set_action, smi_check,
553                       pointers_to_here_check_for_value);
554    }
555  
556    // Notify the garbage collector that we wrote a code entry into a
557    // JSFunction. Only scratch is clobbered by the operation.
558    void RecordWriteCodeEntryField(Register js_function, Register code_entry,
559                                   Register scratch);
560  
561    void RecordWriteForMap(Register object, Register map, Register dst,
562                           LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
563  
564    // For a given |object| notify the garbage collector that the slot |address|
565    // has been written.  |value| is the object being stored. The value and
566    // address registers are clobbered by the operation.
567    void RecordWrite(
568        Register object, Register address, Register value,
569        LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
570        RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
571        SmiCheck smi_check = INLINE_SMI_CHECK,
572        PointersToHereCheck pointers_to_here_check_for_value =
573            kPointersToHereMaybeInteresting);
574  
push(Register src)575    void push(Register src) {
576      lay(sp, MemOperand(sp, -kPointerSize));
577      StoreP(src, MemOperand(sp));
578    }
579  
pop(Register dst)580    void pop(Register dst) {
581      LoadP(dst, MemOperand(sp));
582      la(sp, MemOperand(sp, kPointerSize));
583    }
584  
pop()585    void pop() { la(sp, MemOperand(sp, kPointerSize)); }
586  
Push(Register src)587    void Push(Register src) { push(src); }
588  
589    // Push a handle.
590    void Push(Handle<Object> handle);
Push(Smi * smi)591    void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
592  
593    // Push two registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)594    void Push(Register src1, Register src2) {
595      lay(sp, MemOperand(sp, -kPointerSize * 2));
596      StoreP(src1, MemOperand(sp, kPointerSize));
597      StoreP(src2, MemOperand(sp, 0));
598    }
599  
600    // Push three registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)601    void Push(Register src1, Register src2, Register src3) {
602      lay(sp, MemOperand(sp, -kPointerSize * 3));
603      StoreP(src1, MemOperand(sp, kPointerSize * 2));
604      StoreP(src2, MemOperand(sp, kPointerSize));
605      StoreP(src3, MemOperand(sp, 0));
606    }
607  
608    // Push four registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)609    void Push(Register src1, Register src2, Register src3, Register src4) {
610      lay(sp, MemOperand(sp, -kPointerSize * 4));
611      StoreP(src1, MemOperand(sp, kPointerSize * 3));
612      StoreP(src2, MemOperand(sp, kPointerSize * 2));
613      StoreP(src3, MemOperand(sp, kPointerSize));
614      StoreP(src4, MemOperand(sp, 0));
615    }
616  
617    // Push five registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)618    void Push(Register src1, Register src2, Register src3, Register src4,
619              Register src5) {
620      DCHECK(!src1.is(src2));
621      DCHECK(!src1.is(src3));
622      DCHECK(!src2.is(src3));
623      DCHECK(!src1.is(src4));
624      DCHECK(!src2.is(src4));
625      DCHECK(!src3.is(src4));
626      DCHECK(!src1.is(src5));
627      DCHECK(!src2.is(src5));
628      DCHECK(!src3.is(src5));
629      DCHECK(!src4.is(src5));
630  
631      lay(sp, MemOperand(sp, -kPointerSize * 5));
632      StoreP(src1, MemOperand(sp, kPointerSize * 4));
633      StoreP(src2, MemOperand(sp, kPointerSize * 3));
634      StoreP(src3, MemOperand(sp, kPointerSize * 2));
635      StoreP(src4, MemOperand(sp, kPointerSize));
636      StoreP(src5, MemOperand(sp, 0));
637    }
638  
Pop(Register dst)639    void Pop(Register dst) { pop(dst); }
640  
641    // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)642    void Pop(Register src1, Register src2) {
643      LoadP(src2, MemOperand(sp, 0));
644      LoadP(src1, MemOperand(sp, kPointerSize));
645      la(sp, MemOperand(sp, 2 * kPointerSize));
646    }
647  
648    // Pop three registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)649    void Pop(Register src1, Register src2, Register src3) {
650      LoadP(src3, MemOperand(sp, 0));
651      LoadP(src2, MemOperand(sp, kPointerSize));
652      LoadP(src1, MemOperand(sp, 2 * kPointerSize));
653      la(sp, MemOperand(sp, 3 * kPointerSize));
654    }
655  
656    // Pop four registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3,Register src4)657    void Pop(Register src1, Register src2, Register src3, Register src4) {
658      LoadP(src4, MemOperand(sp, 0));
659      LoadP(src3, MemOperand(sp, kPointerSize));
660      LoadP(src2, MemOperand(sp, 2 * kPointerSize));
661      LoadP(src1, MemOperand(sp, 3 * kPointerSize));
662      la(sp, MemOperand(sp, 4 * kPointerSize));
663    }
664  
665    // Pop five registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3,Register src4,Register src5)666    void Pop(Register src1, Register src2, Register src3, Register src4,
667             Register src5) {
668      LoadP(src5, MemOperand(sp, 0));
669      LoadP(src4, MemOperand(sp, kPointerSize));
670      LoadP(src3, MemOperand(sp, 2 * kPointerSize));
671      LoadP(src2, MemOperand(sp, 3 * kPointerSize));
672      LoadP(src1, MemOperand(sp, 4 * kPointerSize));
673      la(sp, MemOperand(sp, 5 * kPointerSize));
674    }
675  
676    // Push a fixed frame, consisting of lr, fp, constant pool.
677    void PushCommonFrame(Register marker_reg = no_reg);
678  
679    // Push a standard frame, consisting of lr, fp, constant pool,
680    // context and JS function
681    void PushStandardFrame(Register function_reg);
682  
683    void PopCommonFrame(Register marker_reg = no_reg);
684  
685    // Restore caller's frame pointer and return address prior to being
686    // overwritten by tail call stack preparation.
687    void RestoreFrameStateForTailCall();
688  
689    // Push and pop the registers that can hold pointers, as defined by the
690    // RegList constant kSafepointSavedRegisters.
691    void PushSafepointRegisters();
692    void PopSafepointRegisters();
693    // Store value in register src in the safepoint stack slot for
694    // register dst.
695    void StoreToSafepointRegisterSlot(Register src, Register dst);
696    // Load the value of the src register from its safepoint stack slot
697    // into register dst.
698    void LoadFromSafepointRegisterSlot(Register dst, Register src);
699  
700    // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
701    // from C.
702    // Does not handle errors.
703    void FlushICache(Register address, size_t size, Register scratch);
704  
705    // If the value is a NaN, canonicalize the value else, do nothing.
706    void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
CanonicalizeNaN(const DoubleRegister value)707    void CanonicalizeNaN(const DoubleRegister value) {
708      CanonicalizeNaN(value, value);
709    }
710  
711    // Converts the integer (untagged smi) in |src| to a double, storing
712    // the result to |dst|
713    void ConvertIntToDouble(Register src, DoubleRegister dst);
714  
715    // Converts the unsigned integer (untagged smi) in |src| to
716    // a double, storing the result to |dst|
717    void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
718  
719    // Converts the integer (untagged smi) in |src| to
720    // a float, storing the result in |dst|
721    void ConvertIntToFloat(Register src, DoubleRegister dst);
722  
723    // Converts the unsigned integer (untagged smi) in |src| to
724    // a float, storing the result in |dst|
725    void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
726  
727  #if V8_TARGET_ARCH_S390X
728    void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
729    void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
730    void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
731    void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
732  #endif
733  
734    void MovIntToFloat(DoubleRegister dst, Register src);
735    void MovFloatToInt(Register dst, DoubleRegister src);
736    void MovDoubleToInt64(Register dst, DoubleRegister src);
737    void MovInt64ToDouble(DoubleRegister dst, Register src);
738    // Converts the double_input to an integer.  Note that, upon return,
739    // the contents of double_dst will also hold the fixed point representation.
740    void ConvertFloat32ToInt64(const DoubleRegister double_input,
741  #if !V8_TARGET_ARCH_S390X
742                               const Register dst_hi,
743  #endif
744                               const Register dst,
745                               const DoubleRegister double_dst,
746                               FPRoundingMode rounding_mode = kRoundToZero);
747  
748    // Converts the double_input to an integer.  Note that, upon return,
749    // the contents of double_dst will also hold the fixed point representation.
750    void ConvertDoubleToInt64(const DoubleRegister double_input,
751  #if !V8_TARGET_ARCH_S390X
752                              const Register dst_hi,
753  #endif
754                              const Register dst, const DoubleRegister double_dst,
755                              FPRoundingMode rounding_mode = kRoundToZero);
756  
757    void ConvertFloat32ToInt32(const DoubleRegister double_input,
758                               const Register dst,
759                               const DoubleRegister double_dst,
760                               FPRoundingMode rounding_mode);
761    void ConvertFloat32ToUnsignedInt32(
762        const DoubleRegister double_input, const Register dst,
763        const DoubleRegister double_dst,
764        FPRoundingMode rounding_mode = kRoundToZero);
765  #if V8_TARGET_ARCH_S390X
766    // Converts the double_input to an unsigned integer.  Note that, upon return,
767    // the contents of double_dst will also hold the fixed point representation.
768    void ConvertDoubleToUnsignedInt64(
769        const DoubleRegister double_input, const Register dst,
770        const DoubleRegister double_dst,
771        FPRoundingMode rounding_mode = kRoundToZero);
772    void ConvertFloat32ToUnsignedInt64(
773        const DoubleRegister double_input, const Register dst,
774        const DoubleRegister double_dst,
775        FPRoundingMode rounding_mode = kRoundToZero);
776  #endif
777  
778  #if !V8_TARGET_ARCH_S390X
779    void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
780                       Register src_high, Register scratch, Register shift);
781    void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
782                       Register src_high, uint32_t shift);
783    void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
784                        Register src_high, Register scratch, Register shift);
785    void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
786                        Register src_high, uint32_t shift);
787    void ShiftRightArithPair(Register dst_low, Register dst_high,
788                             Register src_low, Register src_high,
789                             Register scratch, Register shift);
790    void ShiftRightArithPair(Register dst_low, Register dst_high,
791                             Register src_low, Register src_high, uint32_t shift);
792  #endif
793  
794    // Generates function and stub prologue code.
795    void StubPrologue(StackFrame::Type type, Register base = no_reg,
796                      int prologue_offset = 0);
797    void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
798  
799    // Enter exit frame.
800    // stack_space - extra stack space, used for parameters before call to C.
801    // At least one slot (for the return address) should be provided.
802    void EnterExitFrame(bool save_doubles, int stack_space = 1,
803                        StackFrame::Type frame_type = StackFrame::EXIT);
804  
805    // Leave the current exit frame. Expects the return value in r0.
806    // Expect the number of values, pushed prior to the exit frame, to
807    // remove in a register (or no_reg, if there is nothing to remove).
808    void LeaveExitFrame(bool save_doubles, Register argument_count,
809                        bool restore_context,
810                        bool argument_count_is_length = false);
811  
812    // Get the actual activation frame alignment for target environment.
813    static int ActivationFrameAlignment();
814  
815    void LoadContext(Register dst, int context_chain_length);
816  
817    // Load the global object from the current context.
LoadGlobalObject(Register dst)818    void LoadGlobalObject(Register dst) {
819      LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
820    }
821  
822    // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)823    void LoadGlobalProxy(Register dst) {
824      LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
825    }
826  
827    void LoadNativeContextSlot(int index, Register dst);
828  
829    // Load the initial map from the global function. The registers
830    // function and map can be the same, function is then overwritten.
831    void LoadGlobalFunctionInitialMap(Register function, Register map,
832                                      Register scratch);
833  
InitializeRootRegister()834    void InitializeRootRegister() {
835      ExternalReference roots_array_start =
836          ExternalReference::roots_array_start(isolate());
837      mov(kRootRegister, Operand(roots_array_start));
838    }
839  
840    // ----------------------------------------------------------------
841    // new S390 macro-assembler interfaces that are slightly higher level
842    // than assembler-s390 and may generate variable length sequences
843  
844    // load a literal signed int value <value> to GPR <dst>
845    void LoadIntLiteral(Register dst, int value);
846  
847    // load an SMI value <value> to GPR <dst>
848    void LoadSmiLiteral(Register dst, Smi* smi);
849  
850    // load a literal double value <value> to FPR <result>
851    void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
852    void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
853                           Register scratch);
854  
855    void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
856  
857    void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
858  
859    void LoadHalfWordP(Register dst, const MemOperand& mem,
860                       Register scratch = no_reg);
861  
862    void StoreHalfWord(Register src, const MemOperand& mem,
863                       Register scratch = r0);
864    void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
865  
866    void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
867                            Register scratch = no_reg);
868    void StoreRepresentation(Register src, const MemOperand& mem,
869                             Representation r, Register scratch = no_reg);
870  
871    void AddSmiLiteral(Register dst, Register src, Smi* smi,
872                       Register scratch = r0);
873    void SubSmiLiteral(Register dst, Register src, Smi* smi,
874                       Register scratch = r0);
875    void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
876    void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
877    void AndSmiLiteral(Register dst, Register src, Smi* smi);
878  
879    // Set new rounding mode RN to FPSCR
880    void SetRoundingMode(FPRoundingMode RN);
881  
882    // reset rounding mode to default (kRoundToNearest)
883    void ResetRoundingMode();
884  
885    // These exist to provide portability between 32 and 64bit
886    void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
887    void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
888    void StoreP(const MemOperand& mem, const Operand& opnd,
889                Register scratch = no_reg);
890    void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
891    void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
892    void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
893    void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
894  
895    // Cleanse pointer address on 31bit by zero out top  bit.
896    // This is a NOP on 64-bit.
CleanseP(Register src)897    void CleanseP(Register src) {
898  #if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
899      nilh(src, Operand(0x7FFF));
900  #endif
901    }
902  
903    // ---------------------------------------------------------------------------
904    // JavaScript invokes
905  
906    // Set up call kind marking in ecx. The method takes ecx as an
907    // explicit first parameter to make the code more readable at the
908    // call sites.
909    // void SetCallKind(Register dst, CallKind kind);
910  
911    // Removes current frame and its arguments from the stack preserving
912    // the arguments and a return address pushed to the stack for the next call.
913    // Both |callee_args_count| and |caller_args_count_reg| do not include
914    // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
915    // is trashed.
916    void PrepareForTailCall(const ParameterCount& callee_args_count,
917                            Register caller_args_count_reg, Register scratch0,
918                            Register scratch1);
919  
920    // Invoke the JavaScript function code by either calling or jumping.
921    void InvokeFunctionCode(Register function, Register new_target,
922                            const ParameterCount& expected,
923                            const ParameterCount& actual, InvokeFlag flag,
924                            const CallWrapper& call_wrapper);
925  
926    // On function call, call into the debugger if necessary.
927    void CheckDebugHook(Register fun, Register new_target,
928                        const ParameterCount& expected,
929                        const ParameterCount& actual);
930  
931    // Invoke the JavaScript function in the given register. Changes the
932    // current context to the context in the function before invoking.
933    void InvokeFunction(Register function, Register new_target,
934                        const ParameterCount& actual, InvokeFlag flag,
935                        const CallWrapper& call_wrapper);
936  
937    void InvokeFunction(Register function, const ParameterCount& expected,
938                        const ParameterCount& actual, InvokeFlag flag,
939                        const CallWrapper& call_wrapper);
940  
941    void InvokeFunction(Handle<JSFunction> function,
942                        const ParameterCount& expected,
943                        const ParameterCount& actual, InvokeFlag flag,
944                        const CallWrapper& call_wrapper);
945  
946    void IsObjectJSStringType(Register object, Register scratch, Label* fail);
947  
948    void IsObjectNameType(Register object, Register scratch, Label* fail);
949  
950    // Frame restart support
951    void MaybeDropFrames();
952  
953    // Exception handling
954  
955    // Push a new stack handler and link into stack handler chain.
956    void PushStackHandler();
957  
958    // Unlink the stack handler on top of the stack from the stack handler chain.
959    // Must preserve the result register.
960    void PopStackHandler();
961  
962    // ---------------------------------------------------------------------------
963    // Inline caching support
964  
965    void GetNumberHash(Register t0, Register scratch);
966  
MarkCode(NopMarkerTypes type)967    inline void MarkCode(NopMarkerTypes type) { nop(type); }
968  
969    // Check if the given instruction is a 'type' marker.
970    // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
971    // These instructions are generated to mark special location in the code,
972    // like some special IC code.
IsMarkedCode(Instr instr,int type)973    static inline bool IsMarkedCode(Instr instr, int type) {
974      DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
975      return IsNop(instr, type);
976    }
977  
GetCodeMarker(Instr instr)978    static inline int GetCodeMarker(Instr instr) {
979      int dst_reg_offset = 12;
980      int dst_mask = 0xf << dst_reg_offset;
981      int src_mask = 0xf;
982      int dst_reg = (instr & dst_mask) >> dst_reg_offset;
983      int src_reg = instr & src_mask;
984      uint32_t non_register_mask = ~(dst_mask | src_mask);
985      uint32_t mov_mask = al | 13 << 21;
986  
987      // Return <n> if we have a mov rn rn, else return -1.
988      int type = ((instr & non_register_mask) == mov_mask) &&
989                         (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
990                         (dst_reg < LAST_CODE_MARKER)
991                     ? src_reg
992                     : -1;
993      DCHECK((type == -1) ||
994             ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
995      return type;
996    }
997  
998    // ---------------------------------------------------------------------------
999    // Allocation support
1000  
1001    // Allocate an object in new space or old pointer space. The object_size is
1002    // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
1003    // is passed. If the space is exhausted control continues at the gc_required
1004    // label. The allocated object is returned in result. If the flag
1005    // tag_allocated_object is true the result is tagged as as a heap object.
1006    // All registers are clobbered also when control continues at the gc_required
1007    // label.
1008    void Allocate(int object_size, Register result, Register scratch1,
1009                  Register scratch2, Label* gc_required, AllocationFlags flags);
1010  
1011    void Allocate(Register object_size, Register result, Register result_end,
1012                  Register scratch, Label* gc_required, AllocationFlags flags);
1013  
1014    // FastAllocate is right now only used for folded allocations. It just
1015    // increments the top pointer without checking against limit. This can only
1016    // be done if it was proved earlier that the allocation will succeed.
1017    void FastAllocate(int object_size, Register result, Register scratch1,
1018                      Register scratch2, AllocationFlags flags);
1019  
1020    void FastAllocate(Register object_size, Register result, Register result_end,
1021                      Register scratch, AllocationFlags flags);
1022  
1023    // Allocates a heap number or jumps to the gc_required label if the young
1024    // space is full and a scavenge is needed. All registers are clobbered also
1025    // when control continues at the gc_required label.
1026    void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
1027                            Register heap_number_map, Label* gc_required,
1028                            MutableMode mode = IMMUTABLE);
1029    void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
1030                                     Register scratch1, Register scratch2,
1031                                     Register heap_number_map,
1032                                     Label* gc_required);
1033  
1034    // Allocate and initialize a JSValue wrapper with the specified {constructor}
1035    // and {value}.
1036    void AllocateJSValue(Register result, Register constructor, Register value,
1037                         Register scratch1, Register scratch2,
1038                         Label* gc_required);
1039  
1040    // Initialize fields with filler values.  |count| fields starting at
1041    // |current_address| are overwritten with the value in |filler|.  At the end
1042    // the loop, |current_address| points at the next uninitialized field.
1043    // |count| is assumed to be non-zero.
1044    void InitializeNFieldsWithFiller(Register current_address, Register count,
1045                                     Register filler);
1046  
1047    // Initialize fields with filler values.  Fields starting at |current_address|
1048    // not including |end_address| are overwritten with the value in |filler|.  At
1049    // the end the loop, |current_address| takes the value of |end_address|.
1050    void InitializeFieldsWithFiller(Register current_address,
1051                                    Register end_address, Register filler);
1052  
1053    // ---------------------------------------------------------------------------
1054    // Support functions.
1055  
1056    // Machine code version of Map::GetConstructor().
1057    // |temp| holds |result|'s map when done, and |temp2| its instance type.
1058    void GetMapConstructor(Register result, Register map, Register temp,
1059                           Register temp2);
1060  
1061    // Compare object type for heap object.  heap_object contains a non-Smi
1062    // whose object type should be compared with the given type.  This both
1063    // sets the flags and leaves the object type in the type_reg register.
1064    // It leaves the map in the map register (unless the type_reg and map register
1065    // are the same register).  It leaves the heap object in the heap_object
1066    // register unless the heap_object register is the same register as one of the
1067    // other registers.
1068    // Type_reg can be no_reg. In that case ip is used.
1069    void CompareObjectType(Register heap_object, Register map, Register type_reg,
1070                           InstanceType type);
1071  
1072    // Compare instance type in a map.  map contains a valid map object whose
1073    // object type should be compared with the given type.  This both
1074    // sets the flags and leaves the object type in the type_reg register.
1075    void CompareInstanceType(Register map, Register type_reg, InstanceType type);
1076  
1077    // Compare an object's map with the specified map and its transitioned
1078    // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
1079    // set with result of map compare. If multiple map compares are required, the
1080    // compare sequences branches to early_success.
1081    void CompareMap(Register obj, Register scratch, Handle<Map> map,
1082                    Label* early_success);
1083  
1084    // As above, but the map of the object is already loaded into the register
1085    // which is preserved by the code generated.
1086    void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
1087  
1088    // Check if the map of an object is equal to a specified map and branch to
1089    // label if not. Skip the smi check if not required (object is known to be a
1090    // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1091    // against maps that are ElementsKind transition maps of the specified map.
1092    void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
1093                  SmiCheckType smi_check_type);
1094  
1095    void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
1096                  Label* fail, SmiCheckType smi_check_type);
1097  
1098    // Check if the map of an object is equal to a specified weak map and branch
1099    // to a specified target if equal. Skip the smi check if not required
1100    // (object is known to be a heap object)
1101    void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1102                         Handle<WeakCell> cell, Handle<Code> success,
1103                         SmiCheckType smi_check_type);
1104  
1105    // Compare the given value and the value of weak cell.
1106    void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
1107                      CRegister cr = cr7);
1108  
1109    void GetWeakValue(Register value, Handle<WeakCell> cell);
1110  
1111    // Load the value of the weak cell in the value register. Branch to the given
1112    // miss label if the weak cell was cleared.
1113    void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1114  
1115    // Compare the object in a register to a value from the root list.
1116    // Uses the ip register as scratch.
1117    void CompareRoot(Register obj, Heap::RootListIndex index);
PushRoot(Heap::RootListIndex index)1118    void PushRoot(Heap::RootListIndex index) {
1119      LoadRoot(r0, index);
1120      Push(r0);
1121    }
1122  
1123    // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)1124    void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
1125      CompareRoot(with, index);
1126      beq(if_equal);
1127    }
1128  
1129    // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)1130    void JumpIfNotRoot(Register with, Heap::RootListIndex index,
1131                       Label* if_not_equal) {
1132      CompareRoot(with, index);
1133      bne(if_not_equal);
1134    }
1135  
1136    // Load and check the instance type of an object for being a string.
1137    // Loads the type into the second argument register.
1138    // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type)1139    Condition IsObjectStringType(Register obj, Register type) {
1140      LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1141      LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1142      mov(r0, Operand(kIsNotStringMask));
1143      AndP(r0, type);
1144      DCHECK_EQ(0u, kStringTag);
1145      return eq;
1146    }
1147  
1148    // Get the number of least significant bits from a register
1149    void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1150    void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1151  
1152    // Load the value of a smi object into a FP double register. The register
1153    // scratch1 can be the same register as smi in which case smi will hold the
1154    // untagged value afterwards.
1155    void SmiToDouble(DoubleRegister value, Register smi);
1156  
1157    // Check if a double can be exactly represented as a signed 32-bit integer.
1158    // CR_EQ in cr7 is set if true.
1159    void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
1160                           Register scratch2, DoubleRegister double_scratch);
1161  
1162    // Check if a double is equal to -0.0.
1163    // CR_EQ in cr7 holds the result.
1164    void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
1165                               Register scratch2);
1166  
1167    // Check the sign of a double.
1168    // CR_LT in cr7 holds the result.
1169    void TestDoubleSign(DoubleRegister input, Register scratch);
1170    void TestHeapNumberSign(Register input, Register scratch);
1171  
1172    // Try to convert a double to a signed 32-bit integer.
1173    // CR_EQ in cr7 is set and result assigned if the conversion is exact.
1174    void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
1175                               Register scratch, DoubleRegister double_scratch);
1176  
1177    // Floor a double and writes the value to the result register.
1178    // Go to exact if the conversion is exact (to be able to test -0),
1179    // fall through calling code if an overflow occurred, else go to done.
1180    // In return, input_high is loaded with high bits of input.
1181    void TryInt32Floor(Register result, DoubleRegister double_input,
1182                       Register input_high, Register scratch,
1183                       DoubleRegister double_scratch, Label* done, Label* exact);
1184  
1185    // Performs a truncating conversion of a floating point number as used by
1186    // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1187    // succeeds, otherwise falls through if result is saturated. On return
1188    // 'result' either holds answer, or is clobbered on fall through.
1189    //
1190    // Only public for the test code in test-code-stubs-arm.cc.
1191    void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
1192                                    Label* done);
1193  
1194    // Performs a truncating conversion of a floating point number as used by
1195    // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1196    // Exits with 'result' holding the answer.
1197    void TruncateDoubleToI(Register result, DoubleRegister double_input);
1198  
1199    // Performs a truncating conversion of a heap number as used by
1200    // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1201    // must be different registers.  Exits with 'result' holding the answer.
1202    void TruncateHeapNumberToI(Register result, Register object);
1203  
1204    // Converts the smi or heap number in object to an int32 using the rules
1205    // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1206    // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1207    // different registers.
1208    void TruncateNumberToI(Register object, Register result,
1209                           Register heap_number_map, Register scratch1,
1210                           Label* not_int32);
1211  
1212    // ---------------------------------------------------------------------------
1213    // Runtime calls
1214  
1215    // Call a code stub.
1216    void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
1217                  Condition cond = al);
1218  
1219    // Call a code stub.
1220    void TailCallStub(CodeStub* stub, Condition cond = al);
1221  
1222    // Call a runtime routine.
1223    void CallRuntime(const Runtime::Function* f, int num_arguments,
1224                     SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1225    void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1226      const Runtime::Function* function = Runtime::FunctionForId(fid);
1227      CallRuntime(function, function->nargs, kSaveFPRegs);
1228    }
1229  
1230    // Convenience function: Same as above, but takes the fid instead.
1231    void CallRuntime(Runtime::FunctionId fid,
1232                     SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1233      const Runtime::Function* function = Runtime::FunctionForId(fid);
1234      CallRuntime(function, function->nargs, save_doubles);
1235    }
1236  
1237    // Convenience function: Same as above, but takes the fid instead.
1238    void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1239                     SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1240      CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1241    }
1242  
1243    // Convenience function: call an external reference.
1244    void CallExternalReference(const ExternalReference& ext, int num_arguments);
1245  
1246    // Convenience function: tail call a runtime routine (jump).
1247    void TailCallRuntime(Runtime::FunctionId fid);
1248  
1249    int CalculateStackPassedWords(int num_reg_arguments,
1250                                  int num_double_arguments);
1251  
1252    // Before calling a C-function from generated code, align arguments on stack.
1253    // After aligning the frame, non-register arguments must be stored in
1254    // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1255    // are word sized. If double arguments are used, this function assumes that
1256    // all double arguments are stored before core registers; otherwise the
1257    // correct alignment of the double values is not guaranteed.
1258    // Some compilers/platforms require the stack to be aligned when calling
1259    // C++ code.
1260    // Needs a scratch register to do some arithmetic. This register will be
1261    // trashed.
1262    void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
1263                              Register scratch);
1264    void PrepareCallCFunction(int num_reg_arguments, Register scratch);
1265  
1266    // There are two ways of passing double arguments on ARM, depending on
1267    // whether soft or hard floating point ABI is used. These functions
1268    // abstract parameter passing for the three different ways we call
1269    // C functions from generated code.
1270    void MovToFloatParameter(DoubleRegister src);
1271    void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1272    void MovToFloatResult(DoubleRegister src);
1273  
1274    // Calls a C function and cleans up the space for arguments allocated
1275    // by PrepareCallCFunction. The called function is not allowed to trigger a
1276    // garbage collection, since that might move the code and invalidate the
1277    // return address (unless this is somehow accounted for by the called
1278    // function).
1279    void CallCFunction(ExternalReference function, int num_arguments);
1280    void CallCFunction(Register function, int num_arguments);
1281    void CallCFunction(ExternalReference function, int num_reg_arguments,
1282                       int num_double_arguments);
1283    void CallCFunction(Register function, int num_reg_arguments,
1284                       int num_double_arguments);
1285  
1286    void MovFromFloatParameter(DoubleRegister dst);
1287    void MovFromFloatResult(DoubleRegister dst);
1288  
1289    // Jump to a runtime routine.
1290    void JumpToExternalReference(const ExternalReference& builtin,
1291                                 bool builtin_exit_frame = false);
1292  
CodeObject()1293    Handle<Object> CodeObject() {
1294      DCHECK(!code_object_.is_null());
1295      return code_object_;
1296    }
1297  
1298    // Emit code for a truncating division by a constant. The dividend register is
1299    // unchanged and ip gets clobbered. Dividend and result must be different.
1300    void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1301  
1302    // ---------------------------------------------------------------------------
1303    // StatsCounter support
1304  
1305    void SetCounter(StatsCounter* counter, int value, Register scratch1,
1306                    Register scratch2);
1307    void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1308                          Register scratch2);
1309    void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1310                          Register scratch2);
1311  
1312    // ---------------------------------------------------------------------------
1313    // Debugging
1314  
1315    // Calls Abort(msg) if the condition cond is not satisfied.
1316    // Use --debug_code to enable.
1317    void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
1318    void AssertFastElements(Register elements);
1319  
1320    // Like Assert(), but always enabled.
1321    void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
1322  
1323    // Print a message to stdout and abort execution.
1324    void Abort(BailoutReason reason);
1325  
1326    // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1327    void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1328    bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1329    void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1330    bool has_frame() { return has_frame_; }
1331    inline bool AllowThisStubCall(CodeStub* stub);
1332  
1333    // ---------------------------------------------------------------------------
1334    // Number utilities
1335  
1336    // Check whether the value of reg is a power of two and not zero. If not
1337    // control continues at the label not_power_of_two. If reg is a power of two
1338    // the register scratch contains the value of (reg - 1) when control falls
1339    // through.
1340    void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
1341                                   Label* not_power_of_two_or_zero);
1342    // Check whether the value of reg is a power of two and not zero.
1343    // Control falls through if it is, with scratch containing the mask
1344    // value (reg - 1).
1345    // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1346    // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1347    // strictly positive but not a power of two.
1348    void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
1349                                         Label* zero_and_neg,
1350                                         Label* not_power_of_two);
1351  
1352    // ---------------------------------------------------------------------------
1353    // Bit testing/extraction
1354    //
1355    // Bit numbering is such that the least significant bit is bit 0
1356    // (for consistency between 32/64-bit).
1357  
1358    // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
1359    // and place them into the least significant bits of dst.
ExtractBitRange(Register dst,Register src,int rangeStart,int rangeEnd)1360    inline void ExtractBitRange(Register dst, Register src, int rangeStart,
1361                                int rangeEnd) {
1362      DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
1363  
1364      // Try to use RISBG if possible.
1365      if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1366        int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
1367        int endBit = 63;  // End is always LSB after shifting.
1368        int startBit = 63 - rangeStart + rangeEnd;
1369        risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
1370              true);
1371      } else {
1372        if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
1373          ShiftRightP(dst, src, Operand(rangeEnd));
1374        else if (!dst.is(src))  // If we didn't shift, we might need to copy
1375          LoadRR(dst, src);
1376        int width = rangeStart - rangeEnd + 1;
1377  #if V8_TARGET_ARCH_S390X
1378        uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
1379        nihf(dst, Operand(mask >> 32));
1380        nilf(dst, Operand(mask & 0xFFFFFFFF));
1381        ltgr(dst, dst);
1382  #else
1383        uint32_t mask = (1 << width) - 1;
1384        AndP(dst, Operand(mask));
1385  #endif
1386      }
1387    }
1388  
ExtractBit(Register dst,Register src,uint32_t bitNumber)1389    inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
1390      ExtractBitRange(dst, src, bitNumber, bitNumber);
1391    }
1392  
1393    // Extract consecutive bits (defined by mask) from src and place them
1394    // into the least significant bits of dst.
1395    inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
1396                               RCBit rc = LeaveRC) {
1397      int start = kBitsPerPointer - 1;
1398      int end;
1399      uintptr_t bit = (1L << start);
1400  
1401      while (bit && (mask & bit) == 0) {
1402        start--;
1403        bit >>= 1;
1404      }
1405      end = start;
1406      bit >>= 1;
1407  
1408      while (bit && (mask & bit)) {
1409        end--;
1410        bit >>= 1;
1411      }
1412  
1413      // 1-bits in mask must be contiguous
1414      DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
1415  
1416      ExtractBitRange(dst, src, start, end);
1417    }
1418  
1419    // Test single bit in value.
1420    inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
1421      ExtractBitRange(scratch, value, bitNumber, bitNumber);
1422    }
1423  
1424    // Test consecutive bit range in value.  Range is defined by
1425    // rangeStart - rangeEnd.
1426    inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
1427                             Register scratch = r0) {
1428      ExtractBitRange(scratch, value, rangeStart, rangeEnd);
1429    }
1430  
1431    // Test consecutive bit range in value.  Range is defined by mask.
1432    inline void TestBitMask(Register value, uintptr_t mask,
1433                            Register scratch = r0) {
1434      ExtractBitMask(scratch, value, mask, SetRC);
1435    }
1436  
1437    // ---------------------------------------------------------------------------
1438    // Smi utilities
1439  
1440    // Shift left by kSmiShift
SmiTag(Register reg)1441    void SmiTag(Register reg) { SmiTag(reg, reg); }
SmiTag(Register dst,Register src)1442    void SmiTag(Register dst, Register src) {
1443      ShiftLeftP(dst, src, Operand(kSmiShift));
1444    }
1445  
1446  #if !V8_TARGET_ARCH_S390X
1447    // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1448    void SmiTagCheckOverflow(Register reg, Register overflow);
1449    void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1450  
JumpIfNotSmiCandidate(Register value,Register scratch,Label * not_smi_label)1451    inline void JumpIfNotSmiCandidate(Register value, Register scratch,
1452                                      Label* not_smi_label) {
1453      // High bits must be identical to fit into an Smi
1454      STATIC_ASSERT(kSmiShift == 1);
1455      AddP(scratch, value, Operand(0x40000000u));
1456      CmpP(scratch, Operand::Zero());
1457      blt(not_smi_label);
1458    }
1459  #endif
TestUnsignedSmiCandidate(Register value,Register scratch)1460    inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
1461      // The test is different for unsigned int values. Since we need
1462      // the value to be in the range of a positive smi, we can't
1463      // handle any of the high bits being set in the value.
1464      TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
1465                   scratch);
1466    }
JumpIfNotUnsignedSmiCandidate(Register value,Register scratch,Label * not_smi_label)1467    inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
1468                                              Label* not_smi_label) {
1469      TestUnsignedSmiCandidate(value, scratch);
1470      bne(not_smi_label /*, cr0*/);
1471    }
1472  
SmiUntag(Register reg)1473    void SmiUntag(Register reg) { SmiUntag(reg, reg); }
1474  
SmiUntag(Register dst,Register src)1475    void SmiUntag(Register dst, Register src) {
1476      ShiftRightArithP(dst, src, Operand(kSmiShift));
1477    }
1478  
SmiToPtrArrayOffset(Register dst,Register src)1479    void SmiToPtrArrayOffset(Register dst, Register src) {
1480  #if V8_TARGET_ARCH_S390X
1481      STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
1482      ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
1483  #else
1484      STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
1485      ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
1486  #endif
1487    }
1488  
SmiToByteArrayOffset(Register dst,Register src)1489    void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
1490  
SmiToShortArrayOffset(Register dst,Register src)1491    void SmiToShortArrayOffset(Register dst, Register src) {
1492  #if V8_TARGET_ARCH_S390X
1493      STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
1494      ShiftRightArithP(dst, src, Operand(kSmiShift - 1));
1495  #else
1496      STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
1497      if (!dst.is(src)) {
1498        LoadRR(dst, src);
1499      }
1500  #endif
1501    }
1502  
SmiToIntArrayOffset(Register dst,Register src)1503    void SmiToIntArrayOffset(Register dst, Register src) {
1504  #if V8_TARGET_ARCH_S390X
1505      STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
1506      ShiftRightArithP(dst, src, Operand(kSmiShift - 2));
1507  #else
1508      STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
1509      ShiftLeftP(dst, src, Operand(2 - kSmiShift));
1510  #endif
1511    }
1512  
1513  #define SmiToFloatArrayOffset SmiToIntArrayOffset
1514  
SmiToDoubleArrayOffset(Register dst,Register src)1515    void SmiToDoubleArrayOffset(Register dst, Register src) {
1516  #if V8_TARGET_ARCH_S390X
1517      STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
1518      ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2));
1519  #else
1520      STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
1521      ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
1522  #endif
1523    }
1524  
SmiToArrayOffset(Register dst,Register src,int elementSizeLog2)1525    void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
1526      if (kSmiShift < elementSizeLog2) {
1527        ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift));
1528      } else if (kSmiShift > elementSizeLog2) {
1529        ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2));
1530      } else if (!dst.is(src)) {
1531        LoadRR(dst, src);
1532      }
1533    }
1534  
IndexToArrayOffset(Register dst,Register src,int elementSizeLog2,bool isSmi,bool keyMaybeNegative)1535    void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
1536                            bool isSmi, bool keyMaybeNegative) {
1537      if (isSmi) {
1538        SmiToArrayOffset(dst, src, elementSizeLog2);
1539      } else if (keyMaybeNegative ||
1540            !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1541  #if V8_TARGET_ARCH_S390X
1542        // If array access is dehoisted, the key, being an int32, can contain
1543        // a negative value, as needs to be sign-extended to 64-bit for
1544        // memory access.
1545        //
1546        // src (key) is a 32-bit integer.  Sign extension ensures
1547        // upper 32-bit does not contain garbage before being used to
1548        // reference memory.
1549        lgfr(src, src);
1550  #endif
1551        ShiftLeftP(dst, src, Operand(elementSizeLog2));
1552      } else {
1553        // Small optimization to reduce pathlength.  After Bounds Check,
1554        // the key is guaranteed to be non-negative.  Leverage RISBG,
1555        // which also performs zero-extension.
1556        risbg(dst, src, Operand(32 - elementSizeLog2),
1557              Operand(63 - elementSizeLog2), Operand(elementSizeLog2),
1558              true);
1559      }
1560    }
1561  
1562    // Untag the source value into destination and jump if source is a smi.
1563    // Souce and destination can be the same register.
1564    void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1565  
TestIfSmi(Register value)1566    inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
1567  
TestIfSmi(MemOperand value)1568    inline void TestIfSmi(MemOperand value) {
1569      if (is_uint12(value.offset())) {
1570        tm(value, Operand(1));
1571      } else if (is_int20(value.offset())) {
1572        tmy(value, Operand(1));
1573      } else {
1574        LoadB(r0, value);
1575        tmll(r0, Operand(1));
1576      }
1577    }
1578  
TestIfPositiveSmi(Register value,Register scratch)1579    inline void TestIfPositiveSmi(Register value, Register scratch) {
1580      STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
1581                    (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
1582      mov(scratch, Operand(kIntptrSignBit | kSmiTagMask));
1583      AndP(scratch, value);
1584    }
1585  
1586    // Jump the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)1587    inline void JumpIfSmi(Register value, Label* smi_label) {
1588      TestIfSmi(value);
1589      beq(smi_label /*, cr0*/);  // branch if SMI
1590    }
1591    // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1592    inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1593      TestIfSmi(value);
1594      bne(not_smi_label /*, cr0*/);
1595    }
1596    // Jump if either of the registers contain a non-smi.
1597    void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1598    // Jump if either of the registers contain a smi.
1599    void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1600  
1601    // Abort execution if argument is a number, enabled via --debug-code.
1602    void AssertNotNumber(Register object);
1603  
1604    // Abort execution if argument is a smi, enabled via --debug-code.
1605    void AssertNotSmi(Register object);
1606    void AssertSmi(Register object);
1607  
1608  #if V8_TARGET_ARCH_S390X
TestIfInt32(Register value,Register scratch)1609    inline void TestIfInt32(Register value, Register scratch) {
1610      // High bits must be identical to fit into an 32-bit integer
1611      lgfr(scratch, value);
1612      CmpP(scratch, value);
1613    }
1614  #else
TestIfInt32(Register hi_word,Register lo_word,Register scratch)1615    inline void TestIfInt32(Register hi_word, Register lo_word,
1616                            Register scratch) {
1617      // High bits must be identical to fit into an 32-bit integer
1618      ShiftRightArith(scratch, lo_word, Operand(31));
1619      CmpP(scratch, hi_word);
1620    }
1621  #endif
1622  
1623  #if V8_TARGET_ARCH_S390X
1624    // Ensure it is permissable to read/write int value directly from
1625    // upper half of the smi.
1626    STATIC_ASSERT(kSmiTag == 0);
1627    STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
1628  #endif
1629  #if V8_TARGET_LITTLE_ENDIAN
1630  #define SmiWordOffset(offset) (offset + kPointerSize / 2)
1631  #else
1632  #define SmiWordOffset(offset) offset
1633  #endif
1634  
1635    // Abort execution if argument is not a string, enabled via --debug-code.
1636    void AssertString(Register object);
1637  
1638    // Abort execution if argument is not a name, enabled via --debug-code.
1639    void AssertName(Register object);
1640  
1641    void AssertFunction(Register object);
1642  
1643    // Abort execution if argument is not a JSBoundFunction,
1644    // enabled via --debug-code.
1645    void AssertBoundFunction(Register object);
1646  
1647    // Abort execution if argument is not a JSGeneratorObject,
1648    // enabled via --debug-code.
1649    void AssertGeneratorObject(Register object);
1650  
1651    // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1652    void AssertReceiver(Register object);
1653  
1654    // Abort execution if argument is not undefined or an AllocationSite, enabled
1655    // via --debug-code.
1656    void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1657  
1658    // Abort execution if reg is not the root value with the given index,
1659    // enabled via --debug-code.
1660    void AssertIsRoot(Register reg, Heap::RootListIndex index);
1661  
1662    // ---------------------------------------------------------------------------
1663    // HeapNumber utilities
1664  
1665    void JumpIfNotHeapNumber(Register object, Register heap_number_map,
1666                             Register scratch, Label* on_not_heap_number);
1667  
1668    // ---------------------------------------------------------------------------
1669    // String utilities
1670  
1671    // Checks if both objects are sequential one-byte strings and jumps to label
1672    // if either is not. Assumes that neither object is a smi.
1673    void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1674                                                      Register object2,
1675                                                      Register scratch1,
1676                                                      Register scratch2,
1677                                                      Label* failure);
1678  
1679    // Checks if both objects are sequential one-byte strings and jumps to label
1680    // if either is not.
1681    void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1682                                               Register scratch1,
1683                                               Register scratch2,
1684                                               Label* not_flat_one_byte_strings);
1685  
1686    // Checks if both instance types are sequential one-byte strings and jumps to
1687    // label if either is not.
1688    void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1689        Register first_object_instance_type, Register second_object_instance_type,
1690        Register scratch1, Register scratch2, Label* failure);
1691  
1692    void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1693  
1694    void EmitSeqStringSetCharCheck(Register string, Register index,
1695                                   Register value, uint32_t encoding_mask);
1696  
1697    // ---------------------------------------------------------------------------
1698    // Patching helpers.
1699  
1700    void ClampUint8(Register output_reg, Register input_reg);
1701  
1702    // Saturate a value into 8-bit unsigned integer
1703    //   if input_value < 0, output_value is 0
1704    //   if input_value > 255, output_value is 255
1705    //   otherwise output_value is the (int)input_value (round to nearest)
1706    void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
1707                            DoubleRegister temp_double_reg);
1708  
1709    void LoadInstanceDescriptors(Register map, Register descriptors);
1710    void EnumLength(Register dst, Register map);
1711    void NumberOfOwnDescriptors(Register dst, Register map);
1712    void LoadAccessor(Register dst, Register holder, int accessor_index,
1713                      AccessorComponent accessor);
1714  
1715    template <typename Field>
DecodeField(Register dst,Register src)1716    void DecodeField(Register dst, Register src) {
1717      ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
1718    }
1719  
1720    template <typename Field>
DecodeField(Register reg)1721    void DecodeField(Register reg) {
1722      DecodeField<Field>(reg, reg);
1723    }
1724  
1725    template <typename Field>
DecodeFieldToSmi(Register dst,Register src)1726    void DecodeFieldToSmi(Register dst, Register src) {
1727      // TODO(joransiu): Optimize into single instruction
1728      DecodeField<Field>(dst, src);
1729      SmiTag(dst);
1730    }
1731  
1732    template <typename Field>
DecodeFieldToSmi(Register reg)1733    void DecodeFieldToSmi(Register reg) {
1734      DecodeFieldToSmi<Field>(reg, reg);
1735    }
1736  
1737    // Load the type feedback vector from a JavaScript frame.
1738    void EmitLoadFeedbackVector(Register vector);
1739  
1740    // Activation support.
1741    void EnterFrame(StackFrame::Type type,
1742                    bool load_constant_pool_pointer_reg = false);
1743    // Returns the pc offset at which the frame ends.
1744    int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
1745  
1746    void EnterBuiltinFrame(Register context, Register target, Register argc);
1747    void LeaveBuiltinFrame(Register context, Register target, Register argc);
1748  
1749    // Expects object in r2 and returns map with validated enum cache
1750    // in r2.  Assumes that any other register can be used as a scratch.
1751    void CheckEnumCache(Label* call_runtime);
1752  
1753    // AllocationMemento support. Arrays may have an associated
1754    // AllocationMemento object that can be checked for in order to pretransition
1755    // to another type.
1756    // On entry, receiver_reg should point to the array object.
1757    // scratch_reg gets clobbered.
1758    // If allocation info is present, condition flags are set to eq.
1759    void TestJSArrayForAllocationMemento(Register receiver_reg,
1760                                         Register scratch_reg,
1761                                         Register scratch2_reg,
1762                                         Label* no_memento_found);
1763  
1764   private:
1765    static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1766  
1767    void CallCFunctionHelper(Register function, int num_reg_arguments,
1768                             int num_double_arguments);
1769  
1770    void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
1771              CRegister cr = cr7);
1772  
1773    // Helper functions for generating invokes.
1774    void InvokePrologue(const ParameterCount& expected,
1775                        const ParameterCount& actual, Label* done,
1776                        bool* definitely_mismatches, InvokeFlag flag,
1777                        const CallWrapper& call_wrapper);
1778  
1779    // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1780    void InNewSpace(Register object, Register scratch,
1781                    Condition cond,  // eq for new space, ne otherwise.
1782                    Label* branch);
1783  
1784    // Helper for finding the mark bits for an address.  Afterwards, the
1785    // bitmap register points at the word with the mark bits and the mask
1786    // the position of the first bit.  Leaves addr_reg unchanged.
1787    inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
1788                            Register mask_reg);
1789  
1790    static const RegList kSafepointSavedRegisters;
1791    static const int kNumSafepointSavedRegisters;
1792  
1793    // Compute memory operands for safepoint stack slots.
1794    static int SafepointRegisterStackIndex(int reg_code);
1795    MemOperand SafepointRegisterSlot(Register reg);
1796    MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1797  
1798    bool generating_stub_;
1799    bool has_frame_;
1800    // This handle will be patched with the code object on installation.
1801    Handle<Object> code_object_;
1802  
1803    // Needs access to SafepointRegisterStackIndex for compiled frame
1804    // traversal.
1805    friend class StandardFrame;
1806  };
1807  
1808  // The code patcher is used to patch (typically) small parts of code e.g. for
1809  // debugging and other types of instrumentation. When using the code patcher
1810  // the exact number of bytes specified must be emitted. It is not legal to emit
1811  // relocation information. If any of these constraints are violated it causes
1812  // an assertion to fail.
1813  class CodePatcher {
1814   public:
1815    enum FlushICache { FLUSH, DONT_FLUSH };
1816  
1817    CodePatcher(Isolate* isolate, byte* address, int instructions,
1818                FlushICache flush_cache = FLUSH);
1819    ~CodePatcher();
1820  
1821    // Macro assembler to emit code.
masm()1822    MacroAssembler* masm() { return &masm_; }
1823  
1824   private:
1825    byte* address_;            // The address of the code being patched.
1826    int size_;                 // Number of bytes of the expected patch size.
1827    MacroAssembler masm_;      // Macro assembler used to generate the code.
1828    FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1829  };
1830  
1831  // -----------------------------------------------------------------------------
1832  // Static helper functions.
1833  
1834  inline MemOperand ContextMemOperand(Register context, int index = 0) {
1835    return MemOperand(context, Context::SlotOffset(index));
1836  }
1837  
NativeContextMemOperand()1838  inline MemOperand NativeContextMemOperand() {
1839    return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1840  }
1841  
1842  #define ACCESS_MASM(masm) masm->
1843  
1844  }  // namespace internal
1845  }  // namespace v8
1846  
1847  #endif  // V8_S390_MACRO_ASSEMBLER_S390_H_
1848