• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // An ArraySlice<T> represents an immutable array of elements of type
17 // T.  It has a length "length", and a base pointer "ptr", and the
18 // array it represents contains the elements "ptr[0] .. ptr[len-1]".
19 // The backing store for the array is *not* owned by the ArraySlice
20 // object, and clients must arrange for the backing store to remain
21 // live while the ArraySlice object is in use.
22 //
23 // An ArraySlice<T> is somewhat analogous to a StringPiece, but for
24 // array elements of type T.
25 //
26 // Implicit conversion operations are provided from types such as
27 // std::vector<T> and util::gtl::InlinedVector<T, N>.  Note that ArraySlice
28 // objects constructed from types in this way may be invalidated by
29 // any operations that mutate the underlying vector.
30 //
31 // One common use for ArraySlice is when passing arguments to a
32 // routine where you want to be able to accept a variety of array
33 // types (e.g. a vector, a util::gtl::InlinedVector, a C-style array,
34 // etc.).  The usual approach here is to have the client explicitly
35 // pass in a pointer and a length, as in:
36 //
37 //   void MyRoutine(const int* elems, int N) {
38 //     for (int i = 0; i < N; i++) { .. do something with elems[i] .. }
39 //   }
40 //
41 // Unfortunately, this leads to ugly and error-prone code at the call site:
42 //
43 //   std::vector<int> my_vector;
44 //   MyRoutine(vector_as_array(&my_vector), my_vector.size());
45 //
46 //   util::gtl::InlinedVector<int, 4> my_inline_vector;
47 //   MyRoutine(my_inline_vector.array(), my_inline_vector.size());
48 //
49 //   int my_array[10];
50 //   MyRoutine(my_array, 10);
51 //
52 // Instead, you can use an ArraySlice as the argument to the routine:
53 //
54 //   void MyRoutine(ArraySlice<int> a) {
55 //     for (int i = 0; i < a.size(); i++) { .. do something with a[i] .. }
56 //   }
57 //
58 // This makes the call sites cleaner, for the most part:
59 //
60 //   std::vector<int> my_vector;
61 //   MyRoutine(my_vector);
62 //
63 //   util::gtl::InlinedVector<int, 4> my_inline_vector;
64 //   MyRoutine(my_inline_vector);
65 //
66 //   int my_array[10];
67 //   MyRoutine(my_array);
68 //
69 //   int* my_array = new int[10];
70 //   MyRoutine(gtl::ArraySlice<int>(my_array, 10));
71 //
72 // MutableArraySlice<T> represents a mutable array of elements, and, like
73 // ArraySlice, does not own the backing store. The implicit constructors it
74 // provides allow functions not to worry about whether their mutable arguments
75 // refer to vectors, arrays, proto2::RepeatedFields, etc.:
76 //
77 //   void MyMutatingRoutine(MutableArraySlice<int> a) {
78 //     for (int i = 0; i < a.size(); i++) { .. mutate a[i] .. }
79 //   }
80 //
81 //   std::vector<int> my_vector;
82 //   MyMutatingRoutine(&my_vector);
83 //
84 //   int my_array[10];
85 //   MyMutatingRoutine(my_array);
86 //
87 //   int* my_array = new int[10];
88 //   MyMutatingRoutine(gtl::MutableArraySlice<int>(my_array, 10));
89 //
90 //   MyProto my_proto;
91 //   for (int i = 0; i < 10; ++i) { my_proto.add_value(i); }
92 //   MyMutatingRoutine(my_proto.mutable_value());
93 
94 #ifndef TENSORFLOW_LIB_GTL_ARRAY_SLICE_H_
95 #define TENSORFLOW_LIB_GTL_ARRAY_SLICE_H_
96 
97 #include <initializer_list>
98 #include <type_traits>
99 #include <vector>
100 
101 #include "tensorflow/core/lib/gtl/array_slice_internal.h"
102 #include "tensorflow/core/lib/gtl/inlined_vector.h"
103 
104 namespace tensorflow {
105 namespace gtl {
106 
107 template <typename T>
108 class ArraySlice {
109  private:
110   typedef array_slice_internal::ArraySliceImpl<T> Impl;
111 
112  public:
113   typedef T value_type;
114   typedef typename Impl::pointer pointer;
115   typedef typename Impl::const_pointer const_pointer;
116   typedef typename Impl::reference reference;
117   typedef typename Impl::const_reference const_reference;
118   typedef typename Impl::iterator iterator;
119   typedef typename Impl::const_iterator const_iterator;
120   typedef typename Impl::reverse_iterator reverse_iterator;
121   typedef typename Impl::const_reverse_iterator const_reverse_iterator;
122   typedef typename Impl::size_type size_type;
123   typedef typename Impl::difference_type difference_type;
124 
125   static const size_type npos = Impl::npos;
126 
ArraySlice()127   ArraySlice() : impl_(nullptr, 0) {}
ArraySlice(const_pointer array,size_type length)128   ArraySlice(const_pointer array, size_type length) : impl_(array, length) {}
129 
130   // Implicit conversion constructors
ArraySlice(const std::vector<value_type> & v)131   ArraySlice(const std::vector<value_type>& v)  // NOLINT(runtime/explicit)
132       : impl_(v.data(), v.size()) {}
133 
134   template <size_t N>
ArraySlice(const value_type (& a)[N])135   ArraySlice(const value_type (&a)[N])  // NOLINT(runtime/explicit)
136       : impl_(a, N) {}
137 
138   template <int N>
ArraySlice(const InlinedVector<value_type,N> & v)139   ArraySlice(const InlinedVector<value_type, N>& v)  // NOLINT(runtime/explicit)
140       : impl_(v.data(), v.size()) {}
141 
142   // The constructor for any class supplying 'data() const' that returns either
143   // const T* or a less const-qualified version of it, and 'some_integral_type
144   // size() const'. proto2::RepeatedField<T>, string and (since C++11)
145   // std::vector<T,A> and std::array<T, N> are examples of this. See
146   // array_slice_internal.h for details.
147   template <typename V,
148             typename = typename Impl::template EnableIfConvertibleFrom<V>>
ArraySlice(const V & v)149   ArraySlice(const V& v)  // NOLINT(runtime/explicit)
150       : impl_(v) {}
151 
152   // Implicitly constructs an ArraySlice from an initializer list. This makes it
153   // possible to pass a brace-enclosed initializer list to a function expecting
154   // an ArraySlice:
155   //   void Process(ArraySlice<int> x);
156   //   Process({1, 2, 3});
157   // The data referenced by the initializer_list must outlive this
158   // ArraySlice. For example, "ArraySlice<int> s={1,2};" and "return
159   // ArraySlice<int>({3,4});" are errors, as the resulting ArraySlice may
160   // reference data that is no longer valid.
ArraySlice(std::initializer_list<value_type> v)161   ArraySlice(std::initializer_list<value_type> v)  // NOLINT(runtime/explicit)
162       : impl_(v.begin(), v.size()) {}
163 
164   // Substring of another ArraySlice.
165   // pos must be non-negative and <= x.length().
166   // len must be non-negative and will be pinned to at most x.length() - pos.
167   // If len==npos, the substring continues till the end of x.
ArraySlice(const ArraySlice & x,size_type pos,size_type len)168   ArraySlice(const ArraySlice& x, size_type pos, size_type len)
169       : impl_(x.impl_, pos, len) {}
170 
data()171   const_pointer data() const { return impl_.data(); }
size()172   size_type size() const { return impl_.size(); }
length()173   size_type length() const { return size(); }
empty()174   bool empty() const { return size() == 0; }
175 
clear()176   void clear() { impl_.clear(); }
177 
178   const_reference operator[](size_type i) const { return impl_[i]; }
at(size_type i)179   const_reference at(size_type i) const { return impl_.at(i); }
front()180   const_reference front() const { return impl_.front(); }
back()181   const_reference back() const { return impl_.back(); }
182 
begin()183   const_iterator begin() const { return impl_.begin(); }
end()184   const_iterator end() const { return impl_.end(); }
rbegin()185   const_reverse_iterator rbegin() const { return impl_.rbegin(); }
rend()186   const_reverse_iterator rend() const { return impl_.rend(); }
187 
remove_prefix(size_type n)188   void remove_prefix(size_type n) { impl_.remove_prefix(n); }
remove_suffix(size_type n)189   void remove_suffix(size_type n) { impl_.remove_suffix(n); }
pop_back()190   void pop_back() { remove_suffix(1); }
pop_front()191   void pop_front() { remove_prefix(1); }
192 
193   // These relational operators have the same semantics as the
194   // std::vector<T> relational operators: they do deep (element-wise)
195   // comparisons.  Array slices are equal iff their size is the same
196   // and all their elements are equal.
197   bool operator==(ArraySlice<T> other) const { return impl_ == other.impl_; }
198   bool operator!=(ArraySlice<T> other) const { return impl_ != other.impl_; }
199 
200  private:
201   Impl impl_;
202 };
203 
204 // Mutable version of ArraySlice, which allows the clients to mutate the
205 // underlying data. It is implicitly convertible to ArraySlice since it provides
206 // the data() and size() methods with correct signatures. When a
207 // MutableArraySlice is created from a pointer to a container (as opposed to raw
208 // memory pointer), the pointer must not be null.
209 //
210 // A note on const-ness: "mutable" here refers to the mutability of the
211 // underlying data, not of the slice itself. It is perfectly reasonable to have
212 // a variable of type "const MutableArraySlice<T>"; this means that the bounds
213 // of the view on the array cannot be changed, but the underlying data in the
214 // array still may be modified. This is akin to a "T* const" pointer, as opposed
215 // to a "const T*" pointer (corresponding to a non-const ArraySlice<T>).
216 template <typename T>
217 class MutableArraySlice {
218  private:
219   typedef array_slice_internal::MutableArraySliceImpl<T> Impl;
220 
221  public:
222   typedef T value_type;
223   typedef typename Impl::pointer pointer;
224   typedef typename Impl::const_pointer const_pointer;
225   typedef typename Impl::reference reference;
226   typedef typename Impl::const_reference const_reference;
227   typedef typename Impl::iterator iterator;
228   typedef typename Impl::const_iterator const_iterator;
229   typedef typename Impl::reverse_iterator reverse_iterator;
230   typedef typename Impl::const_reverse_iterator const_reverse_iterator;
231   typedef typename Impl::size_type size_type;
232   typedef typename Impl::difference_type difference_type;
233 
234   static const size_type npos = Impl::npos;
235 
MutableArraySlice()236   MutableArraySlice() : impl_(nullptr, 0) {}
MutableArraySlice(pointer array,size_type length)237   MutableArraySlice(pointer array, size_type length) : impl_(array, length) {}
238 
239   // Implicit conversion constructors
MutableArraySlice(std::vector<value_type> * v)240   MutableArraySlice(std::vector<value_type>* v)  // NOLINT(runtime/explicit)
241       : impl_(v->data(), v->size()) {}
242 
243   template <size_t N>
MutableArraySlice(value_type (& a)[N])244   MutableArraySlice(value_type (&a)[N])  // NOLINT(runtime/explicit)
245       : impl_(a, N) {}
246 
247   template <int N>
MutableArraySlice(InlinedVector<value_type,N> * v)248   MutableArraySlice(
249       InlinedVector<value_type, N>* v)  // NOLINT(runtime/explicit)
250       : impl_(v->data(), v->size()) {}
251 
252   // The constructor for any class supplying 'T* data()' or 'T* mutable_data()'
253   // (the former is called if both exist), and 'some_integral_type size()
254   // const'. proto2::RepeatedField is an example of this. Also supports string
255   // arguments, when T==char. The appropriate ctor is selected using SFINAE. See
256   // array_slice_internal.h for details.
257   template <typename V,
258             typename = typename Impl::template EnableIfConvertibleFrom<V>>
MutableArraySlice(V * v)259   MutableArraySlice(V* v)  // NOLINT(runtime/explicit)
260       : impl_(v) {}
261 
262   // Substring of another MutableArraySlice.
263   // pos must be non-negative and <= x.length().
264   // len must be non-negative and will be pinned to at most x.length() - pos.
265   // If len==npos, the substring continues till the end of x.
MutableArraySlice(const MutableArraySlice & x,size_type pos,size_type len)266   MutableArraySlice(const MutableArraySlice& x, size_type pos, size_type len)
267       : impl_(x.impl_, pos, len) {}
268 
269   // Accessors.
data()270   pointer data() const { return impl_.data(); }
size()271   size_type size() const { return impl_.size(); }
length()272   size_type length() const { return size(); }
empty()273   bool empty() const { return size() == 0; }
274 
clear()275   void clear() { impl_.clear(); }
276 
277   reference operator[](size_type i) const { return impl_[i]; }
at(size_type i)278   reference at(size_type i) const { return impl_.at(i); }
front()279   reference front() const { return impl_.front(); }
back()280   reference back() const { return impl_.back(); }
281 
begin()282   iterator begin() const { return impl_.begin(); }
end()283   iterator end() const { return impl_.end(); }
rbegin()284   reverse_iterator rbegin() const { return impl_.rbegin(); }
rend()285   reverse_iterator rend() const { return impl_.rend(); }
286 
remove_prefix(size_type n)287   void remove_prefix(size_type n) { impl_.remove_prefix(n); }
remove_suffix(size_type n)288   void remove_suffix(size_type n) { impl_.remove_suffix(n); }
pop_back()289   void pop_back() { remove_suffix(1); }
pop_front()290   void pop_front() { remove_prefix(1); }
291 
292   bool operator==(ArraySlice<T> other) const {
293     return ArraySlice<T>(*this) == other;
294   }
295   bool operator!=(ArraySlice<T> other) const {
296     return ArraySlice<T>(*this) != other;
297   }
298 
299   // DEPRECATED(jacobsa): Please use data() instead.
mutable_data()300   pointer mutable_data() const { return impl_.data(); }
301 
302  private:
303   Impl impl_;
304 };
305 
306 template <typename T>
307 const typename ArraySlice<T>::size_type ArraySlice<T>::npos;
308 template <typename T>
309 const typename MutableArraySlice<T>::size_type MutableArraySlice<T>::npos;
310 
311 }  // namespace gtl
312 }  // namespace tensorflow
313 
314 #endif  // TENSORFLOW_LIB_GTL_ARRAY_SLICE_H_
315