• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <tmmintrin.h>  // SSSE3
12 
13 #include <string.h>
14 
15 #include "./vpx_dsp_rtcd.h"
16 #include "vpx_dsp/vpx_filter.h"
17 #include "vpx_dsp/x86/convolve.h"
18 #include "vpx_dsp/x86/convolve_ssse3.h"
19 #include "vpx_dsp/x86/mem_sse2.h"
20 #include "vpx_dsp/x86/transpose_sse2.h"
21 #include "vpx_mem/vpx_mem.h"
22 #include "vpx_ports/mem.h"
23 
24 // These are reused by the avx2 intrinsics.
25 // vpx_filter_block1d8_v8_intrin_ssse3()
26 // vpx_filter_block1d8_h8_intrin_ssse3()
27 // vpx_filter_block1d4_h8_intrin_ssse3()
28 
shuffle_filter_convolve8_8_ssse3(const __m128i * const s,const int16_t * const filter)29 static INLINE __m128i shuffle_filter_convolve8_8_ssse3(
30     const __m128i *const s, const int16_t *const filter) {
31   __m128i f[4];
32   shuffle_filter_ssse3(filter, f);
33   return convolve8_8_ssse3(s, f);
34 }
35 
vpx_filter_block1d4_h8_intrin_ssse3(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)36 void vpx_filter_block1d4_h8_intrin_ssse3(
37     const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
38     ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
39   __m128i firstFilters, secondFilters, shuffle1, shuffle2;
40   __m128i srcRegFilt1, srcRegFilt2;
41   __m128i addFilterReg64, filtersReg, srcReg;
42   unsigned int i;
43 
44   // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
45   addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
46   filtersReg = _mm_loadu_si128((const __m128i *)filter);
47   // converting the 16 bit (short) to  8 bit (byte) and have the same data
48   // in both lanes of 128 bit register.
49   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
50 
51   // duplicate only the first 16 bits in the filter into the first lane
52   firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
53   // duplicate only the third 16 bit in the filter into the first lane
54   secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
55   // duplicate only the seconds 16 bits in the filter into the second lane
56   // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
57   firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
58   // duplicate only the forth 16 bits in the filter into the second lane
59   // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
60   secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
61 
62   // loading the local filters
63   shuffle1 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6);
64   shuffle2 = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10);
65 
66   for (i = 0; i < output_height; i++) {
67     srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
68 
69     // filter the source buffer
70     srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
71     srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);
72 
73     // multiply 2 adjacent elements with the filter and add the result
74     srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
75     srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
76 
77     // sum the results together, saturating only on the final step
78     // the specific order of the additions prevents outranges
79     srcRegFilt1 = _mm_add_epi16(srcRegFilt1, srcRegFilt2);
80 
81     // extract the higher half of the register
82     srcRegFilt2 = _mm_srli_si128(srcRegFilt1, 8);
83 
84     // add the rounding offset early to avoid another saturated add
85     srcRegFilt1 = _mm_add_epi16(srcRegFilt1, addFilterReg64);
86     srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
87 
88     // shift by 7 bit each 16 bits
89     srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
90 
91     // shrink to 8 bit each 16 bits
92     srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
93     src_ptr += src_pitch;
94 
95     // save only 4 bytes
96     *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);
97 
98     output_ptr += output_pitch;
99   }
100 }
101 
vpx_filter_block1d8_h8_intrin_ssse3(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)102 void vpx_filter_block1d8_h8_intrin_ssse3(
103     const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
104     ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
105   unsigned int i;
106   __m128i f[4], filt[4], s[4];
107 
108   shuffle_filter_ssse3(filter, f);
109   filt[0] = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
110   filt[1] = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
111   filt[2] = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12);
112   filt[3] =
113       _mm_setr_epi8(6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14);
114 
115   for (i = 0; i < output_height; i++) {
116     const __m128i srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
117 
118     // filter the source buffer
119     s[0] = _mm_shuffle_epi8(srcReg, filt[0]);
120     s[1] = _mm_shuffle_epi8(srcReg, filt[1]);
121     s[2] = _mm_shuffle_epi8(srcReg, filt[2]);
122     s[3] = _mm_shuffle_epi8(srcReg, filt[3]);
123     s[0] = convolve8_8_ssse3(s, f);
124 
125     // shrink to 8 bit each 16 bits
126     s[0] = _mm_packus_epi16(s[0], s[0]);
127 
128     src_ptr += src_pitch;
129 
130     // save only 8 bytes
131     _mm_storel_epi64((__m128i *)&output_ptr[0], s[0]);
132 
133     output_ptr += output_pitch;
134   }
135 }
136 
vpx_filter_block1d8_v8_intrin_ssse3(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t out_pitch,uint32_t output_height,const int16_t * filter)137 void vpx_filter_block1d8_v8_intrin_ssse3(
138     const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
139     ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
140   unsigned int i;
141   __m128i f[4], s[8], ss[4];
142 
143   shuffle_filter_ssse3(filter, f);
144 
145   // load the first 7 rows of 8 bytes
146   s[0] = _mm_loadl_epi64((const __m128i *)(src_ptr + 0 * src_pitch));
147   s[1] = _mm_loadl_epi64((const __m128i *)(src_ptr + 1 * src_pitch));
148   s[2] = _mm_loadl_epi64((const __m128i *)(src_ptr + 2 * src_pitch));
149   s[3] = _mm_loadl_epi64((const __m128i *)(src_ptr + 3 * src_pitch));
150   s[4] = _mm_loadl_epi64((const __m128i *)(src_ptr + 4 * src_pitch));
151   s[5] = _mm_loadl_epi64((const __m128i *)(src_ptr + 5 * src_pitch));
152   s[6] = _mm_loadl_epi64((const __m128i *)(src_ptr + 6 * src_pitch));
153 
154   for (i = 0; i < output_height; i++) {
155     // load the last 8 bytes
156     s[7] = _mm_loadl_epi64((const __m128i *)(src_ptr + 7 * src_pitch));
157 
158     // merge the result together
159     ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
160     ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
161 
162     // merge the result together
163     ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
164     ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
165 
166     ss[0] = convolve8_8_ssse3(ss, f);
167     // shrink to 8 bit each 16 bits
168     ss[0] = _mm_packus_epi16(ss[0], ss[0]);
169 
170     src_ptr += src_pitch;
171 
172     // shift down a row
173     s[0] = s[1];
174     s[1] = s[2];
175     s[2] = s[3];
176     s[3] = s[4];
177     s[4] = s[5];
178     s[5] = s[6];
179     s[6] = s[7];
180 
181     // save only 8 bytes convolve result
182     _mm_storel_epi64((__m128i *)&output_ptr[0], ss[0]);
183 
184     output_ptr += out_pitch;
185   }
186 }
187 
188 filter8_1dfunction vpx_filter_block1d16_v8_ssse3;
189 filter8_1dfunction vpx_filter_block1d16_h8_ssse3;
190 filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
191 filter8_1dfunction vpx_filter_block1d8_h8_ssse3;
192 filter8_1dfunction vpx_filter_block1d4_v8_ssse3;
193 filter8_1dfunction vpx_filter_block1d4_h8_ssse3;
194 filter8_1dfunction vpx_filter_block1d16_v8_avg_ssse3;
195 filter8_1dfunction vpx_filter_block1d16_h8_avg_ssse3;
196 filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3;
197 filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3;
198 filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3;
199 filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3;
200 
201 filter8_1dfunction vpx_filter_block1d16_v2_ssse3;
202 filter8_1dfunction vpx_filter_block1d16_h2_ssse3;
203 filter8_1dfunction vpx_filter_block1d8_v2_ssse3;
204 filter8_1dfunction vpx_filter_block1d8_h2_ssse3;
205 filter8_1dfunction vpx_filter_block1d4_v2_ssse3;
206 filter8_1dfunction vpx_filter_block1d4_h2_ssse3;
207 filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3;
208 filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3;
209 filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3;
210 filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3;
211 filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3;
212 filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3;
213 
214 // void vpx_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
215 //                                uint8_t *dst, ptrdiff_t dst_stride,
216 //                                const InterpKernel *filter, int x0_q4,
217 //                                int32_t x_step_q4, int y0_q4, int y_step_q4,
218 //                                int w, int h);
219 // void vpx_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
220 //                               uint8_t *dst, ptrdiff_t dst_stride,
221 //                               const InterpKernel *filter, int x0_q4,
222 //                               int32_t x_step_q4, int y0_q4, int y_step_q4,
223 //                               int w, int h);
224 // void vpx_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
225 //                                    uint8_t *dst, ptrdiff_t dst_stride,
226 //                                    const InterpKernel *filter, int x0_q4,
227 //                                    int32_t x_step_q4, int y0_q4,
228 //                                    int y_step_q4, int w, int h);
229 // void vpx_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
230 //                                   uint8_t *dst, ptrdiff_t dst_stride,
231 //                                   const InterpKernel *filter, int x0_q4,
232 //                                   int32_t x_step_q4, int y0_q4,
233 //                                   int y_step_q4, int w, int h);
234 FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , ssse3);
235 FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , ssse3);
236 FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, ssse3);
237 FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, ssse3);
238 
filter_horiz_w8_ssse3(const uint8_t * const src,const ptrdiff_t src_stride,uint8_t * const dst,const int16_t * const x_filter)239 static void filter_horiz_w8_ssse3(const uint8_t *const src,
240                                   const ptrdiff_t src_stride,
241                                   uint8_t *const dst,
242                                   const int16_t *const x_filter) {
243   __m128i s[8], ss[4], temp;
244 
245   load_8bit_8x8(src, src_stride, s);
246   // 00 01 10 11 20 21 30 31  40 41 50 51 60 61 70 71
247   // 02 03 12 13 22 23 32 33  42 43 52 53 62 63 72 73
248   // 04 05 14 15 24 25 34 35  44 45 54 55 64 65 74 75
249   // 06 07 16 17 26 27 36 37  46 47 56 57 66 67 76 77
250   transpose_16bit_4x8(s, ss);
251   temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter);
252   // shrink to 8 bit each 16 bits
253   temp = _mm_packus_epi16(temp, temp);
254   // save only 8 bytes convolve result
255   _mm_storel_epi64((__m128i *)dst, temp);
256 }
257 
transpose8x8_to_dst(const uint8_t * const src,const ptrdiff_t src_stride,uint8_t * const dst,const ptrdiff_t dst_stride)258 static void transpose8x8_to_dst(const uint8_t *const src,
259                                 const ptrdiff_t src_stride, uint8_t *const dst,
260                                 const ptrdiff_t dst_stride) {
261   __m128i s[8];
262 
263   load_8bit_8x8(src, src_stride, s);
264   transpose_8bit_8x8(s, s);
265   store_8bit_8x8(s, dst, dst_stride);
266 }
267 
scaledconvolve_horiz_w8(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const x_filters,const int x0_q4,const int x_step_q4,const int w,const int h)268 static void scaledconvolve_horiz_w8(const uint8_t *src,
269                                     const ptrdiff_t src_stride, uint8_t *dst,
270                                     const ptrdiff_t dst_stride,
271                                     const InterpKernel *const x_filters,
272                                     const int x0_q4, const int x_step_q4,
273                                     const int w, const int h) {
274   DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
275   int x, y, z;
276   src -= SUBPEL_TAPS / 2 - 1;
277 
278   // This function processes 8x8 areas. The intermediate height is not always
279   // a multiple of 8, so force it to be a multiple of 8 here.
280   y = h + (8 - (h & 0x7));
281 
282   do {
283     int x_q4 = x0_q4;
284     for (x = 0; x < w; x += 8) {
285       // process 8 src_x steps
286       for (z = 0; z < 8; ++z) {
287         const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
288         const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
289         if (x_q4 & SUBPEL_MASK) {
290           filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
291         } else {
292           int i;
293           for (i = 0; i < 8; ++i) {
294             temp[z * 8 + i] = src_x[i * src_stride + 3];
295           }
296         }
297         x_q4 += x_step_q4;
298       }
299 
300       // transpose the 8x8 filters values back to dst
301       transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
302     }
303 
304     src += src_stride * 8;
305     dst += dst_stride * 8;
306   } while (y -= 8);
307 }
308 
filter_horiz_w4_ssse3(const uint8_t * const src,const ptrdiff_t src_stride,uint8_t * const dst,const int16_t * const filter)309 static void filter_horiz_w4_ssse3(const uint8_t *const src,
310                                   const ptrdiff_t src_stride,
311                                   uint8_t *const dst,
312                                   const int16_t *const filter) {
313   __m128i s[4], ss[2];
314   __m128i temp;
315 
316   load_8bit_8x4(src, src_stride, s);
317   transpose_16bit_4x4(s, ss);
318   // 00 01 10 11 20 21 30 31
319   s[0] = ss[0];
320   // 02 03 12 13 22 23 32 33
321   s[1] = _mm_srli_si128(ss[0], 8);
322   // 04 05 14 15 24 25 34 35
323   s[2] = ss[1];
324   // 06 07 16 17 26 27 36 37
325   s[3] = _mm_srli_si128(ss[1], 8);
326 
327   temp = shuffle_filter_convolve8_8_ssse3(s, filter);
328   // shrink to 8 bit each 16 bits
329   temp = _mm_packus_epi16(temp, temp);
330   // save only 4 bytes
331   *(int *)dst = _mm_cvtsi128_si32(temp);
332 }
333 
transpose4x4_to_dst(const uint8_t * const src,const ptrdiff_t src_stride,uint8_t * const dst,const ptrdiff_t dst_stride)334 static void transpose4x4_to_dst(const uint8_t *const src,
335                                 const ptrdiff_t src_stride, uint8_t *const dst,
336                                 const ptrdiff_t dst_stride) {
337   __m128i s[4];
338 
339   load_8bit_4x4(src, src_stride, s);
340   s[0] = transpose_8bit_4x4(s);
341   s[1] = _mm_srli_si128(s[0], 4);
342   s[2] = _mm_srli_si128(s[0], 8);
343   s[3] = _mm_srli_si128(s[0], 12);
344   store_8bit_4x4(s, dst, dst_stride);
345 }
346 
scaledconvolve_horiz_w4(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const x_filters,const int x0_q4,const int x_step_q4,const int w,const int h)347 static void scaledconvolve_horiz_w4(const uint8_t *src,
348                                     const ptrdiff_t src_stride, uint8_t *dst,
349                                     const ptrdiff_t dst_stride,
350                                     const InterpKernel *const x_filters,
351                                     const int x0_q4, const int x_step_q4,
352                                     const int w, const int h) {
353   DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
354   int x, y, z;
355   src -= SUBPEL_TAPS / 2 - 1;
356 
357   for (y = 0; y < h; y += 4) {
358     int x_q4 = x0_q4;
359     for (x = 0; x < w; x += 4) {
360       // process 4 src_x steps
361       for (z = 0; z < 4; ++z) {
362         const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
363         const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
364         if (x_q4 & SUBPEL_MASK) {
365           filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
366         } else {
367           int i;
368           for (i = 0; i < 4; ++i) {
369             temp[z * 4 + i] = src_x[i * src_stride + 3];
370           }
371         }
372         x_q4 += x_step_q4;
373       }
374 
375       // transpose the 4x4 filters values back to dst
376       transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
377     }
378 
379     src += src_stride * 4;
380     dst += dst_stride * 4;
381   }
382 }
383 
filter_vert_kernel(const __m128i * const s,const int16_t * const filter)384 static __m128i filter_vert_kernel(const __m128i *const s,
385                                   const int16_t *const filter) {
386   __m128i ss[4];
387   __m128i temp;
388 
389   // 00 10 01 11 02 12 03 13
390   ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
391   // 20 30 21 31 22 32 23 33
392   ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
393   // 40 50 41 51 42 52 43 53
394   ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
395   // 60 70 61 71 62 72 63 73
396   ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
397 
398   temp = shuffle_filter_convolve8_8_ssse3(ss, filter);
399   // shrink to 8 bit each 16 bits
400   return _mm_packus_epi16(temp, temp);
401 }
402 
filter_vert_w4_ssse3(const uint8_t * const src,const ptrdiff_t src_stride,uint8_t * const dst,const int16_t * const filter)403 static void filter_vert_w4_ssse3(const uint8_t *const src,
404                                  const ptrdiff_t src_stride, uint8_t *const dst,
405                                  const int16_t *const filter) {
406   __m128i s[8];
407   __m128i temp;
408 
409   load_8bit_4x8(src, src_stride, s);
410   temp = filter_vert_kernel(s, filter);
411   // save only 4 bytes
412   *(int *)dst = _mm_cvtsi128_si32(temp);
413 }
414 
scaledconvolve_vert_w4(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * const dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)415 static void scaledconvolve_vert_w4(
416     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
417     const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
418     const int y0_q4, const int y_step_q4, const int w, const int h) {
419   int y;
420   int y_q4 = y0_q4;
421 
422   src -= src_stride * (SUBPEL_TAPS / 2 - 1);
423   for (y = 0; y < h; ++y) {
424     const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
425     const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
426 
427     if (y_q4 & SUBPEL_MASK) {
428       filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
429     } else {
430       memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
431     }
432 
433     y_q4 += y_step_q4;
434   }
435 }
436 
filter_vert_w8_ssse3(const uint8_t * const src,const ptrdiff_t src_stride,uint8_t * const dst,const int16_t * const filter)437 static void filter_vert_w8_ssse3(const uint8_t *const src,
438                                  const ptrdiff_t src_stride, uint8_t *const dst,
439                                  const int16_t *const filter) {
440   __m128i s[8], temp;
441 
442   load_8bit_8x8(src, src_stride, s);
443   temp = filter_vert_kernel(s, filter);
444   // save only 8 bytes convolve result
445   _mm_storel_epi64((__m128i *)dst, temp);
446 }
447 
scaledconvolve_vert_w8(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * const dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)448 static void scaledconvolve_vert_w8(
449     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
450     const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
451     const int y0_q4, const int y_step_q4, const int w, const int h) {
452   int y;
453   int y_q4 = y0_q4;
454 
455   src -= src_stride * (SUBPEL_TAPS / 2 - 1);
456   for (y = 0; y < h; ++y) {
457     const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
458     const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
459     if (y_q4 & SUBPEL_MASK) {
460       filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
461     } else {
462       memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
463     }
464     y_q4 += y_step_q4;
465   }
466 }
467 
filter_vert_w16_ssse3(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * const dst,const int16_t * const filter,const int w)468 static void filter_vert_w16_ssse3(const uint8_t *src,
469                                   const ptrdiff_t src_stride,
470                                   uint8_t *const dst,
471                                   const int16_t *const filter, const int w) {
472   int i;
473   __m128i f[4];
474   shuffle_filter_ssse3(filter, f);
475 
476   for (i = 0; i < w; i += 16) {
477     __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi;
478 
479     loadu_8bit_16x8(src, src_stride, s);
480 
481     // merge the result together
482     s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]);
483     s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]);
484     s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]);
485     s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]);
486     s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]);
487     s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]);
488     s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]);
489     s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]);
490     temp_lo = convolve8_8_ssse3(s_lo, f);
491     temp_hi = convolve8_8_ssse3(s_hi, f);
492 
493     // shrink to 8 bit each 16 bits, the first lane contain the first convolve
494     // result and the second lane contain the second convolve result
495     temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
496     src += 16;
497     // save 16 bytes convolve result
498     _mm_store_si128((__m128i *)&dst[i], temp_hi);
499   }
500 }
501 
scaledconvolve_vert_w16(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * const dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filters,const int y0_q4,const int y_step_q4,const int w,const int h)502 static void scaledconvolve_vert_w16(
503     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
504     const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
505     const int y0_q4, const int y_step_q4, const int w, const int h) {
506   int y;
507   int y_q4 = y0_q4;
508 
509   src -= src_stride * (SUBPEL_TAPS / 2 - 1);
510   for (y = 0; y < h; ++y) {
511     const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
512     const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
513     if (y_q4 & SUBPEL_MASK) {
514       filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
515                             w);
516     } else {
517       memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
518     }
519     y_q4 += y_step_q4;
520   }
521 }
522 
vpx_scaled_2d_ssse3(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)523 void vpx_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
524                          ptrdiff_t dst_stride, const InterpKernel *filter,
525                          int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
526                          int w, int h) {
527   // Note: Fixed size intermediate buffer, temp, places limits on parameters.
528   // 2d filtering proceeds in 2 steps:
529   //   (1) Interpolate horizontally into an intermediate buffer, temp.
530   //   (2) Interpolate temp vertically to derive the sub-pixel result.
531   // Deriving the maximum number of rows in the temp buffer (135):
532   // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
533   // --Largest block size is 64x64 pixels.
534   // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
535   //   original frame (in 1/16th pixel units).
536   // --Must round-up because block may be located at sub-pixel position.
537   // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
538   // --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
539   // --Require an additional 8 rows for the horiz_w8 transpose tail.
540   // When calling in frame scaling function, the smallest scaling factor is x1/4
541   // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
542   // big enough.
543   DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
544   const int intermediate_height =
545       (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
546 
547   assert(w <= 64);
548   assert(h <= 64);
549   assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
550   assert(x_step_q4 <= 64);
551 
552   if (w >= 8) {
553     scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
554                             src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
555                             intermediate_height);
556   } else {
557     scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
558                             src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
559                             intermediate_height);
560   }
561 
562   if (w >= 16) {
563     scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
564                             dst_stride, filter, y0_q4, y_step_q4, w, h);
565   } else if (w == 8) {
566     scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
567                            dst_stride, filter, y0_q4, y_step_q4, w, h);
568   } else {
569     scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
570                            dst_stride, filter, y0_q4, y_step_q4, w, h);
571   }
572 }
573 
574 // void vp9_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride,
575 //                          uint8_t *dst, ptrdiff_t dst_stride,
576 //                          const InterpKernel *filter, int x0_q4,
577 //                          int32_t x_step_q4, int y0_q4, int y_step_q4,
578 //                          int w, int h);
579 // void vpx_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride,
580 //                              uint8_t *dst, ptrdiff_t dst_stride,
581 //                              const InterpKernel *filter, int x0_q4,
582 //                              int32_t x_step_q4, int y0_q4, int y_step_q4,
583 //                              int w, int h);
584 FUN_CONV_2D(, ssse3);
585 FUN_CONV_2D(avg_, ssse3);
586