1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 2 * All rights reserved. 3 * 4 * This package is an SSL implementation written 5 * by Eric Young (eay@cryptsoft.com). 6 * The implementation was written so as to conform with Netscapes SSL. 7 * 8 * This library is free for commercial and non-commercial use as long as 9 * the following conditions are aheared to. The following conditions 10 * apply to all code found in this distribution, be it the RC4, RSA, 11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 12 * included with this distribution is covered by the same copyright terms 13 * except that the holder is Tim Hudson (tjh@cryptsoft.com). 14 * 15 * Copyright remains Eric Young's, and as such any Copyright notices in 16 * the code are not to be removed. 17 * If this package is used in a product, Eric Young should be given attribution 18 * as the author of the parts of the library used. 19 * This can be in the form of a textual message at program startup or 20 * in documentation (online or textual) provided with the package. 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 1. Redistributions of source code must retain the copyright 26 * notice, this list of conditions and the following disclaimer. 27 * 2. Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in the 29 * documentation and/or other materials provided with the distribution. 30 * 3. All advertising materials mentioning features or use of this software 31 * must display the following acknowledgement: 32 * "This product includes cryptographic software written by 33 * Eric Young (eay@cryptsoft.com)" 34 * The word 'cryptographic' can be left out if the rouines from the library 35 * being used are not cryptographic related :-). 36 * 4. If you include any Windows specific code (or a derivative thereof) from 37 * the apps directory (application code) you must include an acknowledgement: 38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 39 * 40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * The licence and distribution terms for any publically available version or 53 * derivative of this code cannot be changed. i.e. this code cannot simply be 54 * copied and put under another distribution licence 55 * [including the GNU Public Licence.] */ 56 57 #ifndef OPENSSL_HEADER_EVP_H 58 #define OPENSSL_HEADER_EVP_H 59 60 #include <openssl/base.h> 61 62 #include <openssl/thread.h> 63 64 // OpenSSL included digest and cipher functions in this header so we include 65 // them for users that still expect that. 66 // 67 // TODO(fork): clean up callers so that they include what they use. 68 #include <openssl/aead.h> 69 #include <openssl/base64.h> 70 #include <openssl/cipher.h> 71 #include <openssl/digest.h> 72 #include <openssl/nid.h> 73 74 #if defined(__cplusplus) 75 extern "C" { 76 #endif 77 78 79 // EVP abstracts over public/private key algorithms. 80 81 82 // Public key objects. 83 84 // EVP_PKEY_new creates a new, empty public-key object and returns it or NULL 85 // on allocation failure. 86 OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new(void); 87 88 // EVP_PKEY_free frees all data referenced by |pkey| and then frees |pkey| 89 // itself. 90 OPENSSL_EXPORT void EVP_PKEY_free(EVP_PKEY *pkey); 91 92 // EVP_PKEY_up_ref increments the reference count of |pkey| and returns one. 93 OPENSSL_EXPORT int EVP_PKEY_up_ref(EVP_PKEY *pkey); 94 95 // EVP_PKEY_is_opaque returns one if |pkey| is opaque. Opaque keys are backed by 96 // custom implementations which do not expose key material and parameters. It is 97 // an error to attempt to duplicate, export, or compare an opaque key. 98 OPENSSL_EXPORT int EVP_PKEY_is_opaque(const EVP_PKEY *pkey); 99 100 // EVP_PKEY_cmp compares |a| and |b| and returns one if they are equal, zero if 101 // not and a negative number on error. 102 // 103 // WARNING: this differs from the traditional return value of a "cmp" 104 // function. 105 OPENSSL_EXPORT int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b); 106 107 // EVP_PKEY_copy_parameters sets the parameters of |to| to equal the parameters 108 // of |from|. It returns one on success and zero on error. 109 OPENSSL_EXPORT int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from); 110 111 // EVP_PKEY_missing_parameters returns one if |pkey| is missing needed 112 // parameters or zero if not, or if the algorithm doesn't take parameters. 113 OPENSSL_EXPORT int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey); 114 115 // EVP_PKEY_size returns the maximum size, in bytes, of a signature signed by 116 // |pkey|. For an RSA key, this returns the number of bytes needed to represent 117 // the modulus. For an EC key, this returns the maximum size of a DER-encoded 118 // ECDSA signature. 119 OPENSSL_EXPORT int EVP_PKEY_size(const EVP_PKEY *pkey); 120 121 // EVP_PKEY_bits returns the "size", in bits, of |pkey|. For an RSA key, this 122 // returns the bit length of the modulus. For an EC key, this returns the bit 123 // length of the group order. 124 OPENSSL_EXPORT int EVP_PKEY_bits(EVP_PKEY *pkey); 125 126 // EVP_PKEY_id returns the type of |pkey|, which is one of the |EVP_PKEY_*| 127 // values. 128 OPENSSL_EXPORT int EVP_PKEY_id(const EVP_PKEY *pkey); 129 130 // EVP_PKEY_type returns |nid| if |nid| is a known key type and |NID_undef| 131 // otherwise. 132 OPENSSL_EXPORT int EVP_PKEY_type(int nid); 133 134 135 // Getting and setting concrete public key types. 136 // 137 // The following functions get and set the underlying public key in an 138 // |EVP_PKEY| object. The |set1| functions take an additional reference to the 139 // underlying key and return one on success or zero on error. The |assign| 140 // functions adopt the caller's reference. The |get1| functions return a fresh 141 // reference to the underlying object or NULL if |pkey| is not of the correct 142 // type. The |get0| functions behave the same but return a non-owning 143 // pointer. 144 145 OPENSSL_EXPORT int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key); 146 OPENSSL_EXPORT int EVP_PKEY_assign_RSA(EVP_PKEY *pkey, RSA *key); 147 OPENSSL_EXPORT RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey); 148 OPENSSL_EXPORT RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey); 149 150 OPENSSL_EXPORT int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key); 151 OPENSSL_EXPORT int EVP_PKEY_assign_DSA(EVP_PKEY *pkey, DSA *key); 152 OPENSSL_EXPORT DSA *EVP_PKEY_get0_DSA(EVP_PKEY *pkey); 153 OPENSSL_EXPORT DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey); 154 155 OPENSSL_EXPORT int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); 156 OPENSSL_EXPORT int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey, EC_KEY *key); 157 OPENSSL_EXPORT EC_KEY *EVP_PKEY_get0_EC_KEY(EVP_PKEY *pkey); 158 OPENSSL_EXPORT EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey); 159 160 // EVP_PKEY_new_ed25519_public returns a newly allocated |EVP_PKEY| wrapping an 161 // Ed25519 public key, or NULL on allocation error. 162 OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_ed25519_public( 163 const uint8_t public_key[32]); 164 165 // EVP_PKEY_new_ed25519_private returns a newly allocated |EVP_PKEY| wrapping an 166 // Ed25519 private key, or NULL on allocation error. 167 OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_new_ed25519_private( 168 const uint8_t private_key[64]); 169 170 #define EVP_PKEY_NONE NID_undef 171 #define EVP_PKEY_RSA NID_rsaEncryption 172 #define EVP_PKEY_DSA NID_dsa 173 #define EVP_PKEY_EC NID_X9_62_id_ecPublicKey 174 #define EVP_PKEY_ED25519 NID_ED25519 175 176 // EVP_PKEY_assign sets the underlying key of |pkey| to |key|, which must be of 177 // the given type. The |type| argument should be one of the |EVP_PKEY_*| 178 // values. 179 OPENSSL_EXPORT int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key); 180 181 // EVP_PKEY_set_type sets the type of |pkey| to |type|, which should be one of 182 // the |EVP_PKEY_*| values. It returns one if successful or zero otherwise. If 183 // |pkey| is NULL, it simply reports whether the type is known. 184 OPENSSL_EXPORT int EVP_PKEY_set_type(EVP_PKEY *pkey, int type); 185 186 // EVP_PKEY_cmp_parameters compares the parameters of |a| and |b|. It returns 187 // one if they match, zero if not, or a negative number of on error. 188 // 189 // WARNING: the return value differs from the usual return value convention. 190 OPENSSL_EXPORT int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, 191 const EVP_PKEY *b); 192 193 194 // ASN.1 functions 195 196 // EVP_parse_public_key decodes a DER-encoded SubjectPublicKeyInfo structure 197 // (RFC 5280) from |cbs| and advances |cbs|. It returns a newly-allocated 198 // |EVP_PKEY| or NULL on error. 199 // 200 // The caller must check the type of the parsed public key to ensure it is 201 // suitable and validate other desired key properties such as RSA modulus size 202 // or EC curve. 203 OPENSSL_EXPORT EVP_PKEY *EVP_parse_public_key(CBS *cbs); 204 205 // EVP_marshal_public_key marshals |key| as a DER-encoded SubjectPublicKeyInfo 206 // structure (RFC 5280) and appends the result to |cbb|. It returns one on 207 // success and zero on error. 208 OPENSSL_EXPORT int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key); 209 210 // EVP_parse_private_key decodes a DER-encoded PrivateKeyInfo structure (RFC 211 // 5208) from |cbs| and advances |cbs|. It returns a newly-allocated |EVP_PKEY| 212 // or NULL on error. 213 // 214 // The caller must check the type of the parsed private key to ensure it is 215 // suitable and validate other desired key properties such as RSA modulus size 216 // or EC curve. 217 // 218 // A PrivateKeyInfo ends with an optional set of attributes. These are not 219 // processed and so this function will silently ignore any trailing data in the 220 // structure. 221 OPENSSL_EXPORT EVP_PKEY *EVP_parse_private_key(CBS *cbs); 222 223 // EVP_marshal_private_key marshals |key| as a DER-encoded PrivateKeyInfo 224 // structure (RFC 5208) and appends the result to |cbb|. It returns one on 225 // success and zero on error. 226 OPENSSL_EXPORT int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key); 227 228 229 // Signing 230 231 // EVP_DigestSignInit sets up |ctx| for a signing operation with |type| and 232 // |pkey|. The |ctx| argument must have been initialised with 233 // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing 234 // operation will be written to |*pctx|; this can be used to set alternative 235 // signing options. 236 // 237 // For single-shot signing algorithms which do not use a pre-hash, such as 238 // Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is 239 // present so the API is uniform. See |EVP_DigestSign|. 240 // 241 // It returns one on success, or zero on error. 242 OPENSSL_EXPORT int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, 243 const EVP_MD *type, ENGINE *e, 244 EVP_PKEY *pkey); 245 246 // EVP_DigestSignUpdate appends |len| bytes from |data| to the data which will 247 // be signed in |EVP_DigestSignFinal|. It returns one. 248 // 249 // This function performs a streaming signing operation and will fail for 250 // signature algorithms which do not support this. Use |EVP_DigestSign| for a 251 // single-shot operation. 252 OPENSSL_EXPORT int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *data, 253 size_t len); 254 255 // EVP_DigestSignFinal signs the data that has been included by one or more 256 // calls to |EVP_DigestSignUpdate|. If |out_sig| is NULL then |*out_sig_len| is 257 // set to the maximum number of output bytes. Otherwise, on entry, 258 // |*out_sig_len| must contain the length of the |out_sig| buffer. If the call 259 // is successful, the signature is written to |out_sig| and |*out_sig_len| is 260 // set to its length. 261 // 262 // This function performs a streaming signing operation and will fail for 263 // signature algorithms which do not support this. Use |EVP_DigestSign| for a 264 // single-shot operation. 265 // 266 // It returns one on success, or zero on error. 267 OPENSSL_EXPORT int EVP_DigestSignFinal(EVP_MD_CTX *ctx, uint8_t *out_sig, 268 size_t *out_sig_len); 269 270 // EVP_DigestSign signs |data_len| bytes from |data| using |ctx|. If |out_sig| 271 // is NULL then |*out_sig_len| is set to the maximum number of output 272 // bytes. Otherwise, on entry, |*out_sig_len| must contain the length of the 273 // |out_sig| buffer. If the call is successful, the signature is written to 274 // |out_sig| and |*out_sig_len| is set to its length. 275 // 276 // It returns one on success and zero on error. 277 OPENSSL_EXPORT int EVP_DigestSign(EVP_MD_CTX *ctx, uint8_t *out_sig, 278 size_t *out_sig_len, const uint8_t *data, 279 size_t data_len); 280 281 282 // Verifying 283 284 // EVP_DigestVerifyInit sets up |ctx| for a signature verification operation 285 // with |type| and |pkey|. The |ctx| argument must have been initialised with 286 // |EVP_MD_CTX_init|. If |pctx| is not NULL, the |EVP_PKEY_CTX| of the signing 287 // operation will be written to |*pctx|; this can be used to set alternative 288 // signing options. 289 // 290 // For single-shot signing algorithms which do not use a pre-hash, such as 291 // Ed25519, |type| should be NULL. The |EVP_MD_CTX| itself is unused but is 292 // present so the API is uniform. See |EVP_DigestVerify|. 293 // 294 // It returns one on success, or zero on error. 295 OPENSSL_EXPORT int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, 296 const EVP_MD *type, ENGINE *e, 297 EVP_PKEY *pkey); 298 299 // EVP_DigestVerifyUpdate appends |len| bytes from |data| to the data which 300 // will be verified by |EVP_DigestVerifyFinal|. It returns one. 301 // 302 // This function performs streaming signature verification and will fail for 303 // signature algorithms which do not support this. Use |EVP_PKEY_verify_message| 304 // for a single-shot verification. 305 OPENSSL_EXPORT int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *data, 306 size_t len); 307 308 // EVP_DigestVerifyFinal verifies that |sig_len| bytes of |sig| are a valid 309 // signature for the data that has been included by one or more calls to 310 // |EVP_DigestVerifyUpdate|. It returns one on success and zero otherwise. 311 // 312 // This function performs streaming signature verification and will fail for 313 // signature algorithms which do not support this. Use |EVP_PKEY_verify_message| 314 // for a single-shot verification. 315 OPENSSL_EXPORT int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, 316 size_t sig_len); 317 318 // EVP_DigestVerify verifies that |sig_len| bytes from |sig| are a valid 319 // signature for |data|. It returns one on success or zero on error. 320 OPENSSL_EXPORT int EVP_DigestVerify(EVP_MD_CTX *ctx, const uint8_t *sig, 321 size_t sig_len, const uint8_t *data, 322 size_t len); 323 324 325 // Signing (old functions) 326 327 // EVP_SignInit_ex configures |ctx|, which must already have been initialised, 328 // for a fresh signing operation using the hash function |type|. It returns one 329 // on success and zero otherwise. 330 // 331 // (In order to initialise |ctx|, either obtain it initialised with 332 // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) 333 OPENSSL_EXPORT int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, 334 ENGINE *impl); 335 336 // EVP_SignInit is a deprecated version of |EVP_SignInit_ex|. 337 // 338 // TODO(fork): remove. 339 OPENSSL_EXPORT int EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type); 340 341 // EVP_SignUpdate appends |len| bytes from |data| to the data which will be 342 // signed in |EVP_SignFinal|. 343 OPENSSL_EXPORT int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *data, 344 size_t len); 345 346 // EVP_SignFinal signs the data that has been included by one or more calls to 347 // |EVP_SignUpdate|, using the key |pkey|, and writes it to |sig|. On entry, 348 // |sig| must point to at least |EVP_PKEY_size(pkey)| bytes of space. The 349 // actual size of the signature is written to |*out_sig_len|. 350 // 351 // It returns one on success and zero otherwise. 352 // 353 // It does not modify |ctx|, thus it's possible to continue to use |ctx| in 354 // order to sign a longer message. 355 OPENSSL_EXPORT int EVP_SignFinal(const EVP_MD_CTX *ctx, uint8_t *sig, 356 unsigned int *out_sig_len, EVP_PKEY *pkey); 357 358 359 // Verifying (old functions) 360 361 // EVP_VerifyInit_ex configures |ctx|, which must already have been 362 // initialised, for a fresh signature verification operation using the hash 363 // function |type|. It returns one on success and zero otherwise. 364 // 365 // (In order to initialise |ctx|, either obtain it initialised with 366 // |EVP_MD_CTX_create|, or use |EVP_MD_CTX_init|.) 367 OPENSSL_EXPORT int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, 368 ENGINE *impl); 369 370 // EVP_VerifyInit is a deprecated version of |EVP_VerifyInit_ex|. 371 // 372 // TODO(fork): remove. 373 OPENSSL_EXPORT int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type); 374 375 // EVP_VerifyUpdate appends |len| bytes from |data| to the data which will be 376 // signed in |EVP_VerifyFinal|. 377 OPENSSL_EXPORT int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *data, 378 size_t len); 379 380 // EVP_VerifyFinal verifies that |sig_len| bytes of |sig| are a valid 381 // signature, by |pkey|, for the data that has been included by one or more 382 // calls to |EVP_VerifyUpdate|. 383 // 384 // It returns one on success and zero otherwise. 385 // 386 // It does not modify |ctx|, thus it's possible to continue to use |ctx| in 387 // order to sign a longer message. 388 OPENSSL_EXPORT int EVP_VerifyFinal(EVP_MD_CTX *ctx, const uint8_t *sig, 389 size_t sig_len, EVP_PKEY *pkey); 390 391 392 // Printing 393 394 // EVP_PKEY_print_public prints a textual representation of the public key in 395 // |pkey| to |out|. Returns one on success or zero otherwise. 396 OPENSSL_EXPORT int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, 397 int indent, ASN1_PCTX *pctx); 398 399 // EVP_PKEY_print_private prints a textual representation of the private key in 400 // |pkey| to |out|. Returns one on success or zero otherwise. 401 OPENSSL_EXPORT int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, 402 int indent, ASN1_PCTX *pctx); 403 404 // EVP_PKEY_print_params prints a textual representation of the parameters in 405 // |pkey| to |out|. Returns one on success or zero otherwise. 406 OPENSSL_EXPORT int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, 407 int indent, ASN1_PCTX *pctx); 408 409 410 // Password stretching. 411 // 412 // Password stretching functions take a low-entropy password and apply a slow 413 // function that results in a key suitable for use in symmetric 414 // cryptography. 415 416 // PKCS5_PBKDF2_HMAC computes |iterations| iterations of PBKDF2 of |password| 417 // and |salt|, using |digest|, and outputs |key_len| bytes to |out_key|. It 418 // returns one on success and zero on error. 419 OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC(const char *password, size_t password_len, 420 const uint8_t *salt, size_t salt_len, 421 unsigned iterations, const EVP_MD *digest, 422 size_t key_len, uint8_t *out_key); 423 424 // PKCS5_PBKDF2_HMAC_SHA1 is the same as PKCS5_PBKDF2_HMAC, but with |digest| 425 // fixed to |EVP_sha1|. 426 OPENSSL_EXPORT int PKCS5_PBKDF2_HMAC_SHA1(const char *password, 427 size_t password_len, 428 const uint8_t *salt, size_t salt_len, 429 unsigned iterations, size_t key_len, 430 uint8_t *out_key); 431 432 // EVP_PBE_scrypt expands |password| into a secret key of length |key_len| using 433 // scrypt, as described in RFC 7914, and writes the result to |out_key|. It 434 // returns one on success and zero on error. 435 // 436 // |N|, |r|, and |p| are as described in RFC 7914 section 6. They determine the 437 // cost of the operation. If the memory required exceeds |max_mem|, the 438 // operation will fail instead. If |max_mem| is zero, a defult limit of 32MiB 439 // will be used. 440 OPENSSL_EXPORT int EVP_PBE_scrypt(const char *password, size_t password_len, 441 const uint8_t *salt, size_t salt_len, 442 uint64_t N, uint64_t r, uint64_t p, 443 size_t max_mem, uint8_t *out_key, 444 size_t key_len); 445 446 447 // Public key contexts. 448 // 449 // |EVP_PKEY_CTX| objects hold the context of an operation (e.g. signing or 450 // encrypting) that uses a public key. 451 452 // EVP_PKEY_CTX_new allocates a fresh |EVP_PKEY_CTX| for use with |pkey|. It 453 // returns the context or NULL on error. 454 OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e); 455 456 // EVP_PKEY_CTX_new_id allocates a fresh |EVP_PKEY_CTX| for a key of type |id| 457 // (e.g. |EVP_PKEY_HMAC|). This can be used for key generation where 458 // |EVP_PKEY_CTX_new| can't be used because there isn't an |EVP_PKEY| to pass 459 // it. It returns the context or NULL on error. 460 OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e); 461 462 // EVP_PKEY_CTX_free frees |ctx| and the data it owns. 463 OPENSSL_EXPORT void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx); 464 465 // EVP_PKEY_CTX_dup allocates a fresh |EVP_PKEY_CTX| and sets it equal to the 466 // state of |ctx|. It returns the fresh |EVP_PKEY_CTX| or NULL on error. 467 OPENSSL_EXPORT EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx); 468 469 // EVP_PKEY_CTX_get0_pkey returns the |EVP_PKEY| associated with |ctx|. 470 OPENSSL_EXPORT EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx); 471 472 // EVP_PKEY_sign_init initialises an |EVP_PKEY_CTX| for a signing operation. It 473 // should be called before |EVP_PKEY_sign|. 474 // 475 // It returns one on success or zero on error. 476 OPENSSL_EXPORT int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx); 477 478 // EVP_PKEY_sign signs |digest_len| bytes from |digest| using |ctx|. If |sig| is 479 // NULL, the maximum size of the signature is written to 480 // |out_sig_len|. Otherwise, |*sig_len| must contain the number of bytes of 481 // space available at |sig|. If sufficient, the signature will be written to 482 // |sig| and |*sig_len| updated with the true length. 483 // 484 // This function expects a pre-hashed input and will fail for signature 485 // algorithms which do not support this. Use |EVP_DigestSignInit| to sign an 486 // unhashed input. 487 // 488 // WARNING: Setting |sig| to NULL only gives the maximum size of the 489 // signature. The actual signature may be smaller. 490 // 491 // It returns one on success or zero on error. (Note: this differs from 492 // OpenSSL, which can also return negative values to indicate an error. ) 493 OPENSSL_EXPORT int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, 494 size_t *sig_len, const uint8_t *digest, 495 size_t digest_len); 496 497 // EVP_PKEY_verify_init initialises an |EVP_PKEY_CTX| for a signature 498 // verification operation. It should be called before |EVP_PKEY_verify|. 499 // 500 // It returns one on success or zero on error. 501 OPENSSL_EXPORT int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx); 502 503 // EVP_PKEY_verify verifies that |sig_len| bytes from |sig| are a valid 504 // signature for |digest|. 505 // 506 // This function expects a pre-hashed input and will fail for signature 507 // algorithms which do not support this. Use |EVP_DigestVerifyInit| to verify a 508 // signature given the unhashed input. 509 // 510 // It returns one on success or zero on error. 511 OPENSSL_EXPORT int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, 512 size_t sig_len, const uint8_t *digest, 513 size_t digest_len); 514 515 // EVP_PKEY_encrypt_init initialises an |EVP_PKEY_CTX| for an encryption 516 // operation. It should be called before |EVP_PKEY_encrypt|. 517 // 518 // It returns one on success or zero on error. 519 OPENSSL_EXPORT int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx); 520 521 // EVP_PKEY_encrypt encrypts |in_len| bytes from |in|. If |out| is NULL, the 522 // maximum size of the ciphertext is written to |out_len|. Otherwise, |*out_len| 523 // must contain the number of bytes of space available at |out|. If sufficient, 524 // the ciphertext will be written to |out| and |*out_len| updated with the true 525 // length. 526 // 527 // WARNING: Setting |out| to NULL only gives the maximum size of the 528 // ciphertext. The actual ciphertext may be smaller. 529 // 530 // It returns one on success or zero on error. 531 OPENSSL_EXPORT int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, 532 size_t *out_len, const uint8_t *in, 533 size_t in_len); 534 535 // EVP_PKEY_decrypt_init initialises an |EVP_PKEY_CTX| for a decryption 536 // operation. It should be called before |EVP_PKEY_decrypt|. 537 // 538 // It returns one on success or zero on error. 539 OPENSSL_EXPORT int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx); 540 541 // EVP_PKEY_decrypt decrypts |in_len| bytes from |in|. If |out| is NULL, the 542 // maximum size of the plaintext is written to |out_len|. Otherwise, |*out_len| 543 // must contain the number of bytes of space available at |out|. If sufficient, 544 // the ciphertext will be written to |out| and |*out_len| updated with the true 545 // length. 546 // 547 // WARNING: Setting |out| to NULL only gives the maximum size of the 548 // plaintext. The actual plaintext may be smaller. 549 // 550 // It returns one on success or zero on error. 551 OPENSSL_EXPORT int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, 552 size_t *out_len, const uint8_t *in, 553 size_t in_len); 554 555 // EVP_PKEY_verify_recover_init initialises an |EVP_PKEY_CTX| for a public-key 556 // decryption operation. It should be called before |EVP_PKEY_verify_recover|. 557 // 558 // Public-key decryption is a very obscure operation that is only implemented 559 // by RSA keys. It is effectively a signature verification operation that 560 // returns the signed message directly. It is almost certainly not what you 561 // want. 562 // 563 // It returns one on success or zero on error. 564 OPENSSL_EXPORT int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx); 565 566 // EVP_PKEY_verify_recover decrypts |sig_len| bytes from |sig|. If |out| is 567 // NULL, the maximum size of the plaintext is written to |out_len|. Otherwise, 568 // |*out_len| must contain the number of bytes of space available at |out|. If 569 // sufficient, the ciphertext will be written to |out| and |*out_len| updated 570 // with the true length. 571 // 572 // WARNING: Setting |out| to NULL only gives the maximum size of the 573 // plaintext. The actual plaintext may be smaller. 574 // 575 // See the warning about this operation in |EVP_PKEY_verify_recover_init|. It 576 // is probably not what you want. 577 // 578 // It returns one on success or zero on error. 579 OPENSSL_EXPORT int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out, 580 size_t *out_len, const uint8_t *sig, 581 size_t siglen); 582 583 // EVP_PKEY_derive_init initialises an |EVP_PKEY_CTX| for a key derivation 584 // operation. It should be called before |EVP_PKEY_derive_set_peer| and 585 // |EVP_PKEY_derive|. 586 // 587 // It returns one on success or zero on error. 588 OPENSSL_EXPORT int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx); 589 590 // EVP_PKEY_derive_set_peer sets the peer's key to be used for key derivation 591 // by |ctx| to |peer|. It should be called after |EVP_PKEY_derive_init|. (For 592 // example, this is used to set the peer's key in (EC)DH.) It returns one on 593 // success and zero on error. 594 OPENSSL_EXPORT int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer); 595 596 // EVP_PKEY_derive derives a shared key between the two keys configured in 597 // |ctx|. If |key| is non-NULL then, on entry, |out_key_len| must contain the 598 // amount of space at |key|. If sufficient then the shared key will be written 599 // to |key| and |*out_key_len| will be set to the length. If |key| is NULL then 600 // |out_key_len| will be set to the maximum length. 601 // 602 // WARNING: Setting |out| to NULL only gives the maximum size of the key. The 603 // actual key may be smaller. 604 // 605 // It returns one on success and zero on error. 606 OPENSSL_EXPORT int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, uint8_t *key, 607 size_t *out_key_len); 608 609 // EVP_PKEY_keygen_init initialises an |EVP_PKEY_CTX| for a key generation 610 // operation. It should be called before |EVP_PKEY_keygen|. 611 // 612 // It returns one on success or zero on error. 613 OPENSSL_EXPORT int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx); 614 615 // EVP_PKEY_keygen performs a key generation operation using the values from 616 // |ctx| and sets |*ppkey| to a fresh |EVP_PKEY| containing the resulting key. 617 // It returns one on success or zero on error. 618 OPENSSL_EXPORT int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey); 619 620 621 // Generic control functions. 622 623 // EVP_PKEY_CTX_set_signature_md sets |md| as the digest to be used in a 624 // signature operation. It returns one on success or zero on error. 625 OPENSSL_EXPORT int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, 626 const EVP_MD *md); 627 628 // EVP_PKEY_CTX_get_signature_md sets |*out_md| to the digest to be used in a 629 // signature operation. It returns one on success or zero on error. 630 OPENSSL_EXPORT int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, 631 const EVP_MD **out_md); 632 633 634 // RSA specific control functions. 635 636 // EVP_PKEY_CTX_set_rsa_padding sets the padding type to use. It should be one 637 // of the |RSA_*_PADDING| values. Returns one on success or zero on error. 638 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding); 639 640 // EVP_PKEY_CTX_get_rsa_padding sets |*out_padding| to the current padding 641 // value, which is one of the |RSA_*_PADDING| values. Returns one on success or 642 // zero on error. 643 OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, 644 int *out_padding); 645 646 // EVP_PKEY_CTX_set_rsa_pss_saltlen sets the length of the salt in a PSS-padded 647 // signature. A value of -1 cause the salt to be the same length as the digest 648 // in the signature. A value of -2 causes the salt to be the maximum length 649 // that will fit when signing and recovered from the signature when verifying. 650 // Otherwise the value gives the size of the salt in bytes. 651 // 652 // If unsure, use -1. 653 // 654 // Returns one on success or zero on error. 655 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, 656 int salt_len); 657 658 // EVP_PKEY_CTX_get_rsa_pss_saltlen sets |*out_salt_len| to the salt length of 659 // a PSS-padded signature. See the documentation for 660 // |EVP_PKEY_CTX_set_rsa_pss_saltlen| for details of the special values that it 661 // can take. 662 // 663 // Returns one on success or zero on error. 664 OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, 665 int *out_salt_len); 666 667 // EVP_PKEY_CTX_set_rsa_keygen_bits sets the size of the desired RSA modulus, 668 // in bits, for key generation. Returns one on success or zero on 669 // error. 670 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, 671 int bits); 672 673 // EVP_PKEY_CTX_set_rsa_keygen_pubexp sets |e| as the public exponent for key 674 // generation. Returns one on success or zero on error. 675 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, 676 BIGNUM *e); 677 678 // EVP_PKEY_CTX_set_rsa_oaep_md sets |md| as the digest used in OAEP padding. 679 // Returns one on success or zero on error. 680 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, 681 const EVP_MD *md); 682 683 // EVP_PKEY_CTX_get_rsa_oaep_md sets |*out_md| to the digest function used in 684 // OAEP padding. Returns one on success or zero on error. 685 OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, 686 const EVP_MD **out_md); 687 688 // EVP_PKEY_CTX_set_rsa_mgf1_md sets |md| as the digest used in MGF1. Returns 689 // one on success or zero on error. 690 OPENSSL_EXPORT int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, 691 const EVP_MD *md); 692 693 // EVP_PKEY_CTX_get_rsa_mgf1_md sets |*out_md| to the digest function used in 694 // MGF1. Returns one on success or zero on error. 695 OPENSSL_EXPORT int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, 696 const EVP_MD **out_md); 697 698 // EVP_PKEY_CTX_set0_rsa_oaep_label sets |label_len| bytes from |label| as the 699 // label used in OAEP. DANGER: On success, this call takes ownership of |label| 700 // and will call |OPENSSL_free| on it when |ctx| is destroyed. 701 // 702 // Returns one on success or zero on error. 703 OPENSSL_EXPORT int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, 704 uint8_t *label, 705 size_t label_len); 706 707 // EVP_PKEY_CTX_get0_rsa_oaep_label sets |*out_label| to point to the internal 708 // buffer containing the OAEP label (which may be NULL) and returns the length 709 // of the label or a negative value on error. 710 // 711 // WARNING: the return value differs from the usual return value convention. 712 OPENSSL_EXPORT int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, 713 const uint8_t **out_label); 714 715 716 // Deprecated functions. 717 718 // EVP_PKEY_DH is defined for compatibility, but it is impossible to create an 719 // |EVP_PKEY| of that type. 720 #define EVP_PKEY_DH NID_dhKeyAgreement 721 722 // EVP_PKEY_RSA2 was historically an alternate form for RSA public keys (OID 723 // 2.5.8.1.1), but is no longer accepted. 724 #define EVP_PKEY_RSA2 NID_rsa 725 726 // OpenSSL_add_all_algorithms does nothing. 727 OPENSSL_EXPORT void OpenSSL_add_all_algorithms(void); 728 729 // OPENSSL_add_all_algorithms_conf does nothing. 730 OPENSSL_EXPORT void OPENSSL_add_all_algorithms_conf(void); 731 732 // OpenSSL_add_all_ciphers does nothing. 733 OPENSSL_EXPORT void OpenSSL_add_all_ciphers(void); 734 735 // OpenSSL_add_all_digests does nothing. 736 OPENSSL_EXPORT void OpenSSL_add_all_digests(void); 737 738 // EVP_cleanup does nothing. 739 OPENSSL_EXPORT void EVP_cleanup(void); 740 741 OPENSSL_EXPORT void EVP_CIPHER_do_all_sorted( 742 void (*callback)(const EVP_CIPHER *cipher, const char *name, 743 const char *unused, void *arg), 744 void *arg); 745 746 OPENSSL_EXPORT void EVP_MD_do_all_sorted(void (*callback)(const EVP_MD *cipher, 747 const char *name, 748 const char *unused, 749 void *arg), 750 void *arg); 751 752 // i2d_PrivateKey marshals a private key from |key| to an ASN.1, DER 753 // structure. If |outp| is not NULL then the result is written to |*outp| and 754 // |*outp| is advanced just past the output. It returns the number of bytes in 755 // the result, whether written or not, or a negative value on error. 756 // 757 // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 3447) structure. 758 // EC keys are serialized as a DER-encoded ECPrivateKey (RFC 5915) structure. 759 // 760 // Use |RSA_marshal_private_key| or |EC_KEY_marshal_private_key| instead. 761 OPENSSL_EXPORT int i2d_PrivateKey(const EVP_PKEY *key, uint8_t **outp); 762 763 // i2d_PublicKey marshals a public key from |key| to a type-specific format. 764 // If |outp| is not NULL then the result is written to |*outp| and 765 // |*outp| is advanced just past the output. It returns the number of bytes in 766 // the result, whether written or not, or a negative value on error. 767 // 768 // RSA keys are serialized as a DER-encoded RSAPublicKey (RFC 3447) structure. 769 // EC keys are serialized as an EC point per SEC 1. 770 // 771 // Use |RSA_marshal_public_key| or |EC_POINT_point2cbb| instead. 772 OPENSSL_EXPORT int i2d_PublicKey(EVP_PKEY *key, uint8_t **outp); 773 774 // d2i_PrivateKey parses an ASN.1, DER-encoded, private key from |len| bytes at 775 // |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in 776 // |*out|. Note that, even if |*out| is already non-NULL on entry, it will not 777 // be written to. Rather, a fresh |EVP_PKEY| is allocated and the previous one 778 // is freed. On successful exit, |*inp| is advanced past the DER structure. It 779 // returns the result or NULL on error. 780 // 781 // This function tries to detect one of several formats. Instead, use 782 // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an 783 // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey. 784 OPENSSL_EXPORT EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, 785 const uint8_t **inp, long len); 786 787 // d2i_AutoPrivateKey acts the same as |d2i_PrivateKey|, but detects the type 788 // of the private key. 789 // 790 // This function tries to detect one of several formats. Instead, use 791 // |EVP_parse_private_key| for a PrivateKeyInfo, |RSA_parse_private_key| for an 792 // RSAPrivateKey, and |EC_parse_private_key| for an ECPrivateKey. 793 OPENSSL_EXPORT EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, 794 long len); 795 796 // EVP_PKEY_get0_DH returns NULL. 797 OPENSSL_EXPORT DH *EVP_PKEY_get0_DH(EVP_PKEY *pkey); 798 799 800 // Private structures. 801 802 struct evp_pkey_st { 803 CRYPTO_refcount_t references; 804 805 // type contains one of the EVP_PKEY_* values or NID_undef and determines 806 // which element (if any) of the |pkey| union is valid. 807 int type; 808 809 union { 810 void *ptr; 811 RSA *rsa; 812 DSA *dsa; 813 DH *dh; 814 EC_KEY *ec; 815 } pkey; 816 817 // ameth contains a pointer to a method table that contains many ASN.1 818 // methods for the key type. 819 const EVP_PKEY_ASN1_METHOD *ameth; 820 } /* EVP_PKEY */; 821 822 823 #if defined(__cplusplus) 824 } // extern C 825 826 extern "C++" { 827 namespace bssl { 828 829 BORINGSSL_MAKE_DELETER(EVP_PKEY, EVP_PKEY_free) 830 BORINGSSL_MAKE_DELETER(EVP_PKEY_CTX, EVP_PKEY_CTX_free) 831 832 } // namespace bssl 833 834 } // extern C++ 835 836 #endif 837 838 #define EVP_R_BUFFER_TOO_SMALL 100 839 #define EVP_R_COMMAND_NOT_SUPPORTED 101 840 #define EVP_R_DECODE_ERROR 102 841 #define EVP_R_DIFFERENT_KEY_TYPES 103 842 #define EVP_R_DIFFERENT_PARAMETERS 104 843 #define EVP_R_ENCODE_ERROR 105 844 #define EVP_R_EXPECTING_AN_EC_KEY_KEY 106 845 #define EVP_R_EXPECTING_AN_RSA_KEY 107 846 #define EVP_R_EXPECTING_A_DSA_KEY 108 847 #define EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE 109 848 #define EVP_R_INVALID_DIGEST_LENGTH 110 849 #define EVP_R_INVALID_DIGEST_TYPE 111 850 #define EVP_R_INVALID_KEYBITS 112 851 #define EVP_R_INVALID_MGF1_MD 113 852 #define EVP_R_INVALID_OPERATION 114 853 #define EVP_R_INVALID_PADDING_MODE 115 854 #define EVP_R_INVALID_PSS_SALTLEN 116 855 #define EVP_R_KEYS_NOT_SET 117 856 #define EVP_R_MISSING_PARAMETERS 118 857 #define EVP_R_NO_DEFAULT_DIGEST 119 858 #define EVP_R_NO_KEY_SET 120 859 #define EVP_R_NO_MDC2_SUPPORT 121 860 #define EVP_R_NO_NID_FOR_CURVE 122 861 #define EVP_R_NO_OPERATION_SET 123 862 #define EVP_R_NO_PARAMETERS_SET 124 863 #define EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 125 864 #define EVP_R_OPERATON_NOT_INITIALIZED 126 865 #define EVP_R_UNKNOWN_PUBLIC_KEY_TYPE 127 866 #define EVP_R_UNSUPPORTED_ALGORITHM 128 867 #define EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE 129 868 #define EVP_R_NOT_A_PRIVATE_KEY 130 869 #define EVP_R_INVALID_SIGNATURE 131 870 #define EVP_R_MEMORY_LIMIT_EXCEEDED 132 871 #define EVP_R_INVALID_PARAMETERS 133 872 873 #endif // OPENSSL_HEADER_EVP_H 874