/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | independent.py | 30 from tensorflow.python.ops.distributions import distribution as distribution_lib 97 self, distribution, reinterpreted_batch_ndims=None, argument 119 name = name or "Independent" + distribution.name 120 self._distribution = distribution 124 distribution) 142 distribution._graph_parents), # pylint: disable=protected-access 145 distribution, reinterpreted_batch_ndims, validate_args) 148 def distribution(self): member in Independent 157 batch_shape = self.distribution.batch_shape_tensor() 164 batch_shape = self.distribution.batch_shape [all …]
|
D | quantized_distribution.py | 28 from tensorflow.python.ops.distributions import distribution as distributions 182 distribution, argument 218 list(distribution.parameters.values()) + 221 self._dist = distribution 228 tensors=[self.distribution, low, high]) 263 return self.distribution.batch_shape_tensor() 266 return self.distribution.batch_shape 269 return self.distribution.event_shape_tensor() 272 return self.distribution.event_shape 279 x_samps = self.distribution.sample(n, seed=seed) [all …]
|
D | poisson_lognormal.py | 33 from tensorflow.python.ops.distributions import distribution as distribution_lib 116 distribution=normal_lib.Normal(loc=loc, scale=scale), 303 def distribution(self): member in PoissonLogNormalQuadratureCompound 323 self.distribution.batch_shape_tensor(), 328 self.distribution.batch_shape, 369 array_ops.reshape(self.distribution.rate, shape=[-1]), ids) 378 + self.distribution.log_prob(x[..., array_ops.newaxis])), 384 self.mixture_distribution.logits + self.distribution.log_rate, 409 self.distribution.log_rate, 412 math_ops.abs(self.distribution.mean()
|
D | sinh_arcsinh.py | 102 distribution=None, argument 156 if distribution is None: 157 distribution = normal.Normal( 163 distribution, dtype, validate_args) 188 distribution=distribution,
|
/external/tensorflow/tensorflow/tools/api/golden/ |
D | tensorflow.distributions.pbtxt | 5 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 9 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 13 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 17 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 21 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 25 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 29 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 33 mtype: "<class \'tensorflow.python.ops.distributions.distribution.ReparameterizationType\'>" 37 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" 41 mtype: "<class \'tensorflow.python.ops.distributions.distribution._DistributionMeta\'>" [all …]
|
/external/python/cpython3/Lib/distutils/command/ |
D | bdist_rpm.py | 206 if not self.distribution.has_ext_modules(): 215 "%s <%s>" % (self.distribution.get_contact(), 216 self.distribution.get_contact_email())) 279 "%s.spec" % self.distribution.get_name()) 290 saved_dist_files = self.distribution.dist_files[:] 297 self.distribution.dist_files = saved_dist_files 369 if self.distribution.has_ext_modules(): 379 self.distribution.dist_files.append( 389 self.distribution.dist_files.append( 401 '%define name ' + self.distribution.get_name(), [all …]
|
D | bdist_wininst.py | 81 bdist = self.distribution.get_command_obj('bdist') 90 if not self.skip_build and self.distribution.has_ext_modules(): 104 for script in self.distribution.scripts: 114 (self.distribution.has_ext_modules() or 115 self.distribution.has_c_libraries())): 134 if self.distribution.has_ext_modules(): 175 fullname = self.distribution.get_fullname() 180 if self.distribution.has_ext_modules(): 184 self.distribution.dist_files.append(('bdist_wininst', pyversion, 196 metadata = self.distribution.metadata [all …]
|
D | sdist.py | 161 check = self.distribution.get_command_obj('check') 219 standards = [('README', 'README.txt'), self.distribution.script_name] 250 if self.distribution.has_pure_modules(): 260 if self.distribution.has_data_files(): 261 for item in self.distribution.data_files: 273 if self.distribution.has_ext_modules(): 277 if self.distribution.has_c_libraries(): 281 if self.distribution.has_scripts(): 323 base_dir = self.distribution.get_fullname() 420 self.distribution.metadata.write_pkg_info(base_dir) [all …]
|
D | install_lib.py | 96 if outfiles is not None and self.distribution.has_pure_modules(): 104 if self.distribution.has_pure_modules(): 106 if self.distribution.has_ext_modules(): 186 self._mutate_outputs(self.distribution.has_pure_modules(), 195 self._mutate_outputs(self.distribution.has_ext_modules(), 209 if self.distribution.has_pure_modules(): 213 if self.distribution.has_ext_modules():
|
/external/python/cpython2/Lib/distutils/command/ |
D | bdist_rpm.py | 215 if not self.distribution.has_ext_modules(): 226 "%s <%s>" % (self.distribution.get_contact(), 227 self.distribution.get_contact_email())) 293 "%s.spec" % self.distribution.get_name()) 304 saved_dist_files = self.distribution.dist_files[:] 311 self.distribution.dist_files = saved_dist_files 383 if self.distribution.has_ext_modules(): 393 self.distribution.dist_files.append( 403 self.distribution.dist_files.append( 416 '%define name ' + self.distribution.get_name(), [all …]
|
D | bdist_wininst.py | 89 bdist = self.distribution.get_command_obj('bdist') 98 if not self.skip_build and self.distribution.has_ext_modules(): 112 for script in self.distribution.scripts: 124 (self.distribution.has_ext_modules() or 125 self.distribution.has_c_libraries())): 144 if self.distribution.has_ext_modules(): 185 fullname = self.distribution.get_fullname() 190 if self.distribution.has_ext_modules(): 194 self.distribution.dist_files.append(('bdist_wininst', pyversion, 209 metadata = self.distribution.metadata [all …]
|
D | sdist.py | 174 check = self.distribution.get_command_obj('check') 233 standards = [('README', 'README.txt'), self.distribution.script_name] 265 if self.distribution.has_pure_modules(): 275 if self.distribution.has_data_files(): 276 for item in self.distribution.data_files: 288 if self.distribution.has_ext_modules(): 292 if self.distribution.has_c_libraries(): 296 if self.distribution.has_scripts(): 342 base_dir = self.distribution.get_fullname() 441 self.distribution.metadata.write_pkg_info(base_dir) [all …]
|
D | install_lib.py | 100 if outfiles is not None and self.distribution.has_pure_modules(): 108 if self.distribution.has_pure_modules(): 110 if self.distribution.has_ext_modules(): 188 self._mutate_outputs(self.distribution.has_pure_modules(), 197 self._mutate_outputs(self.distribution.has_ext_modules(), 211 if self.distribution.has_pure_modules(): 215 if self.distribution.has_ext_modules():
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | transformed_distribution.py | 32 from tensorflow.python.ops.distributions import distribution as distribution_lib 234 distribution, argument 260 distribution.name) 274 batch_shape, distribution.is_scalar_batch(), validate_args, 283 event_shape, distribution.is_scalar_event(), validate_args, 300 _logical_not(distribution.is_scalar_batch())) 309 self._distribution = distribution 319 graph_parents=(distribution._graph_parents + # pylint: disable=protected-access 324 def distribution(self): member in TransformedDistribution 338 self.distribution.event_shape_tensor())) [all …]
|
/external/libcxx/test/std/numerics/rand/rand.dis/rand.dist.pois/rand.dist.pois.poisson/ |
D | eval.pass.cpp | 39 std::poisson_distribution<std::int16_t> distribution(32710.9); in test_bad_ranges() local 41 volatile std::int16_t res = distribution(eng); in test_bad_ranges() 46 std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<std::int16_t>::max()); in test_bad_ranges() local 48 volatile std::int16_t res = distribution(eng); in test_bad_ranges() 53 std::poisson_distribution<std::int16_t> distribution( in test_bad_ranges() 56 volatile std::int16_t res = distribution(eng); in test_bad_ranges() 61 std::poisson_distribution<std::int16_t> distribution( in test_bad_ranges() 64 volatile std::int16_t res = distribution(eng); in test_bad_ranges() 70 std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<double>::infinity()); in test_bad_ranges() 72 volatile std::int16_t res = distribution(eng); in test_bad_ranges() [all …]
|
/external/iproute2/netem/ |
D | README.distribution | 1 Notes about distribution tables from Nistnet 3 I. About the distribution tables 5 The table used for "synthesizing" the distribution is essentially a scaled, 6 translated, inverse to the cumulative distribution function. 8 Here's how to think about it: Let F() be the cumulative distribution 9 function for a probability distribution X. We'll assume we've scaled 26 distribution has the same approximate "shape" as X, simply by letting 28 To see this, it's enough to show that Y's cumulative distribution function, 41 II. How to create distribution tables (in theory) 45 pareto distribution is one example of this. In other cases, and [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/random/ |
D | RandomDataImpl.java | 28 import org.apache.commons.math.distribution.BetaDistributionImpl; 29 import org.apache.commons.math.distribution.BinomialDistributionImpl; 30 import org.apache.commons.math.distribution.CauchyDistributionImpl; 31 import org.apache.commons.math.distribution.ChiSquaredDistributionImpl; 32 import org.apache.commons.math.distribution.ContinuousDistribution; 33 import org.apache.commons.math.distribution.FDistributionImpl; 34 import org.apache.commons.math.distribution.GammaDistributionImpl; 35 import org.apache.commons.math.distribution.HypergeometricDistributionImpl; 36 import org.apache.commons.math.distribution.IntegerDistribution; 37 import org.apache.commons.math.distribution.PascalDistributionImpl; [all …]
|
/external/python/cpython2/Lib/distutils/tests/ |
D | test_install_lib.py | 62 cmd.distribution.py_modules = [pkg_dir] 63 cmd.distribution.ext_modules = [Extension('foo', ['xxx'])] 64 cmd.distribution.packages = [pkg_dir] 65 cmd.distribution.script_name = 'setup.py' 79 cmd.distribution.py_modules = [pkg_dir] 80 cmd.distribution.ext_modules = [Extension('foo', ['xxx'])] 81 cmd.distribution.packages = [pkg_dir] 82 cmd.distribution.script_name = 'setup.py'
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
D | SimpleRegression.java | 23 import org.apache.commons.math.distribution.TDistribution; 24 import org.apache.commons.math.distribution.TDistributionImpl; 64 private TDistribution distribution; field in SimpleRegression 155 distribution.setDegreesOfFreedom(n - 2); in addData() 187 distribution.setDegreesOfFreedom(n - 2); in removeData() 571 distribution.inverseCumulativeProbability(1d - alpha / 2d); in getSlopeConfidenceInterval() 596 return 2d * (1.0 - distribution.cumulativeProbability( in getSignificance() 632 distribution = value; in setDistribution() 636 distribution.setDegreesOfFreedom(n - 2); in setDistribution()
|
/external/iproute2/ |
D | README.distribution | 1 I. About the distribution tables 3 The table used for "synthesizing" the distribution is essentially a scaled, 4 translated, inverse to the cumulative distribution function. 6 Here's how to think about it: Let F() be the cumulative distribution 7 function for a probability distribution X. We'll assume we've scaled 24 distribution has the same approximate "shape" as X, simply by letting 26 To see this, it's enough to show that Y's cumulative distribution function, 39 II. How to create distribution tables (in theory) 43 Pareto distribution is one example of this. In other cases, and 44 especially for matching an experimentally observed distribution, it's [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | quantized_distribution_test.py | 60 distribution=distributions.Uniform(low=0.0, high=3.0), 105 distribution=distributions.Uniform(low=-3., high=3.), 144 distribution=uniform, low=None, high=None) 176 distribution=normal, low=0., high=None) 204 distribution=distributions.Exponential(rate=0.01)) 227 distribution=distributions.Exponential(rate=0.2)) 248 distribution=distributions.Normal( 265 distribution=distributions.Normal( 280 distribution=distributions.Normal(loc=0., scale=1.), 302 distribution=distributions.Normal(loc=0., scale=1.), [all …]
|
/external/tensorflow/tensorflow/docs_src/programmers_guide/ |
D | tensorboard_histograms.md | 3 The TensorBoard Histogram Dashboard displays how the distribution of some 20 normally distributed data, where the mean of the distribution increases over 28 # Make a normal distribution, with a shifting mean 30 # Record that distribution into a histogram summary 126 distributions. Let's construct a simple bimodal distribution by concatenating 135 # Make a normal distribution, with a shifting mean 137 # Record that distribution into a histogram summary 140 # Make a normal distribution with shrinking variance 142 # Record that distribution too 147 # We add another histogram summary to record the combined distribution [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/inference/ |
D | ChiSquareTestImpl.java | 21 import org.apache.commons.math.distribution.ChiSquaredDistribution; 22 import org.apache.commons.math.distribution.ChiSquaredDistributionImpl; 35 private ChiSquaredDistribution distribution; field in ChiSquareTestImpl 117 distribution.setDegreesOfFreedom(expected.length - 1.0); in chiSquareTest() 118 return 1.0 - distribution.cumulativeProbability( in chiSquareTest() 192 distribution.setDegreesOfFreedom(df); in chiSquareTest() 193 return 1 - distribution.cumulativeProbability(chiSquare(counts)); in chiSquareTest() 295 distribution.setDegreesOfFreedom((double) observed1.length - 1); in chiSquareTestDataSetsComparison() 296 return 1 - distribution.cumulativeProbability( in chiSquareTestDataSetsComparison() 422 distribution = value; in setDistribution()
|
/external/tensorflow/tensorflow/python/keras/_impl/keras/ |
D | initializers.py | 58 scale=1., mode='fan_in', distribution='normal', seed=seed) 80 scale=1., mode='fan_in', distribution='uniform', seed=seed) 103 scale=1., mode='fan_avg', distribution='normal', seed=seed) 126 scale=1., mode='fan_avg', distribution='uniform', seed=seed) 147 scale=2., mode='fan_in', distribution='normal', seed=seed) 168 scale=2., mode='fan_in', distribution='uniform', seed=seed)
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | reshape_test.cc | 721 std::uniform_real_distribution<float> distribution; in XLA_TEST_P() local 724 [&rng, &distribution](tensorflow::gtl::ArraySlice<int64> /* indices */, in XLA_TEST_P() 725 float* cell) { *cell = distribution(rng); }); in XLA_TEST_P() 743 std::uniform_real_distribution<float> distribution; in XLA_TEST_P() local 746 [&rng, &distribution](tensorflow::gtl::ArraySlice<int64> /* indices */, in XLA_TEST_P() 747 float* cell) { *cell = distribution(rng); }); in XLA_TEST_P() 766 std::uniform_real_distribution<float> distribution; in XLA_TEST_P() local 769 [&rng, &distribution](tensorflow::gtl::ArraySlice<int64> /* indices */, in XLA_TEST_P() 770 float* cell) { *cell = distribution(rng); }); in XLA_TEST_P() 793 std::uniform_real_distribution<float> distribution; in XLA_TEST_P() local [all …]
|