/external/eigen/test/ |
D | eigensolver_selfadjoint.cpp | 31 VERIFY(eiSymm.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); in selfadjointeigensolver_essential_check() 36 (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal())/scaling); in selfadjointeigensolver_essential_check() 38 VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); in selfadjointeigensolver_essential_check() 46 if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) ) in selfadjointeigensolver_essential_check() 48 std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n" in selfadjointeigensolver_essential_check() 49 << "obtained eigenvalues: " << eiDirect.eigenvalues().transpose() << "\n" in selfadjointeigensolver_essential_check() 50 … << "diff: " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n" in selfadjointeigensolver_essential_check() 51 …<< "error (eps): " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eige… in selfadjointeigensolver_essential_check() 55 … VERIFY(eiDirect.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); in selfadjointeigensolver_essential_check() 59 VERIFY_IS_APPROX(eiSymm.eigenvalues()/scaling, eiDirect.eigenvalues()/scaling); in selfadjointeigensolver_essential_check() [all …]
|
D | eigensolver_generic.cpp | 37 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); in eigensolver() 43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver() 45 VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); in eigensolver() 51 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); in eigensolver() 60 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); in eigensolver() 85 VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); in eigensolver() 96 VERIFY_RAISES_ASSERT(eig.eigenvalues()); in eigensolver_verify_assert() 149 …VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()… in test_eigensolver_generic() 161 VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.); in test_eigensolver_generic()
|
D | eigensolver_complex.cpp | 89 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); in eigensolver() 93 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver() 96 verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); in eigensolver() 102 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); in eigensolver() 111 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); in eigensolver() 116 VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); in eigensolver() 140 VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); in eigensolver() 149 VERIFY_RAISES_ASSERT(eig.eigenvalues()); in eigensolver_verify_assert()
|
D | eigensolver_generalized_real.cpp | 41 VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); in generalized_eigensolver_real() 43 VectorType realEigenvalues = eig.eigenvalues().real(); in generalized_eigensolver_real() 45 VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); in generalized_eigensolver_real() 48 … typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); in generalized_eigensolver_real() 68 … typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); in generalized_eigensolver_real()
|
D | cuda_basic.cu | 127 struct eigenvalues { struct 138 res = eig.eigenvalues(); in operator ()() argument 170 CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) ); in test_cuda_basic() 171 CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) ); in test_cuda_basic()
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | MatrixBaseEigenvalues.h | 27 return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); in run() 39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues(); 67 MatrixBase<Derived>::eigenvalues() const 89 SelfAdjointView<MatrixType, UpLo>::eigenvalues() const 93 return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues(); 131 .eigenvalues() 155 return eigenvalues().cwiseAbs().maxCoeff();
|
/external/eigen/doc/snippets/ |
D | ComplexEigenSolver_compute.cpp | 6 cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl; 9 complex<float> lambda = ces.eigenvalues()[0]; 16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 6 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; 9 double lambda = es.eigenvalues()[0]; 15 MatrixXd D = es.eigenvalues().asDiagonal();
|
D | EigenSolver_EigenSolver_MatrixType.cpp | 5 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl; 8 complex<double> lambda = es.eigenvalues()[0]; 14 MatrixXcd D = es.eigenvalues().asDiagonal();
|
D | EigenSolver_compute.cpp | 4 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 6 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
D | SelfAdjointEigenSolver_compute_MatrixType.cpp | 5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp | 5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl; 7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
|
D | SelfAdjointEigenSolver_compute_MatrixType2.cpp | 7 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl; 9 cout << "The eigenvalues of the pencil (B,A) are:" << endl << es.eigenvalues() << endl;
|
D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp | 9 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl; 12 double lambda = es.eigenvalues()[0];
|
D | MatrixBase_eigenvalues.cpp | 2 VectorXcd eivals = ones.eigenvalues();
|
D | SelfAdjointEigenSolver_eigenvalues.cpp | 4 << endl << es.eigenvalues() << endl;
|
D | EigenSolver_eigenvalues.cpp | 4 << endl << es.eigenvalues() << endl;
|
D | ComplexEigenSolver_eigenvalues.cpp | 4 << endl << ces.eigenvalues() << endl;
|
D | SelfAdjointView_eigenvalues.cpp | 2 VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues();
|
D | GeneralizedEigenSolver.cpp | 7 cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose…
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_SelfAdjointEigV2.pbtxt | 28 Otherwise, only the eigenvalues will be computed. 33 Computes the eigenvalues and (optionally) eigenvectors of each inner matrix in 38 # e is a tensor of eigenvalues.
|
D | api_def_SelfAdjointEig.pbtxt | 22 eigenvalues, and subsequent [...,1:, :] containing the eigenvectors.
|
/external/tensorflow/tensorflow/core/kernels/ |
D | self_adjoint_eig_v2_op_gpu.cc | 65 Tensor* eigenvalues; in ComputeAsync() local 69 context, context->allocate_output(0, eigenvalues_shape, &eigenvalues), in ComputeAsync() 89 eigenvalues_real = *eigenvalues; in ComputeAsync() 144 cast(device, eigenvalues->flat<Scalar>(), in ComputeAsync()
|
/external/eigen/doc/examples/ |
D | TutorialLinAlgSelfAdjointEigenSolver.cpp | 14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl; in main()
|
/external/eigen/unsupported/Eigen/ |
D | Polynomials | 99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio… 101 The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of 112 …However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with sa…
|