Home
last modified time | relevance | path

Searched refs:eigenvalues (Results 1 – 25 of 51) sorted by relevance

123

/external/eigen/test/
Deigensolver_selfadjoint.cpp31 VERIFY(eiSymm.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); in selfadjointeigensolver_essential_check()
36 (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal())/scaling); in selfadjointeigensolver_essential_check()
38 VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); in selfadjointeigensolver_essential_check()
46 if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) ) in selfadjointeigensolver_essential_check()
48 std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n" in selfadjointeigensolver_essential_check()
49 << "obtained eigenvalues: " << eiDirect.eigenvalues().transpose() << "\n" in selfadjointeigensolver_essential_check()
50 … << "diff: " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n" in selfadjointeigensolver_essential_check()
51 …<< "error (eps): " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eige… in selfadjointeigensolver_essential_check()
55 … VERIFY(eiDirect.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); in selfadjointeigensolver_essential_check()
59 VERIFY_IS_APPROX(eiSymm.eigenvalues()/scaling, eiDirect.eigenvalues()/scaling); in selfadjointeigensolver_essential_check()
[all …]
Deigensolver_generic.cpp37 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); in eigensolver()
43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver()
45 VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); in eigensolver()
51 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); in eigensolver()
60 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); in eigensolver()
85 VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); in eigensolver()
96 VERIFY_RAISES_ASSERT(eig.eigenvalues()); in eigensolver_verify_assert()
149 …VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()… in test_eigensolver_generic()
161 VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.); in test_eigensolver_generic()
Deigensolver_complex.cpp89 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); in eigensolver()
93 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver()
96 verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); in eigensolver()
102 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); in eigensolver()
111 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); in eigensolver()
116 VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); in eigensolver()
140 VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); in eigensolver()
149 VERIFY_RAISES_ASSERT(eig.eigenvalues()); in eigensolver_verify_assert()
Deigensolver_generalized_real.cpp41 VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0); in generalized_eigensolver_real()
43 VectorType realEigenvalues = eig.eigenvalues().real(); in generalized_eigensolver_real()
45 VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues()); in generalized_eigensolver_real()
48 … typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); in generalized_eigensolver_real()
68 … typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType D = eig.eigenvalues().asDiagonal(); in generalized_eigensolver_real()
Dcuda_basic.cu127 struct eigenvalues { struct
138 res = eig.eigenvalues(); in operator ()() argument
170 CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) ); in test_cuda_basic()
171 CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) ); in test_cuda_basic()
/external/eigen/Eigen/src/Eigenvalues/
DMatrixBaseEigenvalues.h27 return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues(); in run()
39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
67 MatrixBase<Derived>::eigenvalues() const
89 SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
93 return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
131 .eigenvalues()
155 return eigenvalues().cwiseAbs().maxCoeff();
/external/eigen/doc/snippets/
DComplexEigenSolver_compute.cpp6 cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl;
9 complex<float> lambda = ces.eigenvalues()[0];
16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
DSelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp6 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl;
9 double lambda = es.eigenvalues()[0];
15 MatrixXd D = es.eigenvalues().asDiagonal();
DEigenSolver_EigenSolver_MatrixType.cpp5 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl;
8 complex<double> lambda = es.eigenvalues()[0];
14 MatrixXcd D = es.eigenvalues().asDiagonal();
DEigenSolver_compute.cpp4 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
6 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
DSelfAdjointEigenSolver_compute_MatrixType.cpp5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
DSelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
DSelfAdjointEigenSolver_compute_MatrixType2.cpp7 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl;
9 cout << "The eigenvalues of the pencil (B,A) are:" << endl << es.eigenvalues() << endl;
DSelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp9 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl;
12 double lambda = es.eigenvalues()[0];
DMatrixBase_eigenvalues.cpp2 VectorXcd eivals = ones.eigenvalues();
DSelfAdjointEigenSolver_eigenvalues.cpp4 << endl << es.eigenvalues() << endl;
DEigenSolver_eigenvalues.cpp4 << endl << es.eigenvalues() << endl;
DComplexEigenSolver_eigenvalues.cpp4 << endl << ces.eigenvalues() << endl;
DSelfAdjointView_eigenvalues.cpp2 VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues();
DGeneralizedEigenSolver.cpp7 cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose…
/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_SelfAdjointEigV2.pbtxt28 Otherwise, only the eigenvalues will be computed.
33 Computes the eigenvalues and (optionally) eigenvectors of each inner matrix in
38 # e is a tensor of eigenvalues.
Dapi_def_SelfAdjointEig.pbtxt22 eigenvalues, and subsequent [...,1:, :] containing the eigenvectors.
/external/tensorflow/tensorflow/core/kernels/
Dself_adjoint_eig_v2_op_gpu.cc65 Tensor* eigenvalues; in ComputeAsync() local
69 context, context->allocate_output(0, eigenvalues_shape, &eigenvalues), in ComputeAsync()
89 eigenvalues_real = *eigenvalues; in ComputeAsync()
144 cast(device, eigenvalues->flat<Scalar>(), in ComputeAsync()
/external/eigen/doc/examples/
DTutorialLinAlgSelfAdjointEigenSolver.cpp14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl; in main()
/external/eigen/unsupported/Eigen/
DPolynomials99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio…
101 The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
112 …However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with sa…

123