/external/libchrome/base/ |
D | feature_list.cc | 49 bool GetFeatureAndTrialName(StringPiece* feature_name, in GetFeatureAndTrialName() 57 if (!pickle_iter.ReadStringPiece(feature_name)) in GetFeatureAndTrialName() 106 StringPiece feature_name; in InitializeFromSharedMemory() local 108 if (!entry->GetFeatureAndTrialName(&feature_name, &trial_name)) in InitializeFromSharedMemory() 112 RegisterOverride(feature_name, override_state, trial); in InitializeFromSharedMemory() 117 const std::string& feature_name, in IsFeatureOverriddenFromCommandLine() argument 119 auto it = overrides_.find(feature_name); in IsFeatureOverriddenFromCommandLine() 125 const std::string& feature_name, in AssociateReportingFieldTrial() argument 129 IsFeatureOverriddenFromCommandLine(feature_name, for_overridden_state)); in AssociateReportingFieldTrial() 133 OverrideEntry* entry = &overrides_.find(feature_name)->second; in AssociateReportingFieldTrial() [all …]
|
D | feature_list.h | 112 bool IsFeatureOverriddenFromCommandLine(const std::string& feature_name, 120 void AssociateReportingFieldTrial(const std::string& feature_name, 131 void RegisterFieldTrialOverride(const std::string& feature_name, 253 void RegisterOverride(StringPiece feature_name,
|
/external/tensorflow/tensorflow/python/tools/ |
D | freeze_graph_test.py | 119 def _createTFExampleString(self, feature_name, feature_value): argument 122 example.features.feature[feature_name].float_list.value.extend([ 126 def _writeDummySavedModel(self, path, feature_name): argument 131 feature_name: parsing_ops.FixedLenFeature(shape=[], 135 feature = features[feature_name] 140 "class_%s" % feature_name) 221 feature_name = "feature" 222 self._writeDummySavedModel(saved_model_dir, feature_name) 258 example = self._createTFExampleString(feature_name, feature_value)
|
D | saved_model_cli.py | 434 for feature_name, feature_list in example_dict.items(): 437 (feature_name, feature_list, type(feature_list))) 439 example.features.feature[feature_name].float_list.value.extend( 442 example.features.feature[feature_name].bytes_list.value.extend( 445 example.features.feature[feature_name].int64_list.value.extend(
|
/external/tensorflow/tensorflow/core/util/ |
D | example_proto_fast_parsing.cc | 470 void LogDenseFeatureDataLoss(StringPiece feature_name) { in LogDenseFeatureDataLoss() argument 471 LOG(WARNING) << "Data loss! Feature '" << feature_name in LogDenseFeatureDataLoss() 481 void LogSparseFeatureDataLoss(StringPiece feature_name) { in LogSparseFeatureDataLoss() argument 482 LOG(WARNING) << "Data loss! Feature '" << feature_name in LogSparseFeatureDataLoss() 517 const StringPiece feature_name = name_and_feature.first; in FastParseSerializedExample() local 521 uint64 h = hasher(feature_name); in FastParseSerializedExample() 531 ? config.dense[d].feature_name in FastParseSerializedExample() 532 : config.sparse[d].feature_name; in FastParseSerializedExample() 533 if (feature_name != config_feature_name) continue; in FastParseSerializedExample() 538 ", Key: ", feature_name, in FastParseSerializedExample() [all …]
|
D | example_proto_fast_parsing.h | 44 string feature_name; member 56 string feature_name; member
|
/external/tensorflow/tensorflow/core/platform/ |
D | cpu_feature_guard.cc | 29 void CheckFeatureOrDie(CPUFeature feature, const string& feature_name) { in CheckFeatureOrDie() argument 38 << "The TensorFlow library was compiled to use " << feature_name in CheckFeatureOrDie() 44 void CheckIfFeatureUnused(CPUFeature feature, const string& feature_name, in CheckIfFeatureUnused() argument 48 missing_instructions.append(feature_name); in CheckIfFeatureUnused()
|
/external/mesa3d/src/mapi/glapi/gen/ |
D | gl_enums.py | 252 feature_name = feature.get('name') 258 m = re.match('GL_VERSION_([0-9])_([0-9])', feature_name) 262 m = re.match('GL_ES_VERSION_([0-9])_([0-9])', feature_name)
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | ar_model_test.py | 292 for feature_name in raw_evaluation.predictions: 296 raw_evaluation_evaled.predictions[feature_name].shape) 298 np.reshape(chunked_evaluation_evaled.predictions[feature_name], 300 np.reshape(raw_evaluation_evaled.predictions[feature_name], 326 for feature_name in raw_evaluation.predictions: 331 raw_evaluation_evaled.predictions[feature_name].shape)
|
D | ar_model.py | 455 features = {feature_name: ops.convert_to_tensor(feature_value) 456 for feature_name, feature_value in features.items()} 485 features = {feature_name: feature_value[:, -crop_length:] 486 for feature_name, feature_value in features.items()} 500 feature_name: 502 for feature_name, feature_value in features.items()},
|
D | input_pipeline_test.py | 239 data = {feature_name: feature_value[None] 240 for feature_name, feature_value in data_nobatch.items()} 319 data = {feature_name: feature_value[None] 320 for feature_name, feature_value in data_nobatch.items()}
|
D | input_pipeline.py | 278 return {feature_name: array_ops.squeeze(feature_value, axis=0) 279 for feature_name, feature_value in features.items()} 602 return ({feature_name: feature_value[None, ...] 603 for feature_name, feature_value in features.items()},
|
D | head.py | 267 feature_name=name, 316 feature_name=feature_keys.TrainEvalFeatures.VALUES,
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | custom_export_strategy.py | 109 for feature_name in sorted_feature_names: 111 model_and_features.features[feature_name].SetInParent() 113 model_and_features.features[feature_name].CopyFrom( 114 feature_name_to_proto[feature_name])
|
/external/tensorflow/tensorflow/compiler/xla/service/cpu/ |
D | simple_orc_jit.cc | 53 llvm::StringRef feature_name = feature.first(); in DetectMachineAttributes() local 55 if (feature_name.startswith("avx512")) { in DetectMachineAttributes() 58 result.push_back(feature_name); in DetectMachineAttributes()
|
/external/tensorflow/tensorflow/contrib/tensor_forest/kernels/v4/ |
D | input_data.h | 104 void RandomSample(int example, decision_trees::FeatureId* feature_name,
|
/external/vulkan-validation-layers/layers/ |
D | shader_validation.cpp | 1112 …require_feature(debug_report_data const *report_data, VkBool32 feature, char const *feature_name) { in require_feature() argument 1116 … "Shader requires VkPhysicalDeviceFeatures::%s but is not enabled on the device", feature_name)) { in require_feature()
|
/external/tensorflow/tensorflow/docs_src/get_started/ |
D | datasets_quickstart.md | 45 * `features`: A `{'feature_name':array}` dictionary (or
|
/external/mesa3d/ |
D | configure.ac | 2256 feature_name="$1" 2261 AC_MSG_CHECKING([whether $CXX supports $feature_name]) 2290 AC_MSG_ERROR([swr requires $feature_name support])
|
/external/clang/docs/ |
D | LanguageExtensions.rst | 519 These are macros with names of the form ``__cpp_<feature_name>``, and are
|