/external/tensorflow/tensorflow/core/kernels/ |
D | conv_ops_using_gemm.cc | 91 int filter_width, int filter_count, int stride_rows, in operator ()() argument 112 ((output_width - 1) * stride_cols + filter_width - input_width + 1) / in operator ()() 119 ((output_width - 1) * stride_cols + filter_width - input_width) / 2; in operator ()() 156 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { in operator ()() 175 filter_data[(filter_y * filter_width * input_depth * in operator ()() 214 int filter_width, int filter_count, int stride_rows, in operator ()() argument 224 if ((filter_width <= 0) || (filter_height <= 0) || (filter_count <= 0)) { in operator ()() 226 << filter_width << ", " << filter_height << ", " in operator ()() 238 if (filter_height == 1 && filter_width == 1 && stride_rows == 1 && in operator ()() 251 } else if (filter_height == input_height && filter_width == input_width && in operator ()() [all …]
|
D | depthwise_conv_op_gpu.cu.cc | 80 const int filter_width = in DepthwiseConv2dGPUKernelNHWC() local 106 const int input_col_end = input_col_start + filter_width; in DepthwiseConv2dGPUKernelNHWC() 116 const int filter_offset_temp = filter_width * filter_row; in DepthwiseConv2dGPUKernelNHWC() 117 UNROLL for (int filter_col = 0; filter_col < filter_width; in DepthwiseConv2dGPUKernelNHWC() 135 const int filter_offset_temp = filter_width * filter_row; in DepthwiseConv2dGPUKernelNHWC() 136 UNROLL for (int filter_col = 0; filter_col < filter_width; in DepthwiseConv2dGPUKernelNHWC() 184 const int filter_width = in DepthwiseConv2dGPUKernelNHWCSmall() local 199 const int filter_pixels = filter_height * filter_width; in DepthwiseConv2dGPUKernelNHWCSmall() 200 const int tile_width = in_width + filter_width - 1; in DepthwiseConv2dGPUKernelNHWCSmall() 277 UNROLL for (int c = 0; c < filter_width; ++c) { in DepthwiseConv2dGPUKernelNHWCSmall() [all …]
|
D | quantized_conv_ops.cc | 57 int filter_height, int filter_width, int filter_count, in operator ()() argument 91 ((output_width - 1) * stride + filter_width - input_width + 1) / 2; in operator ()() 96 ((output_width - 1) * stride + filter_width - input_width) / 2; in operator ()() 133 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { in operator ()() 156 filter_data[(filter_y * filter_width * input_depth * in operator ()() 203 int filter_height, int filter_width, int filter_count, in operator ()() argument 224 filter_height, filter_width, filter_count, filter_offset, in operator ()() 236 ((output_width - 1) * stride + filter_width - input_width + 1) / 2; in operator ()() 241 ((output_width - 1) * stride + filter_width - input_width) / 2; in operator ()() 257 const int filter_value_count = filter_width * filter_height * input_depth; in operator ()() [all …]
|
D | conv_ops_fused.cc | 261 const T2* filter_data, int filter_height, int filter_width, in operator ()() argument 274 if ((filter_width <= 0) || (filter_height <= 0) || (filter_count <= 0)) { in operator ()() 276 << filter_width << ", " << filter_height << ", " in operator ()() 296 ((output_width - 1) * stride_cols + filter_width - padded_width + 1) / in operator ()() 303 ((output_width - 1) * stride_cols + filter_width - padded_width) / 2; in operator ()() 331 const int filter_value_count = filter_width * filter_height * input_depth; in operator ()() 368 filter_width; in operator ()() 550 (filter_y * filter_width * task_params.input_depth); in operator ()() 567 (filter_width * task_params.input_depth), in operator ()()
|
D | ops_util_test.cc | 36 int filter_width; member 78 pad_struct.input.in_width, pad_struct.input.filter_width, in VerifyGet2dOutputSizeBoundaries() 93 pad_struct.input.in_width, pad_struct.input.filter_width, in VerifyGet2dOutputSizeValues() 112 pad_struct.input.in_width, pad_struct.input.filter_width, in VerifyGet2dOutputVerboseSizeValues()
|
/external/tensorflow/tensorflow/contrib/lite/kernels/internal/optimized/ |
D | multithreaded_conv.h | 118 const T* filter_data, int filter_height, int filter_width, in operator() 124 const bool is_1x1_kernel = (filter_height == 1 && filter_width == 1 && in operator() 137 } else if (filter_height == input_height && filter_width == input_width && in operator() 142 filter_width * filter_height * input_depth; in operator() 155 ConstEigenTensor filter(filter_data, filter_height, filter_width, in operator() 178 const int filter_width = ArraySize(filter_dims, 1); in Conv() local 183 input_depth, filter_data, filter_height, filter_width, in Conv()
|
D | cblas_conv.h | 46 const int filter_width = ArraySize(filter_dims, 1); in Conv() local 49 filter_width != 1 || filter_height != 1; in Conv() 53 pad_width, pad_height, filter_height, filter_width, 0, in Conv()
|
D | depthwiseconv_float.h | 766 int depth_multiplier, int filter_width, 788 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { 839 int pad_width, int depth_multiplier, int filter_width, 870 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { 925 const int filter_width = ArraySize(filter_dims, 1); 1020 pad_width, depth_multiplier, filter_width,
|
/external/tensorflow/tensorflow/contrib/lite/kernels/ |
D | pooling.cc | 93 computeOutSize(width, params->filter_width, params->stride_width); in GenericPrepare() 100 params->filter_width, outWidth); in GenericPrepare() 133 params->filter_width, params->filter_height, activation_min, \ in AverageEvalFloat() 155 params->filter_width, params->filter_height, \ in AverageEvalQuantized() 177 params->filter_width, params->filter_height, activation_min, \ in MaxEvalFloat() 199 params->filter_width, params->filter_height, activation_min, \ in MaxEvalQuantized() 221 params->filter_width, params->filter_height, activation_min, \ in L2EvalFloat()
|
D | conv.cc | 155 int filter_width = filter->dims->data[2]; in Prepare() local 170 int outWidth = computeOutSize(width, filter_width, params->stride_width); in Prepare() 176 ComputePadding(params->stride_width, width, filter_width, outWidth); in Prepare() 207 filter_width != 1 || filter_height != 1); in Prepare() 241 im2col_size->data[3] = input_depth * filter_height * filter_width; in Prepare() 260 hwcn_weights_size->data[0] = (filter_height * filter_width * input_depth); in Prepare()
|
D | pooling_test.cc | 32 int filter_width, int filter_height, in BasePoolingOpModel() argument 39 CreatePool2DOptions(builder_, Padding_VALID, 2, 2, filter_width, in BasePoolingOpModel()
|
D | depthwise_conv.cc | 124 int filter_width = SizeOfDimension(filter, 2); in Prepare() local 139 int out_width = compute_out_size(width, filter_width, params->stride_width); in Prepare() 146 ComputePadding(params->stride_width, width, filter_width, out_width); in Prepare()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Conv2D.pbtxt | 14 `[filter_height, filter_width, in_channels, out_channels]` 62 `[filter_height, filter_width, in_channels, out_channels]`, this op 66 `[filter_height * filter_width * in_channels, output_channels]`. 69 filter_height * filter_width * in_channels]`.
|
D | api_def_Dilation2DBackpropFilter.pbtxt | 12 3-D with shape `[filter_height, filter_width, depth]`. 24 3-D with shape `[filter_height, filter_width, depth]`.
|
D | api_def_Dilation2D.pbtxt | 12 3-D with shape `[filter_height, filter_width, depth]`. 44 `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each
|
D | api_def_Conv2DBackpropFilter.pbtxt | 14 `[filter_height, filter_width, in_channels, out_channels]` tensor. 28 `[filter_height, filter_width, in_channels, out_channels]`. Gradient w.r.t.
|
D | api_def_DepthwiseConv2dNativeBackpropFilter.pbtxt | 16 `[filter_height, filter_width, in_channels, depthwise_multiplier]` tensor. 32 `[filter_height, filter_width, in_channels, out_channels]`. Gradient w.r.t.
|
/external/tensorflow/tensorflow/tools/graph_transforms/ |
D | flatten_atrous.cc | 71 const int32 filter_width = filter.dim_size(1); in FlattenAtrousConv() local 78 (filter_width - 1) * block_width + 1; in FlattenAtrousConv() 89 for (int w = 0; w < filter_width; ++w) { in FlattenAtrousConv()
|
/external/tensorflow/tensorflow/contrib/lite/kernels/internal/reference/ |
D | reference_ops.h | 176 const int filter_width = ArraySize(filter_dims, 1); in Conv() local 187 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { in Conv() 270 const int filter_width = ArraySize(filter_dims, 1); in Conv() local 281 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { in Conv() 1687 int pad_height, int filter_width, int filter_height, in AveragePool() argument 1707 std::min(filter_width, input_width - in_x_origin); in AveragePool() 1738 int pad_height, int filter_width, int filter_height, in AveragePool() argument 1743 pad_height, filter_width, filter_height, output_activation_min, in AveragePool() 1750 int pad_width, int pad_height, int filter_width, in AveragePool() argument 1754 filter_width, filter_height, output_data, output_dims); in AveragePool() [all …]
|
D | depthwiseconv_float.h | 39 const int filter_width = ArraySize(filter_dims, 1); in DepthwiseConv() local 54 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { in DepthwiseConv()
|
D | depthwiseconv_uint8.h | 45 const int filter_width = ArraySize(filter_dims, 1); in DepthwiseConv() local 60 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { in DepthwiseConv()
|
/external/tensorflow/tensorflow/contrib/kfac/python/ops/ |
D | fisher_factors.py | 949 filter_height, filter_width, in_channels, out_channels = self._filter_shape 951 filter_height * filter_width * in_channels + self._has_bias, 965 filter_height, filter_width, _, _ = self._filter_shape 971 ksizes=[1, filter_height, filter_width, 1], 1096 filter_height, filter_width, in_channels, _ = self._filter_shape 1097 size = filter_height * filter_width * in_channels + self._has_bias 1113 filter_height, filter_width, in_channels, _ = self._filter_shape 1119 ksizes=[1, filter_height, filter_width, 1], 1124 flatten_size = (filter_height * filter_width * in_channels)
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
D | depthwiseconv_float.h | 428 int depth_multiplier, int filter_width, 450 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { 501 int pad_width, int depth_multiplier, int filter_width, 512 for (int filter_x = 0; filter_x < filter_width; ++filter_x) { 570 const int filter_width = ArraySize(filter_dims, 1); 654 pad_width, depth_multiplier, filter_width,
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_ops.py | 1348 filter_height, filter_width = filter_shape[0], filter_shape[1] 1353 filter_width_up = filter_width + (filter_width - 1) * (rate - 1) 2138 filter_width = int(filter_shape[1]) 2143 (output_count * filter_in_depth * filter_height * filter_width * 2)) 2157 filter_width = int(filter_shape[1]) 2159 return ops.OpStats("flops", (output_count * filter_height * filter_width * 2)) 2557 filter_width = int(filter_shape[1]) 2559 return ops.OpStats("flops", (output_count * filter_height * filter_width * 2))
|
/external/tensorflow/tensorflow/tools/benchmark/ |
D | benchmark_model.cc | 201 int64 filter_width = filter_shape.dim_size(1); in CalculateFlops() local 205 output_count * filter_in_depth * filter_height * filter_width * 2; in CalculateFlops() 222 int64 filter_width = filter_shape.dim_size(1); in CalculateFlops() local 224 current_flops = output_count * filter_height * filter_width * 2; in CalculateFlops()
|