/external/libvncserver/webclients/novnc/include/ |
D | black.css | 15 …background: -moz-linear-gradient(top, #4c4c4c 0%, #2c2c2c 50%, #000000 51%, #131313 100%); /* FF3.… 16 …background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,#4c4c4c), color-stop(50%… 17 …background: -webkit-linear-gradient(top, #4c4c4c 0%,#2c2c2c 50%,#000000 51%,#131313 100%); /* Chro… 18 …background: -o-linear-gradient(top, #4c4c4c 0%,#2c2c2c 50%,#000000 51%,#131313 100%); /* Opera11.1… 19 background: -ms-linear-gradient(top, #4c4c4c 0%,#2c2c2c 50%,#000000 51%,#131313 100%); /* IE10+ */ 20 background: linear-gradient(top, #4c4c4c 0%,#2c2c2c 50%,#000000 51%,#131313 100%); /* W3C */ 24 …background: -moz-linear-gradient(top, #f04040 0%, #2c2c2c 50%, #000000 51%, #131313 100%); /* FF3.… 25 …background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,#f04040), color-stop(50%… 26 …background: -webkit-linear-gradient(top, #f04040 0%,#2c2c2c 50%,#000000 51%,#131313 100%); /* Chro… 27 …background: -o-linear-gradient(top, #f04040 0%,#2c2c2c 50%,#000000 51%,#131313 100%); /* Opera11.1… [all …]
|
D | base.css | 177 background:#eee; /* default background for browsers without gradient support */ 243 …background: -moz-linear-gradient(top, #b2bdcd 0%, #899cb3 49%, #7e93af 51%, #6e84a3 100%); /* FF3.… 244 …background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,#b2bdcd), color-stop(49%… 245 …background: -webkit-linear-gradient(top, #b2bdcd 0%,#899cb3 49%,#7e93af 51%,#6e84a3 100%); /* Chro… 246 …background: -o-linear-gradient(top, #b2bdcd 0%,#899cb3 49%,#7e93af 51%,#6e84a3 100%); /* Opera11.1… 247 background: -ms-linear-gradient(top, #b2bdcd 0%,#899cb3 49%,#7e93af 51%,#6e84a3 100%); /* IE10+ */ 248 background: linear-gradient(top, #b2bdcd 0%,#899cb3 49%,#7e93af 51%,#6e84a3 100%); /* W3C */ 252 …background: -moz-linear-gradient(top, #f04040 0%, #899cb3 49%, #7e93af 51%, #6e84a3 100%); /* FF3.… 253 …background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,#f04040), color-stop(49%… 254 …background: -webkit-linear-gradient(top, #f04040 0%,#899cb3 49%,#7e93af 51%,#6e84a3 100%); /* Chro… [all …]
|
D | blue.css | 11 background-image: -webkit-gradient( 18 background-image: -moz-linear-gradient( 26 background-image: -webkit-gradient( 33 background-image: -moz-linear-gradient( 41 background-image: -webkit-gradient( 48 background-image: -moz-linear-gradient(
|
/external/ImageMagick/MagickCore/ |
D | paint.c | 419 *gradient; in GradientImage() local 434 gradient=(&draw_info->gradient); in GradientImage() 435 gradient->type=type; in GradientImage() 436 gradient->bounding_box.width=image->columns; in GradientImage() 437 gradient->bounding_box.height=image->rows; in GradientImage() 440 (void) ParseAbsoluteGeometry(artifact,&gradient->bounding_box); in GradientImage() 441 gradient->gradient_vector.x2=(double) image->columns-1.0; in GradientImage() 442 gradient->gradient_vector.y2=(double) image->rows-1.0; in GradientImage() 455 gradient->gradient_vector.x1=(double) image->columns-1.0; in GradientImage() 456 gradient->gradient_vector.y1=(double) image->rows-1.0; in GradientImage() [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_TensorArrayGradV3.pbtxt | 21 The gradient source string, used to decide which gradient TensorArray 27 If the given TensorArray gradient already exists, returns a reference to it. 33 The handle flow_in forces the execution of the gradient lookup to occur 36 may resize the object. The gradient TensorArray is statically sized based 39 As a result, the flow is used to ensure that the call to generate the gradient 42 In the case of dynamically sized TensorArrays, gradient computation should 49 TensorArray gradient calls use an accumulator TensorArray object. If 51 gradient nodes may accidentally flow through the same accumulator TensorArray. 52 This double counts and generally breaks the TensorArray gradient flow. 54 The solution is to identify which gradient call this particular [all …]
|
D | api_def_FusedBatchNormGrad.pbtxt | 6 A 4D Tensor for the gradient with respect to y. 25 mean to be reused in gradient computation. When is_training is 27 1st and 2nd order gradient computation. 35 gradient computation. When is_training is False, a 1D Tensor 37 order gradient computation. 43 A 4D Tensor for the gradient with respect to x. 49 A 1D Tensor for the gradient with respect to scale. 55 A 1D Tensor for the gradient with respect to offset.
|
D | api_def_FusedBatchNormGradV2.pbtxt | 6 A 4D Tensor for the gradient with respect to y. 25 mean to be reused in gradient computation. When is_training is 27 1st and 2nd order gradient computation. 35 gradient computation. When is_training is False, a 1D Tensor 37 order gradient computation. 43 A 4D Tensor for the gradient with respect to x. 49 A 1D Tensor for the gradient with respect to scale. 55 A 1D Tensor for the gradient with respect to offset.
|
D | api_def_SparseAccumulatorApplyGradient.pbtxt | 12 The local_step value at which the sparse gradient was computed. 18 Indices of the sparse gradient to be accumulated. Must be a 25 Values are the non-zero slices of the gradient, and must have 33 Shape of the sparse gradient to be accumulated. 50 summary: "Applies a sparse gradient to a given accumulator."
|
D | api_def_StridedSliceGrad.pbtxt | 3 summary: "Returns the gradient of `StridedSlice`." 6 `shape`, its gradient will have the same shape (which is passed here 7 as `shape`). The gradient will be zero in any element that the slice 11 `dy` is the input gradient to be propagated and `shape` is the
|
D | api_def_SparseAddGrad.pbtxt | 6 1-D with shape `[nnz(sum)]`. The gradient with respect to 32 1-D with shape `[nnz(A)]`. The gradient with respect to the 39 1-D with shape `[nnz(B)]`. The gradient with respect to the 43 summary: "The gradient operator for the SparseAdd op." 46 as `SparseTensor` objects. This op takes in the upstream gradient w.r.t.
|
D | api_def_AccumulatorApplyGradient.pbtxt | 12 The local_step value at which the gradient was computed. 16 name: "gradient" 18 A tensor of the gradient to be accumulated. 28 summary: "Applies a gradient to a given accumulator."
|
D | api_def_PreventGradient.pbtxt | 22 summary: "An identity op that triggers an error if a gradient is requested." 26 When building ops to compute gradients, the TensorFlow gradient system 27 will return an error when trying to lookup the gradient of this op, 28 because no gradient must ever be registered for this function. This
|
D | api_def_UnbatchGrad.pbtxt | 9 original_input: The input to the Unbatch operation this is the gradient of. 10 batch_index: The batch_index given to the Unbatch operation this is the gradient 12 grad: The downstream gradient. 14 batched_grad: The return value, either an empty tensor or the batched gradient.
|
D | api_def_DebugGradientRefIdentity.pbtxt | 3 summary: "Identity op for gradient debugging." 6 register gradient tensors for gradient debugging.
|
D | api_def_DebugGradientIdentity.pbtxt | 3 summary: "Identity op for gradient debugging." 6 register gradient tensors for gradient debugging.
|
/external/libxcam/cl_kernel/ |
D | kernel_3d_denoise_slm.cl | 69 float4 gradient = (float4)(0.0f, 0.0f, 0.0f, 0.0f); 96 … gradient = (float4)(ref_cache[mad24(i, 4 * REF_BLOCK_WIDTH, REF_BLOCK_WIDTH + local_id_x + j)].s2, 100 gradient = (gradient - ref_cache[mad24(i, 4 * REF_BLOCK_WIDTH, local_id_x + j)]) + 101 … (gradient - ref_cache[mad24(i, 4 * REF_BLOCK_WIDTH, REF_BLOCK_WIDTH + local_id_x + j)]) + 102 … (gradient - ref_cache[mad24(i, 4 * REF_BLOCK_WIDTH, 2 * REF_BLOCK_WIDTH + local_id_x + j)]) + 103 … (gradient - ref_cache[mad24(i, 4 * REF_BLOCK_WIDTH, 3 * REF_BLOCK_WIDTH + local_id_x + j)]); 104 gradient.s0 = (gradient.s0 + gradient.s1 + gradient.s2 + gradient.s3) / 15.0f; 105 gain = (gradient.s0 < threshold) ? gain : 2.0f * gain; 142 … gradient = (float4)(ref_cache[mad24(i, 4 * REF_BLOCK_WIDTH, REF_BLOCK_WIDTH + local_id_x + j)].s2, 146 gradient = (gradient - ref_cache[mad24(i, 4 * REF_BLOCK_WIDTH, local_id_x + j)]) + [all …]
|
/external/tensorflow/tensorflow/compiler/tf2xla/ |
D | xla_resource.cc | 43 for (const string& gradient : tensor_array_gradients) { in XlaResource() local 44 tensor_array_gradients_[gradient].reset( in XlaResource() 130 std::unique_ptr<XlaResource>& gradient = tensor_array_gradients_[source]; in GetOrCreateTensorArrayGradient() local 131 if (!gradient) { in GetOrCreateTensorArrayGradient() 137 gradient.reset( in GetOrCreateTensorArrayGradient() 143 *gradient_out = gradient.get(); in GetOrCreateTensorArrayGradient() 155 for (const auto& gradient : tensor_array_gradients_) { in Pack() local 156 elems.push_back(gradient.second->value_); in Pack() 181 XlaResource* gradient; in SetFromPack() local 183 GetOrCreateTensorArrayGradient(source, builder, &gradient)); in SetFromPack() [all …]
|
/external/swiftshader/src/Renderer/ |
D | SetupProcessor.cpp | 111 state.gradient[interpolant][component].attribute = Unused; in update() 112 state.gradient[interpolant][component].flat = false; in update() 113 state.gradient[interpolant][component].wrap = false; in update() 154 state.gradient[interpolant][component].attribute = input; in update() 155 state.gradient[interpolant][component].flat = flat; in update() 173 state.gradient[interpolant][component].attribute = T0 + semantic.index; in update() 174 state.gradient[interpolant][component].flat = semantic.flat || (point && !sprite); in update() 177 state.gradient[interpolant][component].attribute = C0 + semantic.index; in update() 178 state.gradient[interpolant][component].flat = semantic.flat || flatShading; in update()
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | optimizers.py | 274 for gradient, variable in gradients: 275 if isinstance(gradient, ops.IndexedSlices): 276 grad_values = gradient.values 278 grad_values = gradient 416 for gradient in gradients: 417 if gradient is None: 420 if isinstance(gradient, ops.IndexedSlices): 421 gradient_shape = gradient.dense_shape 423 gradient_shape = gradient.get_shape() 425 noisy_gradients.append(gradient + noise)
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/fitting/ |
D | PolynomialFitter.java | 87 public double[] gradient(double x, double[] parameters) { in gradient() method in PolynomialFitter.ParametricPolynomial 88 final double[] gradient = new double[parameters.length]; in gradient() local 91 gradient[i] = xn; in gradient() 94 return gradient; in gradient()
|
/external/tensorflow/tensorflow/core/kernels/ |
D | fake_quant_ops.cc | 118 void Operate(OpKernelContext* context, const Tensor& gradient, in Operate() argument 120 OperateNoTemplate(context, gradient, input, output); in Operate() 123 void OperateNoTemplate(OpKernelContext* context, const Tensor& gradient, in OperateNoTemplate() argument 125 OP_REQUIRES(context, input.IsSameSize(gradient), in OperateNoTemplate() 128 functor(context->eigen_device<Device>(), gradient.flat<float>(), in OperateNoTemplate() 230 const Tensor& gradient = context->input(0); in Compute() local 232 OP_REQUIRES(context, input.IsSameSize(gradient), in Compute() 251 functor(context->eigen_device<Device>(), gradient.flat<float>(), in Compute() 367 const Tensor& gradient = context->input(0); in Compute() local 369 OP_REQUIRES(context, input.IsSameSize(gradient), in Compute() [all …]
|
/external/tensorflow/tensorflow/cc/gradients/ |
D | README.md | 10 1. Create the op gradient function in `foo_grad.cc` corresponding to the 14 2. Write the op gradient with the following naming scheme: 30 for the op's inputs and calling `RunTest` (`RunTest` uses a [gradient 32 to verify that the theoretical gradient matches the numeric gradient). For
|
/external/okhttp/website/static/ |
D | bootstrap-combined.min.css | 9 …gradient(top,#08c,#0077b3);background-image:-webkit-gradient(linear,0 0,0 100%,from(#08c),to(#0077…
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/general/ |
D | AbstractScalarDifferentiableOptimizer.java | 79 private MultivariateVectorialFunction gradient; field in AbstractScalarDifferentiableOptimizer 156 return gradient.value(evaluationPoint); in computeObjectiveGradient() 189 gradient = f.gradient(); in optimize()
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/ |
D | learning_test.py | 67 gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) 69 gradients_to_variables = (gradient, variable) 81 gradient = None 84 gradients_to_variables = (gradient, variable) 100 gradient = ops.IndexedSlices(values, indices, dense_shape) 103 gradients_to_variables = (gradient, variable) 126 gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) 127 variable = variables_lib.Variable(array_ops.zeros_like(gradient)) 128 grad_to_var = (gradient, variable) 134 gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) [all …]
|