/external/tensorflow/tensorflow/python/ops/ |
D | metrics_impl.py | 53 def _remove_squeezable_dimensions(predictions, labels, weights): argument 77 if labels is not None: 78 labels, predictions = confusion_matrix.remove_squeezable_dimensions( 79 labels, predictions) 80 predictions.get_shape().assert_is_compatible_with(labels.get_shape()) 83 return predictions, labels, None 89 return predictions, labels, weights 126 return predictions, labels, weights 129 def _maybe_expand_labels(labels, predictions): argument 145 with ops.name_scope(None, 'expand_labels', (labels, predictions)) as scope: [all …]
|
D | confusion_matrix.py | 38 labels, predictions, expected_rank_diff=0, name=None): argument 64 [labels, predictions]): 66 labels = ops.convert_to_tensor(labels) 69 labels_shape = labels.get_shape() 77 labels = array_ops.squeeze(labels, [-1]) 78 return labels, predictions 81 rank_diff = array_ops.rank(predictions) - array_ops.rank(labels) 90 labels = control_flow_ops.cond( 92 lambda: array_ops.squeeze(labels, [-1]), 93 lambda: labels) [all …]
|
/external/autotest/utils/ |
D | labellib_unittest.py | 44 labels = ['webcam', 'pool:suites'] 45 mapping = labellib.LabelsMapping(labels) 46 self.assertEqual(mapping.getlabels(), labels) 49 labels = ['webcam', 'pool:suites', 'pool:party'] 50 mapping = labellib.LabelsMapping(labels) 54 labels = ['ohse:tsubame', 'webcam'] 55 mapping = labellib.LabelsMapping(labels) 59 labels = ['webcam', 'exec', 'method'] 60 mapping = labellib.LabelsMapping(labels) 64 labels = ['class:protecta', 'method:metafalica', 'exec:chronicle_key'] [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | head.py | 142 labels=None, argument 542 def _mean_squared_loss(labels, logits, weights=None): argument 543 with ops.name_scope(None, "mean_squared_loss", (logits, labels)) as name: 545 labels = ops.convert_to_tensor(labels) 547 if len(labels.get_shape()) == 1: 548 labels = array_ops.expand_dims(labels, dim=(1,)) 552 logits.get_shape().assert_is_compatible_with(labels.get_shape()) 553 loss = math_ops.square(logits - math_ops.to_float(labels), name=name) 557 def _poisson_loss(labels, logits, weights=None): argument 559 with ops.name_scope(None, "_poisson_loss", (logits, labels)) as name: [all …]
|
/external/tensorflow/tensorflow/contrib/metrics/python/ops/ |
D | metric_ops.py | 67 labels, argument 103 labels=labels, 111 labels, argument 147 labels=labels, 155 labels, argument 191 labels=labels, 199 labels, argument 234 labels=labels, 347 labels, argument 396 labels=labels, [all …]
|
D | metric_ops_test.py | 52 def _binary_2d_label_to_sparse_value(labels): argument 67 for row in labels: 79 shape = [len(labels), len(labels[0])] 85 def _binary_2d_label_to_sparse(labels): argument 98 _binary_2d_label_to_sparse_value(labels)) 101 def _binary_3d_label_to_sparse_value(labels): argument 115 for d0, labels_d0 in enumerate(labels): 125 shape = [len(labels), len(labels[0]), len(labels[0][0])] 131 def _binary_3d_label_to_sparse(labels): argument 144 _binary_3d_label_to_sparse_value(labels)) [all …]
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | losses_impl.py | 219 labels, predictions, weights=1.0, scope=None, argument 251 if labels is None: 256 (predictions, labels, weights)) as scope: 258 labels = math_ops.to_float(labels) 259 predictions.get_shape().assert_is_compatible_with(labels.get_shape()) 260 losses = math_ops.abs(math_ops.subtract(predictions, labels)) 268 labels, predictions, axis=None, weights=1.0, scope=None, argument 303 if labels is None: 308 (predictions, labels, weights)) as scope: 310 labels = math_ops.to_float(labels) [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/utils/ |
D | losses.py | 28 def per_example_logistic_loss(labels, weights, predictions): argument 40 labels = math_ops.to_float(labels) 42 labels=labels, logits=predictions) 49 def per_example_maxent_loss(labels, weights, logits, num_classes, eps=1e-15): argument 68 labels = math_ops.to_int64(labels) 70 labels_shape = labels.get_shape() 72 labels = array_ops.expand_dims(labels, 1) 74 target_one_hot = array_ops.one_hot(indices=labels, depth=num_classes) 75 labels = math_ops.reduce_sum( 77 labels = math_ops.to_float(labels) [all …]
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
D | losses_test.py | 37 labels = constant_op.constant([0, 1]) 39 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 45 labels = constant_op.constant([1, 0], shape=(1, 1, 2)) 47 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 53 labels = constant_op.constant([1, 0], shape=(2,)) 56 _ = losses.sparse_multiclass_hinge_loss(labels, logits, weights) 62 labels = constant_op.constant([1, 0], dtype=dtypes.float32) 64 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 70 labels = constant_op.constant([1, 0]) 72 _ = losses.sparse_multiclass_hinge_loss(labels, logits, weights=None) [all …]
|
/external/tensorflow/tensorflow/python/estimator/canned/ |
D | head.py | 149 def create_loss(self, features, mode, logits, labels): argument 177 self, features, mode, logits, labels=None, train_op_fn=None, argument 204 labels, logits, expected_labels_dimension): 223 if labels is None: 229 with ops.name_scope(None, 'labels', (labels, logits)) as scope: 230 labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels) 231 if isinstance(labels, sparse_tensor.SparseTensor): 243 if (labels.shape.ndims is not None and logits.shape.ndims is not None and 244 labels.shape.ndims == logits.shape.ndims - 1): 245 labels = array_ops.expand_dims(labels, -1) [all …]
|
/external/tensorflow/tensorflow/contrib/losses/python/losses/ |
D | loss_ops.py | 264 def absolute_difference(predictions, labels=None, weights=1.0, scope=None): argument 290 [predictions, labels, weights]) as scope: 291 predictions.get_shape().assert_is_compatible_with(labels.get_shape()) 293 labels = math_ops.to_float(labels) 294 losses = math_ops.abs(math_ops.subtract(predictions, labels)) 345 labels=multi_class_labels, logits=logits, name="xentropy") 397 labels=onehot_labels, logits=logits, name="xentropy") 404 def sparse_softmax_cross_entropy(logits, labels, weights=1.0, scope=None): argument 428 [logits, labels, weights]) as scope: 429 labels = array_ops.reshape(labels, shape=[array_ops.shape(labels)[0]]) [all …]
|
D | loss_ops_test.py | 119 labels = constant_op.constant([[1, 0, 0], 124 loss_ops.softmax_cross_entropy(logits, labels, weights=None) 131 labels = constant_op.constant([[1, 0, 0], 134 loss = loss_ops.softmax_cross_entropy(logits, labels) 142 labels = constant_op.constant([[0, 0, 1], 147 loss = loss_ops.softmax_cross_entropy(logits, labels) 155 labels = constant_op.constant([[0, 0, 1], 160 loss = loss_ops.softmax_cross_entropy(logits, labels, weights) 167 labels = constant_op.constant([[0, 0, 1], 172 loss = loss_ops.softmax_cross_entropy(logits, labels, [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | metrics_test.py | 54 def _binary_2d_label_to_2d_sparse_value(labels): argument 70 for row in labels: 82 shape = [len(labels), len(labels[0])] 88 def _binary_2d_label_to_1d_sparse_value(labels): argument 107 for row in labels: 119 if indices != [[i] for i in range(len(labels))]: 121 shape = [len(labels)] 127 def _binary_3d_label_to_sparse_value(labels): argument 141 for d0, labels_d0 in enumerate(labels): 151 shape = [len(labels), len(labels[0]), len(labels[0][0])] [all …]
|
D | sparse_xent_op_test.py | 48 def _npXent(self, features, labels): argument 50 labels = np.reshape(labels, [-1]) 59 labels_mat[np.arange(batch_size), labels] = 1.0 86 labels = [4, 3, 0, -1] 91 features, labels)) 104 features, labels)) 113 labels = [3, 0] 133 np_loss, np_backprop = self._npXent(np.array(features), np.array(labels)) 146 labels=[[0, 2]], logits=[[0., 1.], [2., 3.], [2., 3.]]) 152 labels=constant_op.constant(0), logits=constant_op.constant(1.0)) [all …]
|
D | losses_test.py | 112 labels = constant_op.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) 115 losses.softmax_cross_entropy(labels, logits, weights=None) 121 labels = constant_op.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) 122 loss = losses.softmax_cross_entropy(labels, logits) 129 labels = constant_op.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) 132 loss = losses.softmax_cross_entropy(labels, logits) 139 labels = constant_op.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) 142 loss = losses.softmax_cross_entropy(labels, logits, weights) 148 labels = constant_op.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) 151 loss = losses.softmax_cross_entropy(labels, logits, [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ |
D | metric_spec_test.py | 35 def _fn0(predictions, labels, weights=None): argument 37 self.assertEqual("l1_value", labels) 93 def _fn(labels): argument 94 self.assertEqual(labels_, labels) 106 def _fn(labels, **kwargs): argument 107 self.assertEqual(labels_, labels) 120 def _fn(labels, predictions_by_another_name): argument 122 self.assertEqual(labels_, labels) 135 def _fn(predictions_by_another_name, labels): argument 137 self.assertEqual(labels_, labels) [all …]
|
/external/python/cpython3/Lib/encodings/ |
D | idna.py | 162 labels = result.split(b'.') 163 for label in labels[:-1]: 166 if len(labels[-1]) >= 64: 171 labels = dots.split(input) 172 if labels and not labels[-1]: 174 del labels[-1] 177 for label in labels: 204 labels = input.split(b".") 206 if labels and len(labels[-1]) == 0: 208 del labels[-1] [all …]
|
/external/tensorflow/tensorflow/contrib/metrics/python/metrics/ |
D | classification_test.py | 32 labels = array_ops.placeholder(dtypes.int32, shape=[None]) 33 acc = classification.accuracy(pred, labels) 36 labels: [1, 1, 0, 0]}) 42 labels = array_ops.placeholder(dtypes.bool, shape=[None]) 43 acc = classification.accuracy(pred, labels) 46 labels: [1, 1, 0, 0]}) 52 labels = array_ops.placeholder(dtypes.int64, shape=[None]) 53 acc = classification.accuracy(pred, labels) 56 labels: [1, 1, 0, 0]}) 62 labels = array_ops.placeholder(dtypes.string, shape=[None]) [all …]
|
/external/tensorflow/tensorflow/contrib/estimator/python/estimator/ |
D | head_test.py | 84 def _sigmoid_cross_entropy(labels, logits): argument 88 -labels * np.log(sigmoid_logits) 89 -(1 - labels) * np.log(1 - sigmoid_logits)) 156 def _loss_fn(labels): argument 157 del labels # unused 165 def _loss_fn(labels, logits, features): argument 166 del labels, logits, features # Unused 170 def _loss_fn(labels, logits, name=None): argument 171 del labels, logits, name # Unused 273 labels = np.array([[1, 0], [1, 1]], dtype=np.int64) [all …]
|
/external/python/cpython2/Lib/encodings/ |
D | idna.py | 157 labels = dots.split(input) 158 if labels and len(labels[-1])==0: 160 del labels[-1] 163 for label in labels: 178 labels = dots.split(input) 183 labels = input.split(".") 185 if labels and len(labels[-1]) == 0: 187 del labels[-1] 192 for label in labels: 206 labels = dots.split(input) [all …]
|
/external/toolchain-utils/crosperf/ |
D | machine_image_manager_unittest.py | 61 labels = [] 70 labels.append(l) 71 return labels, duts 79 labels, duts = self.create_labels_and_duts_from_pattern(inp) 80 mim = MachineImageManager(labels, duts) 86 labels = [MockLabel('l1'), MockLabel('l2'), MockLabel('l3')] 88 mim = MachineImageManager(labels, [dut]) 93 labels = [MockLabel('l1')] 95 mim = MachineImageManager(labels, duts) 100 labels = [ [all …]
|
/external/minijail/ |
D | bpf.c | 204 int bpf_resolve_jumps(struct bpf_labels *labels, struct sock_filter *filter, in bpf_resolve_jumps() argument 224 if (instr->k >= labels->count) { in bpf_resolve_jumps() 228 if (labels->labels[instr->k].location == 0xffffffff) { in bpf_resolve_jumps() 230 labels->labels[instr->k].label); in bpf_resolve_jumps() 234 labels->labels[instr->k].location - (offset + 1); in bpf_resolve_jumps() 239 if (labels->labels[instr->k].location != 0xffffffff) { in bpf_resolve_jumps() 241 labels->labels[instr->k].label); in bpf_resolve_jumps() 244 labels->labels[instr->k].location = offset; in bpf_resolve_jumps() 255 int bpf_label_id(struct bpf_labels *labels, const char *label) in bpf_label_id() argument 257 struct __bpf_label *begin = labels->labels, *end; in bpf_label_id() [all …]
|
/external/tensorflow/tensorflow/contrib/losses/python/metric_learning/ |
D | metric_loss_ops.py | 88 def contrastive_loss(labels, embeddings_anchor, embeddings_positive, argument 117 math_ops.to_float(labels) * math_ops.square(distances) + 118 (1. - math_ops.to_float(labels)) * 161 def triplet_semihard_loss(labels, embeddings, margin=1.0): argument 182 lshape = array_ops.shape(labels) 184 labels = array_ops.reshape(labels, [lshape[0], 1]) 189 adjacency = math_ops.equal(labels, array_ops.transpose(labels)) 193 batch_size = array_ops.size(labels) 245 def npairs_loss(labels, embeddings_anchor, embeddings_positive, argument 287 lshape = array_ops.shape(labels) [all …]
|
/external/tensorflow/tensorflow/contrib/training/python/training/ |
D | sampling_ops.py | 135 labels, argument 192 with ops.name_scope(name, 'stratified_sample', list(tensors) + [labels]): 194 labels = ops.convert_to_tensor(labels) 199 labels = array_ops.expand_dims(labels, 0) 207 labels, target_probs.get_shape().num_elements()) 212 tensor_list, labels, [init_probs, target_probs] = _verify_input( 213 tensor_list, labels, [init_probs, target_probs]) 241 tensor_list + [labels], 260 def _estimate_data_distribution(labels, num_classes, smoothing_constant=10): argument 277 labels, num_classes, dtype=dtypes.int64), 0)) [all …]
|
/external/annotation-tools/asmx/src/org/objectweb/asm/tree/ |
D | LookupSwitchInsnNode.java | 61 public List labels; field in LookupSwitchInsnNode 74 final Label[] labels) in LookupSwitchInsnNode() argument 79 this.labels = new ArrayList(labels == null ? 0 : labels.length); in LookupSwitchInsnNode() 85 if (labels != null) { in LookupSwitchInsnNode() 86 this.labels.addAll(Arrays.asList(labels)); in LookupSwitchInsnNode() 95 Label[] labels = new Label[this.labels.size()]; in accept() local 96 this.labels.toArray(labels); in accept() 97 mv.visitLookupSwitchInsn(dflt, keys, labels); in accept()
|