/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
D | losses_test.py | 36 logits = constant_op.constant([-1.0, 2.1], shape=(2,)) 39 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 44 logits = constant_op.constant([-1.0, 2.1], shape=(2, 1)) 47 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 52 logits = constant_op.constant([-1.0, 2.1], shape=(2, 1)) 56 _ = losses.sparse_multiclass_hinge_loss(labels, logits, weights) 61 logits = constant_op.constant([-1.0, 2.1], shape=(2, 1)) 64 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 69 logits = constant_op.constant([-1.0, 2.1], shape=(2, 1)) 72 _ = losses.sparse_multiclass_hinge_loss(labels, logits, weights=None) [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_xent_test.py | 39 def _SigmoidCrossEntropyWithLogits(self, logits, targets): argument 40 assert len(logits) == len(targets) 41 pred = [1 / (1 + exp(-x)) for x in logits] 51 logits = constant_op.constant(x, shape=sizes, dtype=dtype, name="logits") 54 return logits, targets, losses 58 logits, targets, _ = self._Inputs() 60 labels=targets, logits=logits, name="mylogistic") 67 logits, targets, losses = self._Inputs(dtype=dtype) 69 labels=targets, logits=logits) 78 logits, targets, losses = self._Inputs(dtype=dtype, sizes=[2, 2, 2]) [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | onehot_categorical.py | 88 logits=None, argument 119 with ops.name_scope(name, values=[logits, probs]): 121 name=name, logits=logits, probs=probs, validate_args=validate_args, 153 def logits(self): member in OneHotCategorical 163 return array_ops.shape(self.logits)[:-1] 166 return self.logits.get_shape()[:-1] 169 return array_ops.shape(self.logits)[-1:] 172 return self.logits.get_shape().with_rank_at_least(1)[-1:] 175 sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0) 176 logits = self.logits [all …]
|
D | relaxed_onehot_categorical.py | 131 logits=None, argument 166 with ops.name_scope(name, values=[logits, probs, temperature]): 169 name=name, logits=logits, probs=probs, validate_args=validate_args, 218 def logits(self): member in ExpRelaxedOneHotCategorical 231 return self.logits.get_shape()[:-1] 234 return array_ops.shape(self.logits)[-1:] 237 return self.logits.get_shape().with_rank_at_least(1)[-1:] 240 sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0) 241 logits = self.logits * array_ops.ones(sample_shape, dtype=self.dtype) 242 logits_2d = array_ops.reshape(logits, [-1, self.event_size]) [all …]
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/nets/ |
D | vgg_test.py | 39 logits, _ = vgg.vgg_a(inputs, num_classes) 40 self.assertEquals(logits.op.name, 'vgg_a/fc8/squeezed') 41 self.assertListEqual(logits.get_shape().as_list(), 50 logits, _ = vgg.vgg_a(inputs, num_classes, spatial_squeeze=False) 51 self.assertEquals(logits.op.name, 'vgg_a/fc8/BiasAdd') 52 self.assertListEqual(logits.get_shape().as_list(), 112 logits, _ = vgg.vgg_a(eval_inputs, is_training=False) 113 self.assertListEqual(logits.get_shape().as_list(), 115 predictions = math_ops.argmax(logits, 1) 127 logits, _ = vgg.vgg_a(train_inputs) [all …]
|
D | overfeat_test.py | 38 logits, _ = overfeat.overfeat(inputs, num_classes) 39 self.assertEquals(logits.op.name, 'overfeat/fc8/squeezed') 40 self.assertListEqual(logits.get_shape().as_list(), 49 logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False) 50 self.assertEquals(logits.op.name, 'overfeat/fc8/BiasAdd') 51 self.assertListEqual(logits.get_shape().as_list(), 103 logits, _ = overfeat.overfeat(eval_inputs, is_training=False) 104 self.assertListEqual(logits.get_shape().as_list(), 106 predictions = math_ops.argmax(logits, 1) 118 logits, _ = overfeat.overfeat(train_inputs) [all …]
|
D | alexnet_test.py | 38 logits, _ = alexnet.alexnet_v2(inputs, num_classes) 39 self.assertEquals(logits.op.name, 'alexnet_v2/fc8/squeezed') 40 self.assertListEqual(logits.get_shape().as_list(), 49 logits, _ = alexnet.alexnet_v2(inputs, num_classes, spatial_squeeze=False) 50 self.assertEquals(logits.op.name, 'alexnet_v2/fc8/BiasAdd') 51 self.assertListEqual(logits.get_shape().as_list(), 103 logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False) 104 self.assertListEqual(logits.get_shape().as_list(), 106 predictions = math_ops.argmax(logits, 1) 118 logits, _ = alexnet.alexnet_v2(train_inputs) [all …]
|
/external/tensorflow/tensorflow/contrib/estimator/python/estimator/ |
D | head_test.py | 80 def _sigmoid(logits): argument 81 return 1 / (1 + np.exp(-logits)) 84 def _sigmoid_cross_entropy(labels, logits): argument 86 sigmoid_logits = _sigmoid(logits) 147 def _loss_fn(logits): argument 148 del logits # Unused 165 def _loss_fn(labels, logits, features): argument 166 del labels, logits, features # Unused 170 def _loss_fn(labels, logits, name=None): argument 171 del labels, logits, name # Unused [all …]
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | bernoulli.py | 43 logits=None, argument 77 logits=logits, 95 def logits(self): member in Bernoulli 130 event = math_ops.cast(event, self.logits.dtype) 131 logits = self.logits 135 def _broadcast(logits, event): argument 136 return (array_ops.ones_like(event) * logits, 137 array_ops.ones_like(logits) * event) 140 logits.get_shape().is_fully_defined() and 141 event.get_shape() == logits.get_shape()): [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | relaxed_onehot_categorical_test.py | 33 logits = random_ops.random_uniform( 38 temperatures, logits, dtype=dtype) 45 logits = [2.0, 3.0, -4.0] 47 logits) 48 expected_p = np.exp(logits)/np.sum(np.exp(logits)) 55 logits = [.3, .1, .4] 56 k = len(logits) 57 p = np.exp(logits)/np.sum(np.exp(logits)) 59 logits) 74 logits = [2.0, 3.0, -4.0] [all …]
|
D | onehot_categorical_test.py | 34 logits = random_ops.random_uniform( 36 return onehot_categorical.OneHotCategorical(logits, dtype=dtype) 49 self.assertAllEqual([2], dist.logits.get_shape()) 53 logits = np.log(p) - 50. 54 dist = onehot_categorical.OneHotCategorical(logits=logits) 57 self.assertAllEqual([2], dist.logits.get_shape()) 59 self.assertAllClose(dist.logits.eval(), logits) 92 self.assertEqual(dist.logits.dtype, dtypes.float32) 93 self.assertEqual(dist.logits.dtype, dist.entropy().dtype) 94 self.assertEqual(dist.logits.dtype, dist.prob( [all …]
|
D | estimator_test.py | 54 def actual_loss(logits, labels): argument 55 mu = actual_mean(logits) 56 sigma = actual_stddev(logits) 62 def actual_mean(logits): argument 63 return logits[..., 0] 65 def actual_stddev(logits): argument 66 return softplus(logits[..., 1] + scale_bias) 68 def make_distribution_fn(logits): argument 70 loc=logits[..., 0], 71 scale=nn_ops.softplus(logits[..., 1] + scale_bias)) [all …]
|
/external/tensorflow/tensorflow/contrib/kfac/python/kernel_tests/ |
D | loss_functions_test.py | 52 logits = np.asarray([ 57 array_ops.constant(logits)) 65 logits = np.asarray([ 71 array_ops.constant(logits), targets=array_ops.constant(targets)) 76 probs = np.exp(logits) / np.sum(np.exp(logits), axis=1, keepdims=True) 88 logits = np.asarray([ 93 array_ops.constant(logits)) 107 logits = random_ops.random_uniform(shape=[2, 3]) 108 tower_logits.append(logits) 110 loss = loss_functions.CategoricalLogitsNegativeLogProbLoss(logits) [all …]
|
/external/tensorflow/tensorflow/python/estimator/canned/ |
D | head_test.py | 85 def _sigmoid(logits): argument 86 return 1 / (1 + np.exp(-logits)) 115 def _loss_fn(logits): argument 116 del logits # Unused 135 def _loss_fn(labels, logits, features): argument 136 del labels, logits, features # Unused 141 def _loss_fn(labels, logits, name=None): argument 142 del labels, logits, name # Unused 162 logits=logits_2x2) 169 logits=logits_placeholder) [all …]
|
D | head.py | 149 def create_loss(self, features, mode, logits, labels): argument 177 self, features, mode, logits, labels=None, train_op_fn=None, argument 204 labels, logits, expected_labels_dimension): 229 with ops.name_scope(None, 'labels', (labels, logits)) as scope: 243 if (labels.shape.ndims is not None and logits.shape.ndims is not None and 244 labels.shape.ndims == logits.shape.ndims - 1): 247 logits_shape = array_ops.shape(logits) 275 features, weight_column, logits, allow_per_logit_weights=False): 305 values=tuple(six.itervalues(features)) + (logits,)) as scope: 324 logits_shape = array_ops.shape(logits, name='logits_shape') [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | head.py | 144 logits=None, argument 542 def _mean_squared_loss(labels, logits, weights=None): argument 543 with ops.name_scope(None, "mean_squared_loss", (logits, labels)) as name: 544 logits = ops.convert_to_tensor(logits) 550 if len(logits.get_shape()) == 1: 551 logits = array_ops.expand_dims(logits, dim=(1,)) 552 logits.get_shape().assert_is_compatible_with(labels.get_shape()) 553 loss = math_ops.square(logits - math_ops.to_float(labels), name=name) 557 def _poisson_loss(labels, logits, weights=None): argument 559 with ops.name_scope(None, "_poisson_loss", (logits, labels)) as name: [all …]
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | target_column.py | 163 def logits_to_predictions(self, logits, proba=False): argument 167 def get_eval_ops(self, features, logits, labels, metrics=None): argument 202 def training_loss(self, logits, target, features, name="training_loss"): argument 224 loss_unweighted = self._loss_fn(logits, target) 232 def loss(self, logits, target, features): argument 249 loss_unweighted = self._loss_fn(logits, target) 271 def logits_to_predictions(self, logits, proba=False): argument 273 return array_ops.squeeze(logits, squeeze_dims=[1]) 274 return logits 276 def get_eval_ops(self, features, logits, labels, metrics=None): argument [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/utils/ |
D | losses.py | 42 labels=labels, logits=predictions) 49 def per_example_maxent_loss(labels, weights, logits, num_classes, eps=1e-15): argument 80 unnormalized_probs = math_ops.exp(logits) 89 zeros = array_ops.zeros_like(probs_for_real_class, dtype=logits.dtype) + eps 91 probs_for_real_class, dtype=logits.dtype) - eps 154 def exp_with_logits(name, eps, labels=None, logits=None): argument 175 with ops.name_scope(name, "exp_loss", [logits, labels]) as name: 176 logits = ops.convert_to_tensor(logits, name="logits") 179 labels.get_shape().merge_with(logits.get_shape()) 182 % (logits.get_shape(), labels.get_shape())) [all …]
|
/external/tensorflow/tensorflow/contrib/losses/python/losses/ |
D | loss_ops_test.py | 116 logits = constant_op.constant([[10.0, 0.0, 0.0], 124 loss_ops.softmax_cross_entropy(logits, labels, weights=None) 128 logits = constant_op.constant([[10.0, 0.0, 0.0], 134 loss = loss_ops.softmax_cross_entropy(logits, labels) 139 logits = constant_op.constant([[10.0, 0.0, 0.0], 147 loss = loss_ops.softmax_cross_entropy(logits, labels) 152 logits = constant_op.constant([[10.0, 0.0, 0.0], 160 loss = loss_ops.softmax_cross_entropy(logits, labels, weights) 164 logits = constant_op.constant([[10.0, 0.0, 0.0], 172 loss = loss_ops.softmax_cross_entropy(logits, labels, [all …]
|
/external/tensorflow/tensorflow/contrib/sparsemax/python/ops/ |
D | sparsemax.py | 30 def sparsemax(logits, name=None): argument 47 with ops.name_scope(name, "sparsemax", [logits]) as name: 48 logits = ops.convert_to_tensor(logits, name="logits") 49 obs = array_ops.shape(logits)[0] 50 dims = array_ops.shape(logits)[1] 52 z = logits - math_ops.reduce_mean(logits, axis=1)[:, array_ops.newaxis] 60 1, math_ops.cast(dims, logits.dtype) + 1, dtype=logits.dtype) 69 tau_z = (tau_sum - 1) / math_ops.cast(k_z, logits.dtype) 73 math_ops.cast(0, logits.dtype), z - tau_z[:, array_ops.newaxis])
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | losses_test.py | 110 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], 115 losses.softmax_cross_entropy(labels, logits, weights=None) 119 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], 122 loss = losses.softmax_cross_entropy(labels, logits) 127 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], 132 loss = losses.softmax_cross_entropy(labels, logits) 137 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], 142 loss = losses.softmax_cross_entropy(labels, logits, weights) 146 logits = constant_op.constant([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], 151 loss = losses.softmax_cross_entropy(labels, logits, [all …]
|
D | sparse_xent_op_test.py | 146 labels=[[0, 2]], logits=[[0., 1.], [2., 3.], [2., 3.]]) 152 labels=constant_op.constant(0), logits=constant_op.constant(1.0)) 158 labels=labels, logits=[[7.]]) 165 labels=constant_op.constant(0), logits=constant_op.constant([1.0])) 198 labels=l, logits=f, name="xent") 209 logits = math_ops.matmul(images_placeholder, weights_with_zeros) 211 labels=labels_placeholder, logits=logits) 226 labels=labels, logits=features) 248 logits = array_ops.placeholder(dtypes.float32, shape=[None, 3]) 250 labels=array_ops.squeeze(labels), logits=logits) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/random/ |
D | multinomial_op_test.py | 40 def composed_sampler(logits, num_samples): argument 42 unif = random_ops.random_uniform(logits.get_shape().concatenate( 46 logits = array_ops.expand_dims(logits, -1) 49 return math_ops.argmax(logits + noise, dimension=1) 63 logits = constant_op.constant([[-10., 10., -10.], [-10., -10., 10.]]) 66 logits, num_samples, output_dtype=output_dtype)) 100 logits = np.array([[1000.] * 5]) 102 logits *= -1 103 samples = random_ops.multinomial(logits, 10).eval() 119 logits = np.log(probs).astype(np.float32) [all …]
|
/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
D | cross_entropy.py | 28 def deprecated_flipped_softmax_cross_entropy_with_logits(logits, argument 68 labels=labels, logits=logits, dim=dim, name=name) 75 def deprecated_flipped_sparse_softmax_cross_entropy_with_logits(logits, argument 122 labels=labels, logits=logits, name=name) 129 def deprecated_flipped_sigmoid_cross_entropy_with_logits(logits, argument 177 labels=targets, logits=logits, name=name)
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | losses_impl.py | 320 def hinge_loss(labels, logits, weights=1.0, scope=None, argument 346 if logits is None: 348 with ops.name_scope(scope, "hinge_loss", (logits, labels, weights)) as scope: 349 logits = math_ops.to_float(logits) 351 logits.get_shape().assert_is_compatible_with(labels.get_shape()) 356 math_ops.subtract(all_ones, math_ops.multiply(labels, logits))) 620 multi_class_labels, logits, weights=1.0, label_smoothing=0, scope=None, argument 658 if logits is None: 661 (logits, multi_class_labels, weights)) as scope: 662 logits = ops.convert_to_tensor(logits) [all …]
|