/external/v8/src/inspector/ |
D | string-16.h | 25 : m_impl(other.m_impl), hash_code(other.hash_code) {} in String16() 27 : m_impl(std::move(other.m_impl)), hash_code(other.hash_code) {} in String16() 28 String16(const UChar* characters, size_t size) : m_impl(characters, size) {} in String16() 30 : m_impl(characters) {} in String16() 34 m_impl.resize(size); in String16() 35 for (size_t i = 0; i < size; ++i) m_impl[i] = characters[i]; in String16() 37 explicit String16(const std::basic_string<UChar>& impl) : m_impl(impl) {} in String16() 40 m_impl = other.m_impl; 45 m_impl = std::move(other.m_impl); 57 const UChar* characters16() const { return m_impl.c_str(); } in characters16() [all …]
|
/external/eigen/unsupported/Eigen/CXX11/src/Tensor/ |
D | TensorBroadcasting.h | 116 : m_broadcast(op.broadcast()),m_impl(op.expression(), device) 122 const InputDimensions& input_dims = m_impl.dimensions(); 149 m_impl.evalSubExprsIfNeeded(NULL); 154 m_impl.cleanup(); 160 return m_impl.coeff(0); 177 eigen_assert(idx < m_impl.dimensions()[i]); 181 eigen_assert(idx % m_impl.dimensions()[i] == 0); 183 inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; 189 eigen_assert(index < m_impl.dimensions()[0]); 193 eigen_assert(index % m_impl.dimensions()[0] == 0); [all …]
|
D | TensorConversion.h | 56 : m_impl(impl) {} 60 return internal::pcast<SrcPacket, TgtPacket>(m_impl.template packet<LoadMode>(index)); 64 const TensorEvaluator& m_impl; 72 : m_impl(impl) {} 78 SrcPacket src1 = m_impl.template packet<LoadMode>(index); 79 SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize); 85 const TensorEvaluator& m_impl; 92 : m_impl(impl) {} 98 SrcPacket src1 = m_impl.template packet<LoadMode>(index); 99 SrcPacket src2 = m_impl.template packet<LoadMode>(index + SrcPacketSize); [all …]
|
D | TensorMorphing.h | 113 : m_impl(op.expression(), device), m_dimensions(op.dimensions()) 117 … eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions())); 128 return m_impl.evalSubExprsIfNeeded(data); 131 m_impl.cleanup(); 136 return m_impl.coeff(index); 142 return m_impl.template packet<LoadMode>(index); 146 return m_impl.costPerCoeff(vectorized); 149 EIGEN_DEVICE_FUNC Scalar* data() const { return const_cast<Scalar*>(m_impl.data()); } 151 EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } 154 TensorEvaluator<ArgType, Device> m_impl; [all …]
|
D | TensorLayoutSwap.h | 127 : m_impl(op.expression(), device) 130 m_dimensions[i] = m_impl.dimensions()[NumDims-1-i]; 141 return m_impl.evalSubExprsIfNeeded(data); 144 m_impl.cleanup(); 149 return m_impl.coeff(index); 155 return m_impl.template packet<LoadMode>(index); 159 return m_impl.costPerCoeff(vectorized); 162 EIGEN_DEVICE_FUNC Scalar* data() const { return m_impl.data(); } 164 const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } 167 TensorEvaluator<ArgType, Device> m_impl; [all …]
|
D | TensorArgMax.h | 96 : m_impl(op.expression(), device) { } 99 return m_impl.dimensions(); 103 m_impl.evalSubExprsIfNeeded(NULL); 107 m_impl.cleanup(); 112 return CoeffReturnType(index, m_impl.coeff(index)); 117 return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, 1); 123 TensorEvaluator<ArgType, Device> m_impl; 224 m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device), 239 return m_impl.dimensions(); 243 m_impl.evalSubExprsIfNeeded(NULL); [all …]
|
D | TensorStriding.h | 120 : m_impl(op.expression(), device) 122 m_dimensions = m_impl.dimensions(); 127 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); 152 m_impl.evalSubExprsIfNeeded(NULL); 156 m_impl.cleanup(); 161 return m_impl.coeff(srcCoeff(index)); 196 PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); 201 values[0] = m_impl.coeff(inputIndices[0]); 202 values[PacketSize-1] = m_impl.coeff(inputIndices[1]); 220 return m_impl.costPerCoeff(vectorized && m_inputStrides[innerDim] == 1) + [all …]
|
D | TensorEvalTo.h | 112 : m_impl(op.expression(), device), m_device(device), 125 EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); } 130 return m_impl.evalSubExprsIfNeeded(m_buffer); 134 m_buffer[i] = m_impl.coeff(i); 137 …internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet… 141 m_impl.cleanup(); 158 return m_impl.costPerCoeff(vectorized) + 166 const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } 171 TensorEvaluator<ArgType, Device> m_impl;
|
D | TensorChipping.h | 153 : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device) 158 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); 189 m_impl.evalSubExprsIfNeeded(NULL); 194 m_impl.cleanup(); 199 return m_impl.coeff(srcCoeff(index)); 215 values[i] = m_impl.coeff(inputIndex); 224 return m_impl.template packet<LoadMode>(index + m_inputOffset); 230 return m_impl.template packet<LoadMode>(inputIndex); 262 return m_impl.costPerCoeff(vectorized) + 267 CoeffReturnType* result = const_cast<CoeffReturnType*>(m_impl.data()); [all …]
|
D | TensorInflation.h | 99 : m_impl(op.expression(), device), m_strides(op.strides()) 101 m_dimensions = m_impl.dimensions(); 112 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); 133 m_impl.evalSubExprsIfNeeded(NULL); 137 m_impl.cleanup(); 181 return m_impl.coeff(inputIndex); 207 const double input_size = m_impl.dimensions().TotalSize(); 211 return m_impl.costPerCoeff(vectorized) + 222 TensorEvaluator<ArgType, Device> m_impl;
|
D | TensorPatch.h | 102 : m_impl(op.expression(), device) 105 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); 147 m_impl.evalSubExprsIfNeeded(NULL); 152 m_impl.cleanup(); 181 return m_impl.coeff(inputIndex); 233 PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]); 238 values[0] = m_impl.coeff(inputIndices[0]); 239 values[PacketSize-1] = m_impl.coeff(inputIndices[1]); 252 return m_impl.costPerCoeff(vectorized) + 264 TensorEvaluator<ArgType, Device> m_impl;
|
D | TensorPadding.h | 104 : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()) 112 m_dimensions = m_impl.dimensions(); 116 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); 139 m_impl.evalSubExprsIfNeeded(NULL); 143 m_impl.cleanup(); 177 return m_impl.coeff(inputIndex); 190 TensorOpCost cost = m_impl.costPerCoeff(vectorized); 239 const double in = static_cast<double>(m_impl.dimensions()[i]); 309 return m_impl.template packet<Unaligned>(inputIndex); 367 return m_impl.template packet<Unaligned>(inputIndex); [all …]
|
D | TensorShuffling.h | 120 : m_impl(op.expression(), device) 122 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); 154 m_impl.evalSubExprsIfNeeded(NULL); 158 m_impl.cleanup(); 163 return m_impl.coeff(srcCoeff(index)); 184 return m_impl.costPerCoeff(vectorized) + 213 TensorEvaluator<ArgType, Device> m_impl; 245 return this->m_impl.coeffRef(this->srcCoeff(index));
|
D | TensorReverse.h | 122 : m_impl(op.expression(), device), m_reverse(op.reverse()) 128 m_dimensions = m_impl.dimensions(); 146 m_impl.evalSubExprsIfNeeded(NULL); 150 m_impl.cleanup(); 191 return m_impl.coeff(reverseIndex(index)); 221 return m_impl.costPerCoeff(vectorized) + 230 TensorEvaluator<ArgType, Device> m_impl; 267 return this->m_impl.coeffRef(this->reverseIndex(index));
|
D | TensorScan.h | 106 : m_impl(op.expression(), device), 110 m_size(m_impl.dimensions()[op.axis()]), 119 const Dimensions& dims = m_impl.dimensions(); 132 return m_impl.dimensions(); 152 return m_impl; 160 m_impl.evalSubExprsIfNeeded(NULL); 197 m_impl.cleanup(); 201 TensorEvaluator<ArgType, Device> m_impl;
|
D | TensorForcedEval.h | 111 : m_impl(op.expression(), device), m_op(op.expression()), m_device(device), m_buffer(NULL) 114 EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); } 117 const Index numValues = internal::array_prod(m_impl.dimensions()); 154 const TensorEvaluator<ArgType, Device>& impl() { return m_impl; } 158 TensorEvaluator<ArgType, Device> m_impl;
|
D | TensorReduction.h | 144 reducer.reduce(self.m_impl.coeff(input), accum); 151 reducer.reduce(self.m_impl.coeff(index), accum); 160 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); 173 reducer.reducePacket(self.m_impl.template packet<Unaligned>(firstIndex + j), &p); 177 reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); 206 reducer.reducePacket(self.m_impl.template packet<Unaligned>(input), accum); 223 const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions()); 253 const Index num_coeffs = array_prod(self.m_impl.dimensions()); 259 self.m_impl.costPerCoeff(Vectorizable) + 412 …: m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device), m_xp… [all …]
|
D | TensorReductionCuda.h | 165 typename Self::CoeffReturnType val = input.m_impl.coeff(index); in FullReductionKernel() 195 half last = input.m_impl.coeff(num_coeffs-1); in ReductionInitFullReduxKernelHalfFloat() 228 half last = input.m_impl.coeff(num_coeffs-1); in FullReductionKernelHalfFloat() 241 half2 val = input.m_impl.template packet<Unaligned>(index); in FullReductionKernelHalfFloat() 361 const Index num_coeffs = array_prod(self.m_impl.dimensions()); 413 const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col); 422 reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val); 491 … const half2 val1 = input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col); 493 … const half2 val2 = input.m_impl.template packet<Unaligned>((row+1) * num_coeffs_to_reduce + col); 498 const half last1 = input.m_impl.coeff(row * num_coeffs_to_reduce + col); [all …]
|
D | TensorRef.h | 48 …TensorLazyEvaluatorReadOnly(const Expr& expr, const Device& device) : m_impl(expr, device), m_dumm… in TensorLazyEvaluatorReadOnly() 49 m_dims = m_impl.dimensions(); in TensorLazyEvaluatorReadOnly() 50 m_impl.evalSubExprsIfNeeded(NULL); in TensorLazyEvaluatorReadOnly() 53 m_impl.cleanup(); in ~TensorLazyEvaluatorReadOnly() 60 return m_impl.data(); in data() 64 return m_impl.coeff(index); in coeff() 72 TensorEvaluator<Expr, Device> m_impl; 89 return this->m_impl.coeffRef(index); in coeffRef()
|
D | TensorImagePatch.h | 175 : m_impl(op.expression(), device) 181 const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); 316 m_impl.evalSubExprsIfNeeded(NULL); 321 m_impl.cleanup(); 359 return m_impl.coeff(inputIndex); 414 return m_impl.template packet<Unaligned>(inputIndex); 423 const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } 444 return m_impl.costPerCoeff(vectorized) + 503 TensorEvaluator<ArgType, Device> m_impl;
|
/external/mdnsresponder/mDNSWindows/DLL.NET/ |
D | dnssd_NET.cpp | 63 m_impl = new ServiceRefImpl(this); in ServiceRef() 80 check( m_impl != NULL ); in StartThread() 82 m_impl->SetupEvents(); in StartThread() 101 m_impl->ProcessingThread(); in ProcessingThread() 113 check(m_impl != NULL); in Dispose() 125 m_impl->Dispose(); in Dispose() 126 m_impl = NULL; in Dispose() 149 if ((m_callback != NULL) && (m_impl != NULL)) in EnumerateDomainsDispatch() 172 if ((m_callback != NULL) && (m_impl != NULL)) in RegisterDispatch() 196 if ((m_callback != NULL) && (m_impl != NULL)) in BrowseDispatch() [all …]
|
D | dnssd_NET.h | 164 m_impl = new RecordRefImpl; in RecordRef() 165 m_impl->m_ref = NULL; in RecordRef() 170 delete m_impl; in ~RecordRef() local 180 RecordRefImpl * m_impl; variable 415 ServiceRefImpl * m_impl; variable 455 m_impl = new TextRecordImpl(); in TextRecord() 456 TXTRecordCreate(&m_impl->m_ref, 0, NULL); in TextRecord() 461 TXTRecordDeallocate(&m_impl->m_ref); in ~TextRecord() 462 delete m_impl; in ~TextRecord() local 472 TextRecordImpl * m_impl; variable
|
/external/deqp/external/vulkancts/framework/vulkan/ |
D | vkPrograms.hpp | 88 explicit Iterator (const IteratorImpl& i) : m_impl(i) {} in Iterator() 90 Iterator& operator++ (void) { ++m_impl; return *this; } in operator ++() 93 const std::string& getName (void) const { return m_impl->first; } in getName() 94 const Program& getProgram (void) const { return *m_impl->second; } in getProgram() 96 bool operator== (const Iterator& other) const { return m_impl == other.m_impl; } in operator ==() 97 bool operator!= (const Iterator& other) const { return m_impl != other.m_impl; } in operator !=() 101 IteratorImpl m_impl; member in vk::ProgramCollection::Iterator
|
/external/deqp/framework/platform/android/ |
D | tcuAndroidInternals.cpp | 242 , m_impl (DE_NULL) in GraphicBuffer() 248 m_impl = createGraphicBuffer(m_functions, m_baseFunctions, width, height, format, usage); in GraphicBuffer() 253 if (m_impl && m_baseFunctions.decRef) in ~GraphicBuffer() 255 m_baseFunctions.decRef(getAndroidNativeBase(m_impl)); in ~GraphicBuffer() 256 m_impl = DE_NULL; in ~GraphicBuffer() 262 return m_functions.lock(m_impl, usage, vaddr); in lock() 267 return m_functions.unlock(m_impl); in unlock() 272 return m_functions.getNativeBuffer(m_impl); in getNativeBuffer()
|
/external/tensorflow/tensorflow/core/kernels/ |
D | eigen_volume_patch.h | 53 : m_impl(op.expression(), device) { in CustomTensorEvaluator() 59 m_impl.dimensions(); in CustomTensorEvaluator() 244 m_impl.evalSubExprsIfNeeded(NULL); in evalSubExprsIfNeeded() 248 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } in cleanup() 328 return m_impl.coeff(inputIndex); in coeff() 426 return m_impl.template packet<Unaligned>(inputIndex); in packet() 442 const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; } in impl() 535 return m_impl.coeff(inputCoords); in coeff() 549 return m_impl.coeff(inputIndex); in coeff() 631 TensorEvaluator<ArgType, Device> m_impl; member
|