1 /**
2 * f2fs.h
3 *
4 * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _F2FS_H_
12 #define _F2FS_H_
13
14 #include <f2fs_fs.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <stdio.h>
18 #include <errno.h>
19 #include <fcntl.h>
20 #include <string.h>
21 #include <errno.h>
22 #ifdef HAVE_MNTENT_H
23 #include <mntent.h>
24 #endif
25 #include <sys/stat.h>
26 #include <sys/ioctl.h>
27 #include <sys/mount.h>
28 #include <assert.h>
29
30 #define EXIT_ERR_CODE (-1)
31 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
32 typecheck(unsigned long long, b) && \
33 ((long long)((a) - (b)) > 0))
34
35 struct list_head {
36 struct list_head *next, *prev;
37 };
38
39 enum {
40 NAT_BITMAP,
41 SIT_BITMAP
42 };
43
44 struct node_info {
45 nid_t nid;
46 nid_t ino;
47 u32 blk_addr;
48 unsigned char version;
49 };
50
51 struct f2fs_nm_info {
52 block_t nat_blkaddr;
53 block_t nat_blocks;
54 nid_t max_nid;
55 nid_t init_scan_nid;
56 nid_t next_scan_nid;
57
58 unsigned int nat_cnt;
59 unsigned int fcnt;
60
61 char *nat_bitmap;
62 int bitmap_size;
63 char *nid_bitmap;
64 };
65
66 struct seg_entry {
67 unsigned short valid_blocks; /* # of valid blocks */
68 unsigned char *cur_valid_map; /* validity bitmap of blocks */
69 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
70 unsigned char orig_type; /* segment type like CURSEG_XXX_TYPE */
71 unsigned long long mtime; /* modification time of the segment */
72 int dirty;
73 };
74
75 struct sec_entry {
76 unsigned int valid_blocks; /* # of valid blocks in a section */
77 };
78
79 struct sit_info {
80
81 block_t sit_base_addr; /* start block address of SIT area */
82 block_t sit_blocks; /* # of blocks used by SIT area */
83 block_t written_valid_blocks; /* # of valid blocks in main area */
84 char *sit_bitmap; /* SIT bitmap pointer */
85 unsigned int bitmap_size; /* SIT bitmap size */
86
87 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
88 unsigned int dirty_sentries; /* # of dirty sentries */
89 unsigned int sents_per_block; /* # of SIT entries per block */
90 struct seg_entry *sentries; /* SIT segment-level cache */
91 struct sec_entry *sec_entries; /* SIT section-level cache */
92
93 unsigned long long elapsed_time; /* elapsed time after mount */
94 unsigned long long mounted_time; /* mount time */
95 unsigned long long min_mtime; /* min. modification time */
96 unsigned long long max_mtime; /* max. modification time */
97 };
98
99 struct curseg_info {
100 struct f2fs_summary_block *sum_blk; /* cached summary block */
101 unsigned char alloc_type; /* current allocation type */
102 unsigned int segno; /* current segment number */
103 unsigned short next_blkoff; /* next block offset to write */
104 unsigned int zone; /* current zone number */
105 unsigned int next_segno; /* preallocated segment */
106 };
107
108 struct f2fs_sm_info {
109 struct sit_info *sit_info;
110 struct curseg_info *curseg_array;
111
112 block_t seg0_blkaddr;
113 block_t main_blkaddr;
114 block_t ssa_blkaddr;
115
116 unsigned int segment_count;
117 unsigned int main_segments;
118 unsigned int reserved_segments;
119 unsigned int ovp_segments;
120 };
121
122 struct f2fs_dentry_ptr {
123 struct inode *inode;
124 u8 *bitmap;
125 struct f2fs_dir_entry *dentry;
126 __u8 (*filename)[F2FS_SLOT_LEN];
127 int max;
128 int nr_bitmap;
129 };
130
131 struct dentry {
132 char *path;
133 char *full_path;
134 const u8 *name;
135 int len;
136 char *link;
137 unsigned long size;
138 u8 file_type;
139 u16 mode;
140 u16 uid;
141 u16 gid;
142 u32 *inode;
143 u32 mtime;
144 char *secon;
145 uint64_t capabilities;
146 nid_t ino;
147 nid_t pino;
148 };
149
150 /* different from dnode_of_data in kernel */
151 struct dnode_of_data {
152 struct f2fs_node *inode_blk; /* inode page */
153 struct f2fs_node *node_blk; /* cached direct node page */
154 nid_t nid;
155 unsigned int ofs_in_node;
156 block_t data_blkaddr;
157 block_t node_blkaddr;
158 int idirty, ndirty;
159 };
160
161 struct f2fs_sb_info {
162 struct f2fs_fsck *fsck;
163
164 struct f2fs_super_block *raw_super;
165 struct f2fs_nm_info *nm_info;
166 struct f2fs_sm_info *sm_info;
167 struct f2fs_checkpoint *ckpt;
168 int cur_cp;
169
170 struct list_head orphan_inode_list;
171 unsigned int n_orphans;
172
173 /* basic file system units */
174 unsigned int log_sectors_per_block; /* log2 sectors per block */
175 unsigned int log_blocksize; /* log2 block size */
176 unsigned int blocksize; /* block size */
177 unsigned int root_ino_num; /* root inode number*/
178 unsigned int node_ino_num; /* node inode number*/
179 unsigned int meta_ino_num; /* meta inode number*/
180 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
181 unsigned int blocks_per_seg; /* blocks per segment */
182 unsigned int segs_per_sec; /* segments per section */
183 unsigned int secs_per_zone; /* sections per zone */
184 unsigned int total_sections; /* total section count */
185 unsigned int total_node_count; /* total node block count */
186 unsigned int total_valid_node_count; /* valid node block count */
187 unsigned int total_valid_inode_count; /* valid inode count */
188 int active_logs; /* # of active logs */
189
190 block_t user_block_count; /* # of user blocks */
191 block_t total_valid_block_count; /* # of valid blocks */
192 block_t alloc_valid_block_count; /* # of allocated blocks */
193 block_t last_valid_block_count; /* for recovery */
194 u32 s_next_generation; /* for NFS support */
195
196 unsigned int cur_victim_sec; /* current victim section num */
197 u32 free_segments;
198 };
199
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)200 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
201 {
202 return (struct f2fs_super_block *)(sbi->raw_super);
203 }
204
F2FS_CKPT(struct f2fs_sb_info * sbi)205 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
206 {
207 return (struct f2fs_checkpoint *)(sbi->ckpt);
208 }
209
F2FS_FSCK(struct f2fs_sb_info * sbi)210 static inline struct f2fs_fsck *F2FS_FSCK(struct f2fs_sb_info *sbi)
211 {
212 return (struct f2fs_fsck *)(sbi->fsck);
213 }
214
NM_I(struct f2fs_sb_info * sbi)215 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
216 {
217 return (struct f2fs_nm_info *)(sbi->nm_info);
218 }
219
SM_I(struct f2fs_sb_info * sbi)220 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
221 {
222 return (struct f2fs_sm_info *)(sbi->sm_info);
223 }
224
SIT_I(struct f2fs_sb_info * sbi)225 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
226 {
227 return (struct sit_info *)(SM_I(sbi)->sit_info);
228 }
229
inline_data_addr(struct f2fs_node * node_blk)230 static inline void *inline_data_addr(struct f2fs_node *node_blk)
231 {
232 int ofs = get_extra_isize(node_blk) + DEF_INLINE_RESERVED_SIZE;
233
234 return (void *)&(node_blk->i.i_addr[ofs]);
235 }
236
ofs_of_node(struct f2fs_node * node_blk)237 static inline unsigned int ofs_of_node(struct f2fs_node *node_blk)
238 {
239 unsigned flag = le32_to_cpu(node_blk->footer.flag);
240 return flag >> OFFSET_BIT_SHIFT;
241 }
242
__bitmap_size(struct f2fs_sb_info * sbi,int flag)243 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
244 {
245 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
246
247 /* return NAT or SIT bitmap */
248 if (flag == NAT_BITMAP)
249 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
250 else if (flag == SIT_BITMAP)
251 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
252
253 return 0;
254 }
255
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)256 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
257 {
258 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
259 int offset;
260 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
261 if (flag == NAT_BITMAP)
262 return &ckpt->sit_nat_version_bitmap;
263 else
264 return ((char *)ckpt + F2FS_BLKSIZE);
265 } else {
266 offset = (flag == NAT_BITMAP) ?
267 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
268 return &ckpt->sit_nat_version_bitmap + offset;
269 }
270 }
271
is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)272 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
273 {
274 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
275 return ckpt_flags & f ? 1 : 0;
276 }
277
__start_cp_addr(struct f2fs_sb_info * sbi)278 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
279 {
280 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
281
282 if (sbi->cur_cp == 2)
283 start_addr += sbi->blocks_per_seg;
284 return start_addr;
285 }
286
__start_sum_addr(struct f2fs_sb_info * sbi)287 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
288 {
289 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
290 }
291
__end_block_addr(struct f2fs_sb_info * sbi)292 static inline block_t __end_block_addr(struct f2fs_sb_info *sbi)
293 {
294 block_t end = SM_I(sbi)->main_blkaddr;
295 return end + le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
296 }
297
298 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
299 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
300
301 #define IS_DATASEG(t) \
302 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
303 (t == CURSEG_WARM_DATA))
304
305 #define IS_NODESEG(t) \
306 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
307 (t == CURSEG_WARM_NODE))
308
309 #define GET_SUM_BLKADDR(sbi, segno) \
310 ((sbi->sm_info->ssa_blkaddr) + segno)
311
312 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
313 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
314
315 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
316 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
317
318 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
319 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
320
321 #define FREE_I_START_SEGNO(sbi) \
322 GET_SEGNO_FROM_SEG0(sbi, SM_I(sbi)->main_blkaddr)
323 #define GET_R2L_SEGNO(sbi, segno) (segno + FREE_I_START_SEGNO(sbi))
324
325 #define START_BLOCK(sbi, segno) (SM_I(sbi)->main_blkaddr + \
326 ((segno) << sbi->log_blocks_per_seg))
327
CURSEG_I(struct f2fs_sb_info * sbi,int type)328 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
329 {
330 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
331 }
332
start_sum_block(struct f2fs_sb_info * sbi)333 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
334 {
335 return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
336 }
337
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)338 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
339 {
340 return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
341 - (base + 1) + type;
342 }
343
344 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
345 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
346
347 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
348 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
349 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
350 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
351
352 #define SIT_ENTRY_OFFSET(sit_i, segno) \
353 ((segno) % sit_i->sents_per_block)
354 #define SIT_BLOCK_OFFSET(sit_i, segno) \
355 ((segno) / SIT_ENTRY_PER_BLOCK)
356 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
357
IS_VALID_NID(struct f2fs_sb_info * sbi,u32 nid)358 static inline bool IS_VALID_NID(struct f2fs_sb_info *sbi, u32 nid)
359 {
360 return (nid <= (NAT_ENTRY_PER_BLOCK *
361 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_nat)
362 << (sbi->log_blocks_per_seg - 1)));
363 }
364
IS_VALID_BLK_ADDR(struct f2fs_sb_info * sbi,u32 addr)365 static inline bool IS_VALID_BLK_ADDR(struct f2fs_sb_info *sbi, u32 addr)
366 {
367 if (addr >= le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count) ||
368 addr < SM_I(sbi)->main_blkaddr) {
369 DBG(1, "block addr [0x%x]\n", addr);
370 return 0;
371 }
372 /* next block offset will be checked at the end of fsck. */
373 return 1;
374 }
375
IS_CUR_SEGNO(struct f2fs_sb_info * sbi,u32 segno,int type)376 static inline int IS_CUR_SEGNO(struct f2fs_sb_info *sbi, u32 segno, int type)
377 {
378 int i;
379
380 for (i = 0; i < NO_CHECK_TYPE; i++) {
381 struct curseg_info *curseg = CURSEG_I(sbi, i);
382
383 if (type == i)
384 continue;
385
386 if (segno == curseg->segno)
387 return 1;
388 }
389 return 0;
390 }
391
BLKOFF_FROM_MAIN(struct f2fs_sb_info * sbi,u64 blk_addr)392 static inline u64 BLKOFF_FROM_MAIN(struct f2fs_sb_info *sbi, u64 blk_addr)
393 {
394 ASSERT(blk_addr >= SM_I(sbi)->main_blkaddr);
395 return blk_addr - SM_I(sbi)->main_blkaddr;
396 }
397
GET_SEGNO(struct f2fs_sb_info * sbi,u64 blk_addr)398 static inline u32 GET_SEGNO(struct f2fs_sb_info *sbi, u64 blk_addr)
399 {
400 return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
401 >> sbi->log_blocks_per_seg);
402 }
403
OFFSET_IN_SEG(struct f2fs_sb_info * sbi,u64 blk_addr)404 static inline u32 OFFSET_IN_SEG(struct f2fs_sb_info *sbi, u64 blk_addr)
405 {
406 return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
407 % (1 << sbi->log_blocks_per_seg));
408 }
409
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_nat)410 static inline void node_info_from_raw_nat(struct node_info *ni,
411 struct f2fs_nat_entry *raw_nat)
412 {
413 ni->ino = le32_to_cpu(raw_nat->ino);
414 ni->blk_addr = le32_to_cpu(raw_nat->block_addr);
415 ni->version = raw_nat->version;
416 }
417
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)418 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
419 unsigned int ofs_in_node, unsigned char version)
420 {
421 sum->nid = cpu_to_le32(nid);
422 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
423 sum->version = version;
424 }
425
426 #define S_SHIFT 12
427 static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
428 [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
429 [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
430 [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
431 [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
432 [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
433 [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
434 [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
435 };
436
map_de_type(umode_t mode)437 static inline int map_de_type(umode_t mode)
438 {
439 return f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
440 }
441
inline_xattr_addr(struct f2fs_inode * inode)442 static inline void *inline_xattr_addr(struct f2fs_inode *inode)
443 {
444 return (void *)&(inode->i_addr[DEF_ADDRS_PER_INODE -
445 get_inline_xattr_addrs(inode)]);
446 }
447
inline_xattr_size(struct f2fs_inode * inode)448 static inline int inline_xattr_size(struct f2fs_inode *inode)
449 {
450 return get_inline_xattr_addrs(inode) * sizeof(__le32);
451 }
452
453 extern int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *ne);
454 #define IS_SUM_NODE_SEG(footer) (footer.entry_type == SUM_TYPE_NODE)
455 #define IS_SUM_DATA_SEG(footer) (footer.entry_type == SUM_TYPE_DATA)
456
dir_buckets(unsigned int level,int dir_level)457 static inline unsigned int dir_buckets(unsigned int level, int dir_level)
458 {
459 if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
460 return 1 << (level + dir_level);
461 else
462 return MAX_DIR_BUCKETS;
463 }
464
bucket_blocks(unsigned int level)465 static inline unsigned int bucket_blocks(unsigned int level)
466 {
467 if (level < MAX_DIR_HASH_DEPTH / 2)
468 return 2;
469 else
470 return 4;
471 }
472
dir_block_index(unsigned int level,int dir_level,unsigned int idx)473 static inline unsigned long dir_block_index(unsigned int level,
474 int dir_level, unsigned int idx)
475 {
476 unsigned long i;
477 unsigned long bidx = 0;
478
479 for (i = 0; i < level; i++)
480 bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
481 bidx += idx * bucket_blocks(level);
482 return bidx;
483 }
484
is_dot_dotdot(const unsigned char * name,const int len)485 static inline int is_dot_dotdot(const unsigned char *name, const int len)
486 {
487 if (len == 1 && name[0] == '.')
488 return 1;
489 if (len == 2 && name[0] == '.' && name[1] == '.')
490 return 1;
491 return 0;
492 }
493
494 #endif /* _F2FS_H_ */
495