/external/tensorflow/tensorflow/python/keras/_impl/keras/ |
D | models_test.py | 44 model = keras.models.Sequential() 45 model.add(keras.layers.Dense(2, input_shape=(3,))) 46 model.add(keras.layers.RepeatVector(3)) 47 model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) 48 model.compile(loss=keras.losses.MSE, 54 model.train_on_batch(x, y) 56 out = model.predict(x) 58 keras.models.save_model(model, fname) 70 model.train_on_batch(x, y) 72 out = model.predict(x) [all …]
|
D | model_subclassing_test.py | 178 model = SimpleTestModel(num_classes=num_classes, 181 model.compile(loss='mse', 188 model.fit(x, y, epochs=2, batch_size=32, verbose=0) 189 _ = model.evaluate(x, y, verbose=0) 198 model = MultiIOTestModel(num_classes=num_classes, 201 model.compile(loss='mse', 210 model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0) 211 _ = model.evaluate([x1, x2], [y1, y2], verbose=0) 220 model = SimpleTestModel(num_classes=num_classes, 223 model.compile(loss='mse', optimizer=RMSPropOptimizer(learning_rate=0.001)) [all …]
|
/external/tensorflow/tensorflow/contrib/lite/toco/graph_transformations/ |
D | identify_lstm.cc | 28 Model* model, const Operator& op) { in FindOperator() argument 29 auto it = model->operators.begin(); in FindOperator() 30 for (; it != model->operators.end(); ++it) { in FindOperator() 38 bool GetStateArrayForBackEdge(const Model& model, in GetStateArrayForBackEdge() argument 41 for (const auto& rnn_state : model.flags.rnn_states()) { in GetStateArrayForBackEdge() 57 bool MatchOperatorInputs(const Operator& op, const Model& model, in MatchOperatorInputs() argument 65 Operator* x = GetOpWithOutput(model, op.inputs[0]); in MatchOperatorInputs() 90 bool MatchOperatorInputs(const Operator& op, const Model& model, in MatchOperatorInputs() argument 99 Operator* x = GetOpWithOutput(model, op.inputs[0]); in MatchOperatorInputs() 113 Operator* y = GetOpWithOutput(model, op.inputs[1]); in MatchOperatorInputs() [all …]
|
D | propagate_fixed_sizes.cc | 105 int GetOutputDepthFromWeights(const Model& model, const Operator& op) { in GetOutputDepthFromWeights() argument 107 const auto& weights_shape = model.GetArray(weights_name).shape(); in GetOutputDepthFromWeights() 118 bool EnsureBiasVectorShape(Model* model, Operator* op) { in EnsureBiasVectorShape() argument 120 const auto& weights_array = model->GetArray(weights_name); in EnsureBiasVectorShape() 129 auto& bias_array = model->GetArray(op->inputs[2]); in EnsureBiasVectorShape() 134 const int output_depth = GetOutputDepthFromWeights(*model, *op); in EnsureBiasVectorShape() 143 void ProcessConvOperator(Model* model, ConvOperator* op) { in ProcessConvOperator() argument 144 if (!EnsureBiasVectorShape(model, op)) { in ProcessConvOperator() 148 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessConvOperator() 156 const auto& weights_array = model->GetArray(op->inputs[1]); in ProcessConvOperator() [all …]
|
D | graph_transformations.cc | 32 void PrintModelStats(const string& label, const Model& model) { in PrintModelStats() argument 34 for (const auto& array : model.GetArrayMap()) { in PrintModelStats() 39 LOG(INFO) << label << ": " << model.operators.size() << " operators, " in PrintModelStats() 40 << model.GetArrayMap().size() << " arrays (" << quantized_arrays in PrintModelStats() 57 void DiscardUselessConnectedComponentsAndRNNBackEdges(Model* model) { in DiscardUselessConnectedComponentsAndRNNBackEdges() argument 61 for (const string& output_array : model->flags.output_arrays()) { in DiscardUselessConnectedComponentsAndRNNBackEdges() 67 for (const auto& op : model->operators) { in DiscardUselessConnectedComponentsAndRNNBackEdges() 83 for (const auto& rnn_state : model->flags.rnn_states()) { in DiscardUselessConnectedComponentsAndRNNBackEdges() 94 model->EraseArrays([&](const string& name) { in DiscardUselessConnectedComponentsAndRNNBackEdges() 95 return (!useful_arrays.count(name) && IsDiscardableArray(*model, name)); in DiscardUselessConnectedComponentsAndRNNBackEdges() [all …]
|
D | identify_lstm_merge_inputs.cc | 28 bool MergeLstmCellInputs::Run(Model* model, std::size_t op_index) { in Run() argument 30 auto op_it = model->operators.begin() + op_index; in Run() 45 if (!GetMatchingRnnArray(model, src_op->outputs[kOutputTensor], in Run() 50 if (!GetMatchingRnnArray(model, src_op->outputs[kCellStateTensor], in Run() 56 int num_cell = model->GetArray(src_op->inputs[kInputToInputWeightsTensor]) in Run() 59 int num_input = model->GetArray(src_op->inputs[kInputToInputWeightsTensor]) in Run() 63 model->GetArray(src_op->inputs[kRecurrentToInputWeightsTensor]) in Run() 73 string merged_weights = AvailableArrayName(*model, base_name + "weights"); in Run() 74 auto& array = model->GetOrCreateArray(merged_weights); in Run() 86 model->GetArray(src_op->inputs[kInputToInputWeightsTensor]), 0, 0); in Run() [all …]
|
D | identify_lstm_split_inputs.cc | 28 bool SplitLstmCellInputs::Run(Model* model, std::size_t op_index) { in Run() argument 30 auto op_it = model->operators.begin() + op_index; in Run() 45 *model, curr_op->inputs[LstmCellOperator::WEIGHTS_INPUT]) || in Run() 47 *model, curr_op->inputs[LstmCellOperator::BIASES_INPUT])) { in Run() 52 if (!model->GetArray(curr_op->outputs[LstmCellOperator::ACTIV_OUTPUT]) in Run() 60 int num_input = model->GetArray(curr_op->inputs[LstmCellOperator::DATA_INPUT]) in Run() 66 model->GetArray(curr_op->outputs[LstmCellOperator::ACTIV_OUTPUT]) in Run() 77 model->GetArray(curr_op->inputs[LstmCellOperator::WEIGHTS_INPUT]); in Run() 84 model, &(lstm_cell_op->inputs[kInputToInputWeightsTensor]), in Run() 86 CopySubArrayToArray(model, &(lstm_cell_op->inputs[kInputToCellWeightsTensor]), in Run() [all …]
|
D | unroll_batch_matmul.cc | 39 bool UnrollBatchMatMul::Run(Model* model, std::size_t op_index) { in Run() argument 40 auto batch_op_it = model->operators.begin() + op_index; in Run() 48 const auto& input_array_a = model->GetArray(batch_op->inputs[0]); in Run() 49 const auto& input_array_b = model->GetArray(batch_op->inputs[1]); in Run() 65 const auto matmul_op_it = model->operators.emplace(batch_op_it, matmul_op); in Run() 68 model->operators.erase(batch_op_it); in Run() 88 CreateInt32Array(model, batch_name + "/slice_a/slice/begin", in Run() 91 model, batch_name + "/slice_a/slice/size", in Run() 94 slice_a_op->outputs = {AvailableArrayName(*model, batch_name + "/slice_a")}; in Run() 95 auto& slice_a_op_output = model->GetOrCreateArray(slice_a_op->outputs[0]); in Run() [all …]
|
D | identify_l2_normalization.cc | 31 Model* model, const Operator* op) { in FindOperator() argument 32 auto it = model->operators.begin(); in FindOperator() 33 for (; it != model->operators.end(); ++it) { in FindOperator() 42 bool IdentifyL2Normalization::Run(Model* model, std::size_t op_index) { in Run() argument 43 const auto div_it = model->operators.begin() + op_index; in Run() 56 GetOpWithOutput(*model, div_or_mul_op->inputs[0]), in Run() 57 GetOpWithOutput(*model, div_or_mul_op->inputs[1]), in Run() 67 GetOpWithOutput(*model, sqrt_or_rsqrt_op->inputs[0]); in Run() 85 model->GetArray(op_producing_sqrt_or_rsqrt_input->inputs[i]); in Run() 101 op_producing_add_input = GetOpWithOutput(*model, add_op->inputs[1 - i]); in Run() [all …]
|
D | hardcode_min_max.cc | 29 bool HardcodeMinMaxForIm2colArray(Model* model, Operator* op) { in HardcodeMinMaxForIm2colArray() argument 33 auto& im2col_array = model->GetArray(op->outputs[1]); in HardcodeMinMaxForIm2colArray() 37 const auto& input_array = model->GetArray(op->inputs[0]); in HardcodeMinMaxForIm2colArray() 49 bool HardcodeMinMaxForL2Normalization(Model* model, Operator* op) { in HardcodeMinMaxForL2Normalization() argument 50 auto& output_array = model->GetArray(op->outputs[0]); in HardcodeMinMaxForL2Normalization() 54 const auto& input_array = model->GetArray(op->inputs[0]); in HardcodeMinMaxForL2Normalization() 66 bool HardcodeMinMaxForConcatenation(Model* model, Operator* op) { in HardcodeMinMaxForConcatenation() argument 73 if (model->GetArray(input).minmax) { in HardcodeMinMaxForConcatenation() 75 const auto* minmax = model->GetArray(input).minmax.get(); in HardcodeMinMaxForConcatenation() 82 auto& output = model->GetArray(op->outputs[0]); in HardcodeMinMaxForConcatenation() [all …]
|
/external/tensorflow/tensorflow/python/keras/_impl/keras/engine/ |
D | training_test.py | 50 model = keras.models.Model([a, b], [d, e]) 56 model.compile(optimizer, loss, metrics=metrics, loss_weights=loss_weights) 65 model.fit( 70 model.fit( 75 model.fit( 80 model.train_on_batch([input_a_np, input_b_np], [output_d_np, output_e_np]) 83 model.fit( 91 model.fit( 98 model.fit( 105 model.fit( [all …]
|
D | training_eager_test.py | 43 model = keras.models.Model([a, b], [d, e]) 49 model.compile(optimizer, loss, metrics=metrics, loss_weights=loss_weights) 58 model.fit( 63 model.fit( 68 model.fit( 75 model.fit( 82 model.fit( 89 model.fit( 96 model.train_on_batch([input_a_np, input_b_np], [output_d_np, output_e_np]) 99 model.fit( [all …]
|
D | training_eager.py | 62 def _eager_metrics_fn(model, outputs, targets): argument 81 for i in range(len(model.outputs)): 82 output_metrics = model.nested_metrics[i] 85 nested_output_metric, K.int_shape(model.outputs[i]), 86 model.loss_functions[i]) 88 if len(model.output_names) > 1: 89 metric_name = model.output_names[i] + '_' + metric_name 90 if metric_name not in model.metrics_names: 91 model.metrics_names.append(metric_name) 101 def _model_loss(model, inputs, targets, training=False): argument [all …]
|
/external/ImageMagick/PerlMagick/demo/ |
D | demo.pl | 16 $model=Image::Magick->new(); 17 $x=$model->ReadImage('model.gif'); 19 $model->Label('Magick'); 20 $model->Set(background=>'white'); 34 $example=$model->Clone(); 40 $example=$model->Clone(); 46 $example=$model->Clone(); 52 $example=$model->Clone(); 58 $example=$model->Clone(); 64 $example=$model->Clone(); [all …]
|
/external/ImageMagick/www/source/ |
D | examples.pl | 16 $model=Image::Magick->new(); 17 $x=$model->ReadImage('model.gif'); 19 $model->Label('Magick'); 20 $model->Set(background=>'white'); 34 $example=$model->Clone(); 40 $example=$model->Clone(); 46 $example=$model->Clone(); 52 $example=$model->Clone(); 58 $example=$model->Clone(); 64 $example=$model->Clone(); [all …]
|
/external/javaparser/javaparser-symbol-solver-testing/src/test/resources/javasymbolsolver_0_6_0/expected_output/java-symbol-solver-core/ |
D | com_github_javaparser_symbolsolver_javaparsermodel_contexts_MethodCallExprContext.txt | 4 …r.javaparsermodel.JavaParserFacade.get(com.github.javaparser.symbolsolver.model.resolution.TypeSol… 7 …().getGenericParameterByName(name) ==> com.github.javaparser.symbolsolver.model.typesystem.Referen… 8 …Line 66) typeOfScope.asReferenceType() ==> com.github.javaparser.symbolsolver.model.typesystem.Typ… 16 …on.Context.solveType(java.lang.String, com.github.javaparser.symbolsolver.model.resolution.TypeSol… 17 …Line 86) ref.isSolved() ==> com.github.javaparser.symbolsolver.model.resolution.SymbolReference.is… 18 …model.declarations.TypeDeclaration, java.lang.String, java.util.List<com.github.javaparser.symbols… 19 …Line 87) ref.getCorrespondingDeclaration() ==> com.github.javaparser.symbolsolver.model.resolution… 20 …Line 88) m.isSolved() ==> com.github.javaparser.symbolsolver.model.resolution.SymbolReference.isSo… 21 …Line 89) m.getCorrespondingDeclaration() ==> com.github.javaparser.symbolsolver.model.resolution.S… 22 …itList(com.github.javaparser.symbolsolver.model.resolution.TypeSolver, com.github.javaparser.symbo… [all …]
|
D | com_github_javaparser_symbolsolver_resolution_MethodResolutionLogic.txt | 6 …utionLogic.findCommonType(java.util.List<com.github.javaparser.symbolsolver.model.typesystem.Type>) 10 …model.declarations.MethodDeclaration, java.lang.String, java.util.List<com.github.javaparser.symbo… 12 …Line 70) method.getName() ==> com.github.javaparser.symbolsolver.model.declarations.Declaration.ge… 13 …Line 73) method.hasVariadicParameter() ==> com.github.javaparser.symbolsolver.model.declarations.M… 14 …Line 74) method.getNumberOfParams() ==> com.github.javaparser.symbolsolver.model.declarations.Meth… 15 …Line 75) method.getNumberOfParams() ==> com.github.javaparser.symbolsolver.model.declarations.Meth… 17 …Line 77) method.getLastParam().getType() ==> com.github.javaparser.symbolsolver.model.declarations… 18 …Line 77) method.getLastParam() ==> com.github.javaparser.symbolsolver.model.declarations.MethodLik… 20 …=> com.github.javaparser.symbolsolver.model.typesystem.Type.isAssignableBy(com.github.javaparser.s… 21 …Line 80) method.getTypeParameters() ==> com.github.javaparser.symbolsolver.model.declarations.Type… [all …]
|
D | com_github_javaparser_symbolsolver_resolution_ConstructorResolutionLogic.txt | 6 …utionLogic.findCommonType(java.util.List<com.github.javaparser.symbolsolver.model.typesystem.Type>) 10 …model.declarations.ConstructorDeclaration, java.util.List<com.github.javaparser.symbolsolver.model… 11 …Line 65) constructor.hasVariadicParameter() ==> com.github.javaparser.symbolsolver.model.declarati… 12 …Line 66) constructor.getNumberOfParams() ==> com.github.javaparser.symbolsolver.model.declarations… 13 …Line 67) constructor.getNumberOfParams() ==> com.github.javaparser.symbolsolver.model.declarations… 15 …Line 69) constructor.getLastParam().getType() ==> com.github.javaparser.symbolsolver.model.declara… 16 …Line 69) constructor.getLastParam() ==> com.github.javaparser.symbolsolver.model.declarations.Meth… 18 …=> com.github.javaparser.symbolsolver.model.typesystem.Type.isAssignableBy(com.github.javaparser.s… 19 …Line 72) constructor.getTypeParameters() ==> com.github.javaparser.symbolsolver.model.declarations… 20 …lver.model.typesystem.Type, com.github.javaparser.symbolsolver.model.declarations.TypeParameterDec… [all …]
|
D | com_github_javaparser_symbolsolver_model_typesystem_LazyType.txt | 2 …Line 25) getType().isArray() ==> com.github.javaparser.symbolsolver.model.typesystem.Type.isArray() 3 Line 25) getType() ==> com.github.javaparser.symbolsolver.model.typesystem.LazyType.getType() 4 …Line 30) getType().arrayLevel() ==> com.github.javaparser.symbolsolver.model.typesystem.Type.array… 5 Line 30) getType() ==> com.github.javaparser.symbolsolver.model.typesystem.LazyType.getType() 6 …Line 35) getType().isPrimitive() ==> com.github.javaparser.symbolsolver.model.typesystem.Type.isPr… 7 Line 35) getType() ==> com.github.javaparser.symbolsolver.model.typesystem.LazyType.getType() 8 Line 40) getType().isNull() ==> com.github.javaparser.symbolsolver.model.typesystem.Type.isNull() 9 Line 40) getType() ==> com.github.javaparser.symbolsolver.model.typesystem.LazyType.getType() 10 …Line 45) getType().isReference() ==> com.github.javaparser.symbolsolver.model.typesystem.Type.isRe… 11 Line 45) getType() ==> com.github.javaparser.symbolsolver.model.typesystem.LazyType.getType() [all …]
|
/external/tensorflow/tensorflow/contrib/lite/toco/ |
D | tooling_util.cc | 65 bool IsInputArray(const Model& model, const string& name) { in IsInputArray() argument 66 for (const auto& input_array : model.flags.input_arrays()) { in IsInputArray() 74 bool IsArrayConsumed(const Model& model, const string& name) { in IsArrayConsumed() argument 75 if (GetOpWithInput(model, name)) { in IsArrayConsumed() 78 for (const string& model_output : model.flags.output_arrays()) { in IsArrayConsumed() 83 for (const auto& rnn_state : model.flags.rnn_states()) { in IsArrayConsumed() 91 int CountTrueOutputs(const Model& model, const Operator& op) { in CountTrueOutputs() argument 94 if (IsArrayConsumed(model, output)) { in CountTrueOutputs() 101 int CountOpsWithInput(const Model& model, const string& array_name) { in CountOpsWithInput() argument 103 for (const auto& op : model.operators) { in CountOpsWithInput() [all …]
|
D | import_tensorflow.cc | 323 Model* model) { in ConvertConstOperator() argument 328 auto& array = model->GetOrCreateArray(node.name()); in ConvertConstOperator() 362 Model* model) { in ConvertConvOperator() argument 379 GetOpWithOutput(*model, reordered_weights_name); in ConvertConvOperator() 391 model->operators.emplace_back(reorder); in ConvertConvOperator() 410 model->operators.emplace_back(conv); in ConvertConvOperator() 415 Model* model) { in ConvertDepthwiseConvOperator() argument 432 GetOpWithOutput(*model, reordered_weights_name); in ConvertDepthwiseConvOperator() 444 model->operators.emplace_back(reorder); in ConvertDepthwiseConvOperator() 463 model->operators.emplace_back(conv); in ConvertDepthwiseConvOperator() [all …]
|
/external/javaparser/javaparser-symbol-solver-testing/src/test/resources/javasymbolsolver_0_6_0/expected_output/java-symbol-solver-logic/ |
D | com_github_javaparser_symbolsolver_logic_InferenceContext.txt | 2 …Line 44) tp.getName() ==> com.github.javaparser.symbolsolver.model.declarations.TypeParameterDecla… 4 …ferenceVariableType.setCorrespondingTp(com.github.javaparser.symbolsolver.model.declarations.TypeP… 6 …Line 48) tp.getName() ==> com.github.javaparser.symbolsolver.model.declarations.TypeParameterDecla… 8 …Line 50) tp.getName() ==> com.github.javaparser.symbolsolver.model.declarations.TypeParameterDecla… 9 ….InferenceContext.placeInferenceVariables(com.github.javaparser.symbolsolver.model.typesystem.Type) 10 ….InferenceContext.placeInferenceVariables(com.github.javaparser.symbolsolver.model.typesystem.Type) 11 …spondance(com.github.javaparser.symbolsolver.model.typesystem.Type, com.github.javaparser.symbolso… 12 ….InferenceContext.placeInferenceVariables(com.github.javaparser.symbolsolver.model.typesystem.Type) 13 …Line 69) formalType.isReferenceType() ==> com.github.javaparser.symbolsolver.model.typesystem.Type… 14 …Line 69) actualType.isReferenceType() ==> com.github.javaparser.symbolsolver.model.typesystem.Type… [all …]
|
/external/clang/utils/ |
D | modfuzz.py | 22 def valid(self, model): argument 24 if i not in model.decls: 27 if i in model.decls: 31 def apply(self, model, name): argument 33 model.decls[i] = True 34 model.source += self.text % {'name': name} 90 model = CodeModel() 94 for d in mutations(model): 95 d(model) 97 if not model.fails(): [all …]
|
/external/ImageMagick/Magick++/demo/ |
D | demo.cpp | 45 Image model( srcdir + "model.miff" ); in main() local 46 model.label( "Magick++" ); in main() 47 model.borderColor( "black" ); in main() 48 model.backgroundColor( "black" ); in main() 65 Image example = model; in main() 84 example = model; in main() 95 example = model; in main() 101 example = model; in main() 107 example = model; in main() 114 example = model; in main() [all …]
|
/external/tensorflow/tensorflow/python/keras/_impl/keras/layers/ |
D | wrappers_test.py | 32 model = keras.models.Sequential() 33 model.add( 36 model.compile(optimizer='rmsprop', loss='mse') 37 model.fit( 44 model.get_config() 48 model = keras.models.Sequential() 49 model.add( 52 model.compile(optimizer='rmsprop', loss='mse') 53 model.fit( 62 model = keras.models.Sequential() [all …]
|