Home
last modified time | relevance | path

Searched refs:moments (Results 1 – 25 of 40) sorted by relevance

12

/external/tensorflow/tensorflow/python/kernel_tests/
Dparameterized_truncated_normal_op_test.py84 moments = [0.0] * (max_moment + 1)
87 for k in range(len(moments)):
88 moments[k] += value
90 for i in range(len(moments)):
91 moments[i] /= len(samples)
92 return moments
123 moments = calculate_moments(samples, self.max_moment)
126 for i in range(1, len(moments)):
128 z_test(moments, expected_moments, i, num_samples), self.z_limit)
/external/tensorflow/tensorflow/core/lib/random/
Drandom_distributions_test.cc79 std::vector<double> moments(max_moments + 1); in CheckSamplesMoments() local
80 double* const moments_data = &moments[0]; in CheckSamplesMoments()
102 moments[i] /= moments_sample_count[i]; in CheckSamplesMoments()
126 fabs((moments[i] - moments_i_mean) / sqrt(total_variance)); in CheckSamplesMoments()
132 << " measured moments: " << moments[i] in CheckSamplesMoments()
/external/tensorflow/tensorflow/python/kernel_tests/random/
Drandom_poisson_test.py69 moments = [0] * (max_moment + 1)
78 moments[i] += moment
82 moments[i] /= moments_sample_count[i]
102 (moments[i] - moments_i_mean) / np.sqrt(total_variance))
Drandom_gamma_test.py94 moments = [0] * (max_moment + 1)
103 moments[i] += moment
107 moments[i] /= moments_sample_count[i]
132 (moments[i] - moments_i_mean) / math.sqrt(total_variance))
/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_BatchNormWithGlobalNormalization.pbtxt13 This is the first output from tf.nn.moments,
21 This is the second output from tf.nn.moments,
Dapi_def_BatchNormWithGlobalNormalizationGrad.pbtxt13 This is the first output from tf.nn.moments,
21 This is the second output from tf.nn.moments,
Dapi_def_QuantizedBatchNormWithGlobalNormalization.pbtxt25 This is the first output from tf.nn.moments,
45 This is the second output from tf.nn.moments,
/external/tensorflow/tensorflow/contrib/nn/python/ops/
Dalpha_dropout_test.py39 t_mean, t_std = nn_impl.moments(t, axes=[0, 1])
40 output_mean, output_std = nn_impl.moments(output, axes=[0, 1])
/external/tensorflow/tensorflow/contrib/gan/python/features/python/
Dvirtual_batchnorm_test.py59 mom_mean, mom_var = nn.moments(tensors, axes)
82 mom_mean, mom_variance = nn.moments(full_batch, reduction_axes)
/external/tensorflow/tensorflow/contrib/layers/python/layers/
Dnormalization.py153 mean, variance = nn.moments(inputs, moments_axes, keep_dims=True)
Dlayers.py774 mean, variance = nn.moments(inputs, moments_axes, keep_dims=True)
778 mean, variance = nn.moments(inputs, moments_axes)
2173 mean, variance = nn.moments(inputs, norm_axes, keep_dims=True)
/external/ImageMagick/MagickCore/
Dstatistic.c1784 *moments; in GetImagePerceptualHash() local
1811 moments=GetImageMoments(hash_image,exception); in GetImagePerceptualHash()
1813 if (moments == (ChannelMoments *) NULL) in GetImagePerceptualHash()
1822 (-MagickLog10(moments[channel].invariant[i])); in GetImagePerceptualHash()
1823 moments=(ChannelMoments *) RelinquishMagickMemory(moments); in GetImagePerceptualHash()
1842 moments=GetImageMoments(hash_image,exception); in GetImagePerceptualHash()
1844 if (moments == (ChannelMoments *) NULL) in GetImagePerceptualHash()
1853 (-MagickLog10(moments[channel].invariant[i])); in GetImagePerceptualHash()
1854 moments=(ChannelMoments *) RelinquishMagickMemory(moments); in GetImagePerceptualHash()
/external/tensorflow/tensorflow/python/keras/_impl/keras/
Doptimizers.py190 moments = [K.zeros(shape) for shape in shapes]
191 self.weights = [self.iterations] + moments
192 for p, g, m in zip(params, grads, moments):
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/
Dsliced_wasserstein_impl.py127 mean, variance = nn.moments(patches, [1, 2, 3], keep_dims=True)
/external/tensorflow/tensorflow/python/ops/
Dbatch_norm_benchmark.py99 mean, variance = nn_impl.moments(tensor, axes, keep_dims=keep_dims)
Dnn_impl.py652 def moments( function
Dnn_fused_batchnorm_test.py100 mean, var = nn_impl.moments(
Dnn_batchnorm_test.py452 return nn_impl.moments(x, axes, keep_dims=keep_dims)
/external/python/cpython2/Doc/library/
Dhtmllib.rst53 The parser will call these at appropriate moments: :meth:`start_tag` or
/external/tensorflow/tensorflow/python/layers/
Dnormalization.py563 mean, variance = nn.moments(inputs, reduction_axes, keep_dims=keep_dims)
/external/valgrind/
DREADME_MISSING_SYSCALL_OR_IOCTL197 much the same as writing ioctl wrappers. Please take a few moments to study
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/
Dmath_utils.py860 mean, variance = nn.moments(
/external/tensorflow/tensorflow/tools/api/golden/
Dtensorflow.nn.pbtxt216 name: "moments"
/external/ImageMagick/Magick++/lib/Magick++/
DImage.h1079 ImageMoments moments(void) const;
/external/tensorflow/tensorflow/docs_src/api_guides/python/
Dnn.md206 * @{tf.nn.moments}

12