/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv_ops_3d_test.py | 275 self, batch, input_shape, filter_shape, in_depth, out_depth, stride, argument 283 filter_planes, filter_rows, filter_cols, in_depth, out_depth 302 output_shape = [batch, output_planes, output_rows, output_cols, out_depth] 376 out_depth=3, 387 out_depth=3, 398 out_depth=3, 409 out_depth=3, 420 out_depth=3, 431 out_depth=3, 442 out_depth=1, [all …]
|
D | conv_ops_test.py | 1116 filter_cols, in_depth, out_depth, stride_rows, argument 1120 filter_shape = [filter_rows, filter_cols, in_depth, out_depth] 1128 output_shape = [batch, output_rows, output_cols, out_depth] 1193 out_depth=3, 1210 out_depth=3, 1227 out_depth=3, 1244 out_depth=3, 1261 out_depth=5, 1278 out_depth=3, 1295 out_depth=3, [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | deep_conv2d.cc | 50 int out_depth, int out_rows, int out_cols) { in GetDeepConvCost() argument 57 const int64 product_cost = input_tile_spatial_size * in_depth * out_depth; in GetDeepConvCost() 62 output_tile_spatial_size * input_tile_spatial_size * out_depth; in GetDeepConvCost() 75 int out_depth, int out_rows, int out_cols) { in GetDirectConvCost() argument 76 return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; in GetDirectConvCost() 98 int filter_cols, int in_depth, int out_depth, in CanUseDeepConv2D() argument 117 t.output_shape().cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 119 filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 148 const int64 input_stride = args.out_depth * kPacketSize; in operator ()() 153 args.out_depth); in operator ()() [all …]
|
D | depthwise_conv_grad_op.cc | 106 const int32 out_depth = static_cast<int32>(out_depth_raw); \ 108 context, (depth_multiplier * in_depth) == out_depth, \ 142 args.out_depth = out_depth; \ 149 << ", " << out_depth << "]"; 209 const int64 vectorized_size = (args.out_depth / kPacketSize) * kPacketSize; in CopyOutputBackpropRegion() 210 const int64 scalar_size = args.out_depth % kPacketSize; in CopyOutputBackpropRegion() 221 out_backprop + (out_r * args.out_cols + out_c) * args.out_depth; in CopyOutputBackpropRegion() 283 const int64 out_depth = args.out_depth; in ComputeBackpropInput() local 287 const int64 output_vectorized_size = (out_depth / kPacketSize) * kPacketSize; in ComputeBackpropInput() 288 const int64 output_scalar_size = out_depth % kPacketSize; in ComputeBackpropInput() [all …]
|
D | depthwise_conv_op.cc | 88 const int64 out_depth = args.out_depth; in Run() local 90 const int64 output_scalar_size = out_depth % kPacketSize; in Run() 92 (out_depth / kPacketSize) * kPacketSize; in Run() 93 const int64 base_output_index = (out_r * args.out_cols + out_c) * out_depth; in Run() 166 const bool pad_filter = (args.out_depth % kPacketSize) == 0 ? false : true; in operator ()() 172 ((args.out_depth + kPacketSize - 1) / kPacketSize) * kPacketSize; in operator ()() 192 args.out_rows * args.out_cols * args.out_depth; in operator ()() 195 ((args.out_depth + kPacketSize - 1) / kPacketSize) * kPacketSize; in operator ()() 235 const int64 shard_cost = kCostMultiplier * args.out_cols * args.out_depth; in operator ()() 320 const int32 out_depth = in_depth * depth_multiplier; in Compute() local [all …]
|
D | eigen_spatial_convolutions_test.cc | 676 const int out_depth = in_depth; in TEST() local 683 Tensor<float, 4> result(kern_filters, out_depth, out_height, out_width); in TEST() 691 EXPECT_EQ(result.dimension(1), out_depth); in TEST() 700 for (int i = 0; i < out_depth; ++i) { in TEST() 737 const int out_depth = in_depth; in TEST() local 744 Tensor<float, 4, RowMajor> result(out_width, out_height, out_depth, in TEST() 753 EXPECT_EQ(result.dimension(2), out_depth); in TEST() 762 for (int i = 0; i < out_depth; ++i) { in TEST() 799 const int out_depth = 3; in TEST() local 806 Tensor<float, 4> result(kern_filters, out_depth, out_height, out_width); in TEST() [all …]
|
D | eigen_cuboid_convolution.h | 121 TensorIndex out_depth; variable 126 out_depth = Eigen::divup(inputPlanes - kernelDepth + 1, 134 out_depth = 141 out_depth = 0; 164 pre_contract_dims[1] = out_depth * out_height * out_width; 171 pre_contract_dims[0] = out_depth * out_height * out_width; 190 post_contract_dims[1] = out_depth; 198 post_contract_dims[NumDims - 2] = out_depth;
|
D | depthwise_conv_op_gpu.cu.cc | 89 const int out_depth = args.out_depth; in DepthwiseConv2dGPUKernelNHWC() local 93 const int out_channel = thread_id % out_depth; in DepthwiseConv2dGPUKernelNHWC() 94 const int out_col = (thread_id / out_depth) % out_width; in DepthwiseConv2dGPUKernelNHWC() 95 const int out_row = (thread_id / out_depth / out_width) % out_height; in DepthwiseConv2dGPUKernelNHWC() 96 const int batch = thread_id / out_depth / out_width / out_height; in DepthwiseConv2dGPUKernelNHWC() 325 const int out_depth = args.out_depth; in DepthwiseConv2dGPUKernelNCHW() local 337 const int out_channel = (thread_id / out_width / out_height) % out_depth; in DepthwiseConv2dGPUKernelNCHW() 338 const int batch = thread_id / out_width / out_height / out_depth; in DepthwiseConv2dGPUKernelNCHW() 601 args.batch * DivUp(args.out_depth, kBlockDepth) * kBlockDepth; in LaunchDepthwiseConv2dGPUSmall() 610 DivUp(args.batch * args.out_depth, kBlockDepth) * kBlockDepth; in LaunchDepthwiseConv2dGPUSmall() [all …]
|
D | conv_grad_ops_3d.cc | 77 const int64 out_depth = filter_shape.dim_size(4); \ 79 context, out_depth == GetTensorDim(out_backprop, data_format_, 'C'), \ 191 padded_out_cols, out_depth}); in Compute() 207 {filter_size[0], filter_size[1], filter_size[2], out_depth, in_depth}); in Compute() 313 TensorShape padded_out_shape({out_depth, padded_out_planes, padded_out_rows, in Compute() 353 {out_depth, filter_size[0], filter_size[1], filter_size[2], in_depth}); in Compute() 477 const uint64 k = out_depth; in Compute() 505 const uint64 k = out_depth; in Compute() 574 .set_feature_map_count(out_depth) in Compute() 581 .set_output_feature_map_count(out_depth); in Compute() [all …]
|
D | deep_conv2d.h | 81 int out_depth; member 94 out_depth(0) {} in Conv2DArgs() 101 int filter_cols, int in_depth, int out_depth,
|
D | conv_ops_3d.cc | 106 const int64 out_depth = filter.dim_size(4); in Compute() local 126 data_format_, in_batch, {{out[0], out[1], out[2]}}, out_depth); in Compute() 184 const int64 out_depth = filter.dim_size(4); in launch() local 207 const uint64 n = out_depth; in launch() 234 const uint64 n = out_depth; in launch() 324 .set_feature_map_count(out_depth) in launch() 331 .set_output_feature_map_count(out_depth); in launch() 343 TensorShape({out_depth, in_depth, filter_planes, in launch() 357 {{out_planes, out_rows, out_cols}}, out_depth), in launch() 378 out_depth, in launch()
|
D | conv_grad_input_ops.cc | 139 auto out_depth = output_backward.dimension(3); in operator ()() local 150 desc.K = out_depth; in operator ()() 428 const size_t size_A = output_image_size * dims.out_depth; in Compute() 430 const size_t size_B = filter_total_size * dims.out_depth; in Compute() 474 dims.spatial_dims[1].output_size * dims.out_depth; in Compute() 503 output_image_size, dims.out_depth); in Compute() 504 ConstTensorMap B(filter_data, filter_total_size, dims.out_depth); in Compute() 544 ConstMatrixMap A(out_data, output_image_size, dims.out_depth); in Compute() 545 ConstMatrixMap B(filter_data, filter_total_size, dims.out_depth); in Compute() 768 const uint64 k = dims.out_depth; in operator ()() [all …]
|
D | conv_grad_filter_ops.cc | 133 auto out_depth = output.dimension(3); in operator ()() local 145 desc.K = out_depth; in operator ()() 410 const size_t size_B = output_image_size * dims.out_depth; in Compute() 412 const size_t size_C = filter_total_size * dims.out_depth; in Compute() 433 dims.spatial_dims[1].output_size * dims.out_depth; in Compute() 447 TensorMap C(filter_backprop_data, filter_total_size, dims.out_depth); in Compute() 485 dims.out_depth); in Compute() 699 const uint64 n = dims.out_depth; in operator ()() 740 const uint64 n = dims.out_depth; in operator ()() 797 .set_feature_map_count(dims.out_depth) in operator ()() [all …]
|
D | conv_ops.cc | 155 int out_cols, int out_depth, int dilation_rows, in Run() argument 161 in_depth, out_depth, out_rows, out_cols)) { in Run() 176 args.out_depth = out_depth; in Run() 196 int out_cols, int out_depth, int stride_rows, int stride_cols, in Run() argument 210 int out_cols, int out_depth, int dilation_rows, in Run() argument 221 desc.K = out_depth; in Run() 335 const int out_depth = static_cast<int>(filter.dim_size(3)); in Compute() local 381 ShapeFromFormat(data_format_, batch, out_rows, out_cols, out_depth); in Compute() 397 << ", out_depth = " << out_depth; in Compute() 408 out_depth, dilation_rows, dilation_cols, stride_rows, stride_cols, in Compute() [all …]
|
D | depthwise_conv_op.h | 41 int out_depth; member 56 out_depth(0) {} in DepthwiseArgs() 137 const int64 filter_inner_dim_size = args.out_depth; 211 const int64 output_scalar_size = args.out_depth % kPacketSize;
|
D | mkl_conv_ops.h | 168 int out_depth = static_cast<int>(filter_shape.dim_size(3)); in GetFilterSizeInMklOrder() local 173 mkldnn_sizes[MklDnnDims::Dim_O] = out_depth; in GetFilterSizeInMklOrder() 239 int out_depth = filter_shape.dim_size(3); in GetOutputAndPadSizeInMklOrder() local 253 ShapeFromFormat(data_format_, out_batch, out_rows, out_cols, out_depth); in GetOutputAndPadSizeInMklOrder() 259 mkldnn_sizes[MklDnnDims::Dim_C] = out_depth; in GetOutputAndPadSizeInMklOrder()
|
D | mkl_conv_grad_filter_ops.cc | 169 mkl_context.out_sizes[2] = static_cast<size_t>(backprop_dims.out_depth); in Compute() 189 mkl_context.filter_sizes[3] = backprop_dims.out_depth; in Compute() 196 backprop_dims.out_depth * backprop_dims.in_depth; in Compute() 197 mkl_context.filter_strides[1] = backprop_dims.out_depth * in Compute() 200 mkl_context.filter_strides[2] = backprop_dims.out_depth; in Compute()
|
D | conv_ops_using_gemm.cc | 486 const int out_depth = static_cast<int>(filter.dim_size(3)); in Compute() local 528 ShapeFromFormat(data_format_, batch, out_rows, out_cols, out_depth); in Compute() 542 << ", out_depth = " << out_depth; in Compute() 551 out_depth, stride_rows, stride_cols, padding_, in Compute()
|
D | conv_grad_ops.cc | 134 dims->out_depth = filter_shape.dim_size(num_dims - 1); in ConvBackpropComputeDimensionsV2() 135 if (dims->out_depth != out_backprop_shape.dim_size(feature_dim)) { in ConvBackpropComputeDimensionsV2()
|
D | mkl_pooling_ops_common.cc | 123 out_depth = depth; // output will have the same depth as the input in Init() 145 out_depth = depth / depth_window; in Init()
|
/external/tensorflow/tensorflow/contrib/hvx/hexagon_controller/src_impl/ |
D | graph_functions_wrapper.c | 216 uint32_t* out_width, uint32_t* out_depth, uint8_t* out_vals, in hexagon_controller_ExecuteGraph() argument 246 *out_depth = output.depth; in hexagon_controller_ExecuteGraph() 252 *out_width, *out_depth, *out_data_byte_size); in hexagon_controller_ExecuteGraph() 259 uint32_t out_batches, out_height, out_width, out_depth; in hexagon_controller_ExecuteInceptionDummyData() local 268 &out_batches, &out_height, &out_width, &out_depth, in hexagon_controller_ExecuteInceptionDummyData() 273 s_output_values, out_batches * out_height * out_width * out_depth, in hexagon_controller_ExecuteInceptionDummyData() 276 out_width, out_depth, out_data_size); in hexagon_controller_ExecuteInceptionDummyData() 279 out_batches * out_height * out_width * out_depth)); in hexagon_controller_ExecuteInceptionDummyData()
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
D | fold_batch_norms_test.py | 86 out_depth = 3 if with_bypass else 32 92 out_depth, [5, 5], 155 out_depth = 3 if with_bypass else 32 161 out_depth, [5, 5], 221 out_depth = 256 if with_bypass else 128 226 out_depth, 364 out_depth = 3 if with_bypass else 32 370 out_depth, [5, 5],
|
D | quantize_parameterized_test.py | 78 out_depth = 3 if with_bypass else 32 81 node = conv2d(inputs, out_depth, [5, 5], stride=stride, padding='SAME', 154 out_depth = 256 if with_bypass else 128 157 node = fully_connected(inputs, out_depth, 343 out_depth = 3 if with_bypass else 32 347 out_depth, [5, 5], 428 out_depth = 256 if with_bypass else 128 432 out_depth,
|
/external/tensorflow/tensorflow/core/grappler/costs/ |
D | utils_test.cc | 67 int out_depth = 5; in TEST_F() local 77 CreateConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in TEST_F() 81 CreateConstOp("output_backprop", {batch, out_rows, out_cols, out_depth}, in TEST_F() 92 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in TEST_F()
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
D | neon_depthwise_conv_op.cc | 86 const int32 out_depth = in_depth * depth_multiplier; in Compute() local 97 TensorShape out_shape({batch, out_rows, out_cols, out_depth}); in Compute() 115 << out_rows << ", " << out_cols << ", " << out_depth << "]"; in Compute()
|