Home
last modified time | relevance | path

Searched refs:r_0 (Results 1 – 8 of 8) sorted by relevance

/external/libvpx/libvpx/vpx_dsp/arm/
Dintrapred_neon.c492 const uint8x16_t r_0 = vextq_u8(row_0, row_1, 15); in vpx_d135_predictor_16x16_neon() local
508 d135_store_16x8(&dst, stride, r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7); in vpx_d135_predictor_16x16_neon()
563 const uint8x16_t r_0 = vextq_u8(row_0, row_1, 15); in vpx_d135_predictor_32x32_neon() local
566 d135_store_32x2(&dst, stride, r_0, r_1, r_2); in vpx_d135_predictor_32x32_neon()
570 const uint8x16_t r_0 = vextq_u8(row_0, row_1, 14); in vpx_d135_predictor_32x32_neon() local
573 d135_store_32x2(&dst, stride, r_0, r_1, r_2); in vpx_d135_predictor_32x32_neon()
577 const uint8x16_t r_0 = vextq_u8(row_0, row_1, 13); in vpx_d135_predictor_32x32_neon() local
580 d135_store_32x2(&dst, stride, r_0, r_1, r_2); in vpx_d135_predictor_32x32_neon()
584 const uint8x16_t r_0 = vextq_u8(row_0, row_1, 12); in vpx_d135_predictor_32x32_neon() local
587 d135_store_32x2(&dst, stride, r_0, r_1, r_2); in vpx_d135_predictor_32x32_neon()
[all …]
Davg_pred_neon.c42 const uint8x8_t r_0 = vld1_u8(ref); in vpx_comp_avg_pred_neon() local
45 r = vcombine_u8(r_0, r_1); in vpx_comp_avg_pred_neon()
/external/skqp/site/dev/design/conical/
Dindex.md33 Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is the radius. For any
36 $r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be *positive*). If
42 2. $r_0 = r_1$ so the gradient is a single strip with bandwidth $2 r_0 = 2 r_1$.
46 They are easy to handle so we won't cover them here. From now on, we assume $C_0 \neq C_1$ and $r_0
49 As $r_0 \neq r_1$, we can find a focal point $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its
50 corresponding linearly interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$.
51 Solving the latter equation gets us $f = r_0 / (r_0 - r_1)$.
54 swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient $t_s$ as if $r_1 \neq 0$, and finally set
68 always the bigger one (note that $f \neq 1$, otherwise we'll swap $C_0, r_0$ with $C_1, r_1$).
91 3. we still need to handle the swapped case (we swap $C_0, r_0$ with $C_1, r_1$ if $r_1 = 0$);
[all …]
/external/skia/site/dev/design/conical/
Dindex.md33 Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is the radius. For any
36 $r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be *positive*). If
42 2. $r_0 = r_1$ so the gradient is a single strip with bandwidth $2 r_0 = 2 r_1$.
46 They are easy to handle so we won't cover them here. From now on, we assume $C_0 \neq C_1$ and $r_0
49 As $r_0 \neq r_1$, we can find a focal point $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its
50 corresponding linearly interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$.
51 Solving the latter equation gets us $f = r_0 / (r_0 - r_1)$.
54 swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient $t_s$ as if $r_1 \neq 0$, and finally set
68 always the bigger one (note that $f \neq 1$, otherwise we'll swap $C_0, r_0$ with $C_1, r_1$).
91 3. we still need to handle the swapped case (we swap $C_0, r_0$ with $C_1, r_1$ if $r_1 = 0$);
[all …]
/external/libvpx/libvpx/vpx_dsp/x86/
Davg_pred_sse2.c55 const __m128i r_0 = _mm_loadl_epi64((const __m128i *)ref); in vpx_comp_avg_pred_sse2() local
57 r = _mm_castps_si128(_mm_loadh_pi(_mm_castsi128_ps(r_0), in vpx_comp_avg_pred_sse2()
/external/swiftshader/third_party/LLVM/test/CodeGen/Generic/
Dprint-mul-exp.ll14 %r_0 = mul i32 %a, 0 ; <i32> [#uses=1]
34 call i32 (i8*, ...)* @printf( i8* %a_mul_s, i32 0, i32 %r_0 ) ; <i32>:2 [#uses=0]
/external/llvm/test/CodeGen/Generic/
Dprint-mul-exp.ll14 %r_0 = mul i32 %a, 0 ; <i32> [#uses=1]
34 call i32 (i8*, ...) @printf( i8* %a_mul_s, i32 0, i32 %r_0 ) ; <i32>:2 [#uses=0]
/external/mesa3d/src/compiler/nir/
Dnir_lower_double_ops.c273 nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half); in lower_sqrt_rsq() local
274 nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0); in lower_sqrt_rsq()
277 nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0); in lower_sqrt_rsq()