/external/tensorflow/tensorflow/contrib/kernel_methods/python/mappers/ |
D | random_fourier_features_test.py | 49 def _compute_exact_rbf_kernel(x, y, stddev): argument 53 return math_ops.exp(-diff_squared_norm / (2 * stddev * stddev)) 94 stddev = 3.0 99 rffm1 = RandomFourierFeatureMapper(3, 100, stddev) 100 rffm2 = RandomFourierFeatureMapper(3, 100, stddev) 114 stddev = 3.0 119 rffm = RandomFourierFeatureMapper(3, 100, stddev, seed=0) 122 exact_kernel_value = _compute_exact_rbf_kernel(x, y, stddev) 132 stddev = 5.0 147 rffm = RandomFourierFeatureMapper(input_dim, mapped_dim, stddev, seed=0) [all …]
|
/external/fio/lib/ |
D | gauss.c | 14 if (!gs->stddev) in gauss_dev() 18 vr = gs->stddev * (r / (FRAND32_MAX + 1.0)); in gauss_dev() 20 return vr - gs->stddev / 2; in gauss_dev() 33 if (gs->stddev) { in gauss_next() 55 gs->stddev = ceil((double) (nranges * 100.0) / dev); in gauss_init() 56 if (gs->stddev > nranges / 2) in gauss_init() 57 gs->stddev = nranges / 2; in gauss_init()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | parameterized_truncated_normal_op_test.py | 41 stddev = None variable in TruncatedNormalMoments 45 def __init__(self, mean, stddev, minval, maxval): argument 48 self.stddev = np.double(stddev) 69 dist = scipy.stats.norm(loc=self.mean, scale=self.stddev) 76 m = ((k - 1) * self.stddev**2 * m_k_minus_2 + self.mean * m_k_minus_1 - 77 self.stddev * numerator / denominator) 112 def validateMoments(self, shape, mean, stddev, minval, maxval, seed=1618): argument 119 samples = random_ops.parameterized_truncated_normal(shape, mean, stddev, 124 expected_moments = TruncatedNormalMoments(mean, stddev, minval, maxval) 135 stddev, argument [all …]
|
/external/tensorflow/tensorflow/python/keras/_impl/keras/layers/ |
D | noise.py | 52 def __init__(self, stddev, **kwargs): argument 55 self.stddev = stddev 61 shape=K.shape(inputs), mean=0., stddev=self.stddev) 66 config = {'stddev': self.stddev} 105 stddev = np.sqrt(self.rate / (1.0 - self.rate)) 107 shape=K.shape(inputs), mean=1.0, stddev=stddev)
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
D | models.py | 156 tf.truncated_normal([fingerprint_size, label_count], stddev=0.001)) 225 stddev=0.01)) 244 stddev=0.01)) 264 [second_conv_element_count, label_count], stddev=0.01)) 333 stddev=0.01)) 356 [first_conv_element_count, first_fc_output_channels], stddev=0.01)) 366 [first_fc_output_channels, second_fc_output_channels], stddev=0.01)) 376 [second_fc_output_channels, label_count], stddev=0.01)) 487 tf.truncated_normal([input_frequency_size, num_filters], stddev=0.01)) 510 tf.truncated_normal([num_filters, input_time_size], stddev=0.01)) [all …]
|
/external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/python/layers/ |
D | decisions_to_data.py | 44 mean=params.weight_init_mean, stddev=params.weight_init_std)) 50 mean=params.weight_init_mean, stddev=params.weight_init_std)) 85 mean=params.weight_init_mean, stddev=params.weight_init_std)) 91 mean=params.weight_init_mean, stddev=params.weight_init_std)) 130 mean=params.weight_init_mean, stddev=params.weight_init_std)) 136 mean=params.weight_init_mean, stddev=params.weight_init_std)) 168 mean=params.weight_init_mean, stddev=params.weight_init_std)) 174 mean=params.weight_init_mean, stddev=params.weight_init_std)) 220 mean=params.weight_init_mean, stddev=params.weight_init_std)) 226 mean=params.weight_init_mean, stddev=params.weight_init_std))
|
/external/tensorflow/tensorflow/python/ops/ |
D | init_ops.py | 280 def __init__(self, mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32): argument 282 self.stddev = stddev 290 shape, self.mean, self.stddev, dtype, seed=self.seed) 295 "stddev": self.stddev, 322 def __init__(self, mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32): argument 324 self.stddev = stddev 332 shape, self.mean, self.stddev, dtype, seed=self.seed) 337 "stddev": self.stddev, 466 stddev = math.sqrt(scale) 468 shape, 0.0, stddev, dtype, seed=self.seed)
|
D | random_ops.py | 50 stddev=1.0, argument 72 with ops.name_scope(name, "random_normal", [shape, mean, stddev]) as name: 75 stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev") 143 stddev=1.0, argument 169 with ops.name_scope(name, "truncated_normal", [shape, mean, stddev]) as name: 172 stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev")
|
/external/tensorflow/tensorflow/core/kernels/ |
D | parameterized_truncated_normal_op_gpu.cu.cc | 86 T stddev; in TruncatedNormalKernel() local 93 stddev = -input_stddev; in TruncatedNormalKernel() 95 stddev = input_stddev; in TruncatedNormalKernel() 99 const T normMin = (minval - mean) / stddev; in TruncatedNormalKernel() 100 const T normMax = (maxval - mean) / stddev; in TruncatedNormalKernel() 150 data[offset] = z[i] * stddev + mean; in TruncatedNormalKernel() 175 data[offset] = z * stddev + mean; in TruncatedNormalKernel()
|
D | parameterized_truncated_normal_op.cc | 87 T stddev = stddevs((stddevs.dimension(0) == 1) ? 0 : b); in operator ()() local 99 stddev > T(0) && minval < maxval && in operator ()() 112 stddev = -stddev; in operator ()() 116 const T normMin = (minval - mean) / stddev; in operator ()() 117 const T normMax = (maxval - mean) / stddev; in operator ()() 155 output(sample) = z[i] * stddev + mean; in operator ()() 186 output(sample) = z * stddev + mean; in operator ()()
|
/external/tensorflow/tensorflow/contrib/model_pruning/examples/cifar10/ |
D | cifar10_pruning.py | 105 def _variable_with_weight_decay(name, shape, stddev, wd): argument 124 stddev=stddev, dtype=dtype)) 190 'weights', shape=[5, 5, 3, 64], stddev=5e-2, wd=0.0) 213 'weights', shape=[5, 5, 64, 64], stddev=5e-2, wd=0.0) 238 'weights', shape=[dim, 384], stddev=0.04, wd=0.004) 248 'weights', shape=[384, 192], stddev=0.04, wd=0.004) 261 'weights', [192, NUM_CLASSES], stddev=1 / 192.0, wd=0.0)
|
/external/tensorflow/tensorflow/python/profiler/internal/ |
D | model_analyzer_testlib.py | 44 initializer=init_ops.random_normal_initializer(stddev=0.001)) 48 initializer=init_ops.random_normal_initializer(stddev=0.001)) 53 initializer=init_ops.random_normal_initializer(stddev=0.001)) 82 initializer=init_ops.random_normal_initializer(stddev=0.001)) 88 initializer=init_ops.random_normal_initializer(stddev=0.001))
|
/external/libcxx/test/std/numerics/rand/rand.dis/rand.dist.norm/rand.dist.norm.normal/ |
D | ctor_double_double.pass.cpp | 26 assert(d.stddev() == 1); in main() 32 assert(d.stddev() == 1); in main() 38 assert(d.stddev() == 5.25); in main()
|
D | param_ctor.pass.cpp | 28 assert(p.stddev() == 1); in main() 35 assert(p.stddev() == 1); in main() 42 assert(p.stddev() == 5); in main()
|
/external/tensorflow/tensorflow/stream_executor/cuda/ |
D | cuda_rng.cc | 210 ElemT stddev, in DoPopulateRandGaussianInternal() argument 221 func(parent_, rng_, CUDAMemoryMutable(v), element_count, mean, stddev); in DoPopulateRandGaussianInternal() 232 bool CUDARng::DoPopulateRandGaussian(Stream *stream, float mean, float stddev, in DoPopulateRandGaussian() argument 234 return DoPopulateRandGaussianInternal(stream, mean, stddev, v, in DoPopulateRandGaussian() 238 bool CUDARng::DoPopulateRandGaussian(Stream *stream, double mean, double stddev, in DoPopulateRandGaussian() argument 240 return DoPopulateRandGaussianInternal(stream, mean, stddev, v, in DoPopulateRandGaussian()
|
D | cuda_rng.h | 64 bool DoPopulateRandGaussian(Stream *stream, float mean, float stddev, 66 bool DoPopulateRandGaussian(Stream *stream, double mean, double stddev, 77 bool DoPopulateRandGaussianInternal(Stream *stream, ElemT mean, ElemT stddev,
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
D | linear_operator_test_util.py | 490 def random_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None): argument 514 shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed) 519 shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed) 605 stddev=1.0, argument 660 shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed) 675 smaller_shape, mean=0.0, stddev=stddev_mat, dtype=dtype, seed=seed) 687 return embedded + random_normal(shape, stddev=eps, dtype=dtype) + mean_mat
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist.py | 60 stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), 69 stddev=1.0 / math.sqrt(float(hidden1_units))), 78 stddev=1.0 / math.sqrt(float(hidden2_units))),
|
/external/tensorflow/tensorflow/python/grappler/ |
D | cost_analyzer_test.py | 68 random_ops.truncated_normal([5, 5, 1, 32], stddev=0.1)) 69 b = variables.Variable(random_ops.truncated_normal([32], stddev=0.1)) 75 random_ops.truncated_normal([25088, 10], stddev=0.1)) 76 b_fc = variables.Variable(random_ops.truncated_normal([10], stddev=0.1))
|
/external/skia/tools/skpbench/ |
D | skpbench.py | 221 if not self.best_result or result.stddev <= self.best_result.stddev: 226 (result.config, result.bench, self.best_result.stddev, 227 result.stddev), file=sys.stderr) 228 if self.max_stddev and self.best_result.stddev > self.max_stddev: 275 skpbench.best_result.stddev, skpbench.max_stddev,
|
/external/skqp/tools/skpbench/ |
D | skpbench.py | 221 if not self.best_result or result.stddev <= self.best_result.stddev: 226 (result.config, result.bench, self.best_result.stddev, 227 result.stddev), file=sys.stderr) 228 if self.max_stddev and self.best_result.stddev > self.max_stddev: 275 skpbench.best_result.stddev, skpbench.max_stddev,
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | random_ops.cc | 135 xla::ComputationDataHandle stddev = XlaHelpers::One(b, dtype); in Compile() local 137 b->RngNormal(mean, stddev, xla_shape); in Compile() 173 xla::ComputationDataHandle stddev = XlaHelpers::One(b, dtype); in Compile() local 174 b->Select(to_resample, b->RngNormal(mean, stddev, xla_shape), candidate); in Compile()
|
/external/tensorflow/tensorflow/contrib/training/python/training/ |
D | resample_test.py | 169 def get_weights(self, n, mean=10.0, stddev=5): argument 174 v = numpy.random.normal(mean, stddev) 196 stddev = math.sqrt(len(weights) * n * overall_rate * (1 - overall_rate)) 201 delta=(stddev * tol + abs_delta))
|
/external/tensorflow/tensorflow/compiler/xla/tests/ |
D | literal_test_util.h | 226 const Shape& shape, E* engine, T mean, T stddev); 236 const Shape& shape, T mean, T stddev); 364 T stddev) { in CreateRandomLiteral() argument 366 std::normal_distribution<NativeT> generator(mean, stddev); in CreateRandomLiteral() 375 LiteralTestUtil::CreateRandomLiteral(const Shape& shape, T mean, T stddev) { in CreateRandomLiteral() argument 377 return CreateRandomLiteral<type>(shape, &engine, mean, stddev); in CreateRandomLiteral()
|
/external/tensorflow/tensorflow/stream_executor/ |
D | rng.h | 65 virtual bool DoPopulateRandGaussian(Stream *stream, float mean, float stddev, in DoPopulateRandGaussian() argument 72 double stddev, DeviceMemory<double> *v) { in DoPopulateRandGaussian() argument
|