/external/vulkan-validation-layers/libs/glm/detail/ |
D | glm.cpp | 83 template struct tvec2<float32, lowp>; 94 template struct tvec2<float32, mediump>; 105 template struct tvec2<float32, highp>; 117 template struct tvec3<float32, lowp>; 128 template struct tvec3<float32, mediump>; 139 template struct tvec3<float32, highp>; 151 template struct tvec4<float32, lowp>; 162 template struct tvec4<float32, mediump>; 173 template struct tvec4<float32, highp>; 177 template struct tmat2x2<float32, lowp>; [all …]
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | nary_ops_test.py | 58 [np.array([[1, 2, 3]], dtype=np.float32)], 59 expected=np.array([[1, 2, 3]], dtype=np.float32)) 62 [np.array([1, 2], dtype=np.float32), 63 np.array([10, 20], dtype=np.float32)], 64 expected=np.array([11, 22], dtype=np.float32)) 66 [np.array([-4], dtype=np.float32), 67 np.array([10], dtype=np.float32), 68 np.array([42], dtype=np.float32)], 69 expected=np.array([48], dtype=np.float32)) 94 [np.array([[1, 2, 3]], dtype=np.float32)], [all …]
|
D | ternary_ops_test.py | 45 np.float32(1), 46 np.float32(2), 48 expected=np.array([1], dtype=np.float32)) 51 np.float32(1), 52 np.float32(4), 54 expected=np.array([1, 2.5, 4], dtype=np.float32)) 74 np.array(2, dtype=np.float32), 75 np.array(7, dtype=np.float32), 76 expected=np.array(7, dtype=np.float32)) 81 np.array([1, 2, 3, 4], dtype=np.float32), [all …]
|
D | fused_batchnorm_test.py | 70 x_val = np.random.random_sample(x_shape).astype(np.float32) 71 scale_val = np.random.random_sample(scale_shape).astype(np.float32) 73 offset_val = np.random.random_sample(scale_shape).astype(np.float32) 77 t_val = array_ops.placeholder(np.float32, shape=x_shape, name="x") 78 scale = array_ops.placeholder(np.float32, shape=scale_shape, name="scale") 80 np.float32, shape=scale_shape, name="offset") 105 x_val = np.random.random_sample(x_shape).astype(np.float32) 106 scale_val = np.random.random_sample(scale_shape).astype(np.float32) 108 offset_val = np.random.random_sample(scale_shape).astype(np.float32) 109 mean_val = np.random.random_sample(scale_shape).astype(np.float32) [all …]
|
D | stack_ops_test.py | 36 v = array_ops.placeholder(dtypes.float32) 37 h = gen_data_flow_ops._stack_v2(size, dtypes.float32, stack_name="foo") 40 c1 = gen_data_flow_ops._stack_pop_v2(h, dtypes.float32) 46 x = array_ops.placeholder(dtypes.float32) 47 h = gen_data_flow_ops._stack_v2(5, dtypes.float32, stack_name="foo") 50 c1 = gen_data_flow_ops._stack_pop_v2(h, dtypes.float32) 55 v = array_ops.placeholder(dtypes.float32) 56 h1 = gen_data_flow_ops._stack_v2(5, dtypes.float32, stack_name="foo") 59 c1 = gen_data_flow_ops._stack_pop_v2(h1, dtypes.float32) 60 h2 = gen_data_flow_ops._stack_v2(5, dtypes.float32, stack_name="bar") [all …]
|
D | function_test.py | 41 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 42 bval = np.array([5, 6, 7, 8]).reshape([2, 2]).astype(np.float32) 47 @function.Defun(dtypes.float32, dtypes.float32) 67 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 68 bval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 73 @function.Defun(dtypes.float32, dtypes.float32) 91 aval = np.array([4, 3, 2, 1]).reshape([2, 2]).astype(np.float32) 92 bval = np.array([5, 6, 7, 8]).reshape([2, 2]).astype(np.float32) 97 @function.Defun(dtypes.float32, dtypes.float32) 111 @function.Defun(dtypes.float32, noinline=True) [all …]
|
/external/tensorflow/tensorflow/contrib/gan/python/features/python/ |
D | conditioning_utils_test.py | 34 array_ops.placeholder(dtypes.float32, tensor_shape), 35 array_ops.placeholder(dtypes.float32, conditioning_shape)) 40 array_ops.placeholder(dtypes.float32, (4, 1)), 41 array_ops.placeholder(dtypes.float32, (5, 1))) 45 array_ops.placeholder(dtypes.float32, (5, None)), 46 array_ops.placeholder(dtypes.float32, (5, 1))) 50 array_ops.placeholder(dtypes.float32, (5, 2)), 51 array_ops.placeholder(dtypes.float32, (5))) 55 array_ops.placeholder(dtypes.float32, (5, 4, 1)), 56 array_ops.placeholder(dtypes.float32, (5, 10))) [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | vector_diffeomixture_test.py | 46 np.float32([2.]*dims), 51 multiplier=np.float32(1.1), 54 diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), 75 np.float32([2.]*dims), 80 multiplier=np.float32(1.1), 83 diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), 104 np.float32([2.]*dims), 109 multiplier=[np.float32(1.1)], 113 np.linspace(2.5, 3.5, dims, dtype=np.float32), 114 np.linspace(2.75, 3.25, dims, dtype=np.float32), [all …]
|
D | vector_student_t_test.py | 80 df = np.asarray(3., dtype=np.float32) 82 loc = np.asarray([1], dtype=np.float32) 83 scale_diag = np.asarray([2.], dtype=np.float32) 91 x = 2. * self._rng.rand(4, 1).astype(np.float32) - 1. 102 df = np.asarray([1., 2, 3], dtype=np.float32) 107 dtype=np.float32) 111 dtype=np.float32) 114 x = 2. * self._rng.rand(4, 3, 3).astype(np.float32) - 1. 131 df = np.asarray([1., 2, 3], dtype=np.float32) 136 dtype=np.float32) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | sparse_matmul_op_test.py | 37 64) / 128.0).reshape([rows, cols]).astype(np.float32) 49 x_dtype=dtypes.float32, 50 y_dtype=dtypes.float32): 62 np_x = math_ops.cast(tf_x, dtypes.float32).eval() 63 np_y = math_ops.cast(tf_y, dtypes.float32).eval() 75 x = np.arange(0., 4.).reshape([4, 1]).astype(np.float32) 76 y = np.arange(-1., 1.).reshape([1, 2]).astype(np.float32) 77 for x_dtype in (dtypes.float32, dtypes.bfloat16): 78 for y_dtype in (dtypes.float32, dtypes.bfloat16): 82 x = np.ones((4, 0)).astype(np.float32) [all …]
|
D | sparse_conditional_accumulator_test.py | 62 dtypes_lib.float32, name="Q") 75 dtypes_lib.float32, 94 dtypes_lib.float32, name="Q") 100 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([1])) 107 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([3, 3])) 111 values=np.array([[0, 0, 1], [3, 0, 4]]).astype(np.float32))) 117 dtypes = [dtypes_lib.float16, dtypes_lib.float32, dtypes_lib.float64] 140 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([2, 2])) 142 dtypes_lib.float32, name="Q", shape=tensor_shape.TensorShape([2, 2])) 170 dtypes_lib.float32, name="Q", shape=()) [all …]
|
D | stack_ops_test.py | 38 -1, elem_type=dtypes.float32, stack_name="foo") 41 c1 = gen_data_flow_ops._stack_pop_v2(h, dtypes.float32) 51 x = constant_op.constant(a, dtype=dtypes.float32) 53 -1, elem_type=dtypes.float32, stack_name="foo") 56 c1 = gen_data_flow_ops._stack_pop_v2(h, dtypes.float32) 67 -1, elem_type=dtypes.float32, stack_name="foo") 74 a = constant_op.constant(np.ones(2000), dtype=dtypes.float32) 81 v = constant_op.constant(np.zeros(2000), dtype=dtypes.float32) 89 ny = y + gen_data_flow_ops._stack_pop_v2(h, dtypes.float32) 103 -1, elem_type=dtypes.float32, stack_name="foo") [all …]
|
D | variable_ops_test.py | 35 np.float32: dtypes.float32, 52 for dtype in [np.float32, np.float64, np.int32, np.int64]: 66 p = state_ops.variable_op([1, 2], dtypes.float32) 68 p = state_ops.variable_op([1, 2], dtypes.float32, set_shape=False) 73 var = state_ops.variable_op(value.shape, dtypes.float32) 80 var = state_ops.variable_op(value.shape, dtypes.float32) 87 var = state_ops.variable_op(value.shape, dtypes.float32, set_shape=False) 94 var = state_ops.variable_op(value.shape, dtypes.float32, set_shape=False) 100 tensor = array_ops.placeholder(dtypes.float32) 107 var = state_ops.variable_op(shape, dtypes.float32) [all …]
|
D | parse_single_example_op_test.py | 131 c_default = np.random.rand(2).astype(np.float32) 158 (2,), dtypes.float32, default_value=c_default), 177 (2,), dtype=dtypes.float32), 210 "a": parsing_ops.FixedLenFeature((1, 3), dtypes.float32) 227 "a": parsing_ops.FixedLenFeature(None, dtypes.float32) 251 np.array([3.0, 4.0], dtype=np.float32), 256 "st_c": empty_sparse(np.float32), 259 "st_c": empty_sparse(np.float32), 263 np.array([1.0, 2.0, -1.0], dtype=np.float32), 273 "st_c": parsing_ops.VarLenFeature(dtypes.float32), [all …]
|
D | cast_op_test.py | 39 if dtype == np.float32: 40 return dtypes.float32 71 np.float32, np.float64, np.int64, np.complex64, np.complex128 75 np.float32, np.float64, np.int32, np.int64, np.complex64, 82 self._test(x.astype(np.bool), np.float32, use_gpu) 83 self._test(x.astype(np.uint8), np.float32, use_gpu) 90 if x.dtype == np.float32 or x.dtype == np.float64: 98 f4 = np.finfo(np.float32) 107 a = np.random.uniform(-100, 100, 100).astype(np.float32) 109 b = math_ops.cast(math_ops.cast(a, dtypes.bfloat16), dtypes.float32) [all …]
|
D | list_ops_test.py | 45 l = list_ops.empty_tensor_list(element_dtype=dtypes.float32, 48 l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 58 l = list_ops.empty_tensor_list(element_dtype=dtypes.float32, 62 t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32) 74 l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 76 l, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) 89 e0 = list_ops.tensor_list_get_item(l, 0, element_dtype=dtypes.float32) 92 t = list_ops.tensor_list_stack(l, element_dtype=dtypes.float32) 102 l = list_ops.empty_tensor_list(element_dtype=dtypes.float32, 106 _, e = list_ops.tensor_list_pop_back(l, element_dtype=dtypes.float32) [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_fused_batchnorm_test.py | 166 x32_init_val = x_init_val.astype(np.float32) 218 x32 = constant_op.constant(x_val, name='x32', dtype=dtypes.float32) 304 x32 = constant_op.constant(x_val, dtype=dtypes.float32, name='x32') 306 grad_y_val, dtype=dtypes.float32, name='grad_y32') 343 for dtype in [np.float16, np.float32]: 346 x_shape, dtype, [1], np.float32, use_gpu=True, data_format='NHWC') 348 x_shape, dtype, [1], np.float32, use_gpu=True, data_format='NCHW') 350 x_shape, dtype, [1], np.float32, use_gpu=False, data_format='NHWC') 355 for dtype in [np.float16, np.float32]: 357 x_shape, dtype, [2], np.float32, use_gpu=True, data_format='NHWC') [all …]
|
/external/tensorflow/tensorflow/python/estimator/canned/ |
D | parsing_utils_test.py | 35 'a': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 46 'a': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 59 parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 72 'a': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 74 'c': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 84 'a': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 86 'c': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 121 'a': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 122 'b': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), 132 'a': parsing_ops.FixedLenFeature((1,), dtype=dtypes.float32), [all …]
|
/external/tensorflow/tensorflow/python/framework/ |
D | function_test.py | 79 @function.Defun(dtypes.float32, func_name="MyIdentity") 91 @function.Defun(dtypes.float32, func_name="MyIdentity") 107 dtypes.float32, func_name="MyIdentity", out_names=["my_result_name"]) 120 dtypes.float32, func_name="MyIdentity", 134 @function.Defun(dtypes.float32, dtypes.float32, func_name="APlus2B") 146 @function.Defun(dtypes.float32, dtypes.float32) 158 dtypes.float32, 159 dtypes.float32, 173 @function.Defun(dtypes.float32, func_name="Duplicate") 190 @function.Defun(dtypes.float32, func_name="XSquarePlusOneFn") [all …]
|
/external/tensorflow/tensorflow/contrib/tpu/python/tpu/ |
D | tpu_infeed_test.py | 39 tuple_types=[dtypes.float32, dtypes.int32, dtypes.int32]) 42 [dtypes.float32, dtypes.int32, dtypes.int32]) 60 number_of_tuple_elements=2, tuple_types=[dtypes.float32]) 71 i.set_tuple_types([dtypes.float32, dtypes.int32]) 72 self.assertEqual(i.tuple_types, [dtypes.float32, dtypes.int32]) 73 i.set_tuple_types([dtypes.float32, dtypes.float32]) 74 self.assertEqual(i.tuple_types, [dtypes.float32, dtypes.float32]) 76 i.set_tuple_types([dtypes.float32]) 88 t2 = constant_op.constant(2.0, dtypes.float32, shape=[3, 18]) 91 self.assertEqual(i.tuple_types, [dtypes.int32, dtypes.float32]) [all …]
|
/external/tensorflow/tensorflow/tools/quantization/ |
D | quantize_graph_test.py | 58 a_constant_name, value=a, dtype=dtypes.float32, shape=[m, k]) 61 b_constant_name, value=b, dtype=dtypes.float32, shape=[k, n]) 65 quantize_graph.set_attr_dtype(mat_mul_node, "T", dtypes.float32) 84 dtype=dtypes.float32, 90 dtype=dtypes.float32, 95 quantize_graph.set_attr_dtype(conv_node, "T", dtypes.float32) 203 shape_constant_name, value=-0.8, dtype=dtypes.float32, shape=[1]) 238 quantize_graph.set_attr_dtype(n, "T", dtypes.float32) 245 "input", value=[0, 1, 2, 3], dtype=dtypes.float32, shape=[4, 1]) 249 dtype=dtypes.float32, [all …]
|
/external/tensorflow/tensorflow/python/tools/ |
D | optimize_for_inference_test.py | 82 unused_constant_name, value=0, dtype=dtypes.float32, shape=[]) 87 self.set_attr_dtype(unconnected_add_node, "T", dtypes.float32) 90 a_constant_name, value=1, dtype=dtypes.float32, shape=[]) 99 b_constant_name, value=1, dtype=dtypes.float32, shape=[]) 109 self.set_attr_dtype(add_node, "T", dtypes.float32) 113 self.set_attr_dtype(unused_output_add_node, "T", dtypes.float32) 118 a_constant_name, value=1, dtype=dtypes.float32, shape=[]) 121 b_constant_name, value=1, dtype=dtypes.float32, shape=[]) 125 self.set_attr_dtype(add_node, "T", dtypes.float32) 129 graph_def, [], [add_name], dtypes.float32.as_datatype_enum) [all …]
|
/external/tensorflow/tensorflow/contrib/fused_conv/python/ops/ |
D | fused_conv2d_bias_activation_op_test.py | 160 return [dtypes.float32] 239 x1 = np.random.rand(*tensor_in_sizes).astype(np.float32) 240 x2 = np.random.rand(*filter_in_sizes).astype(np.float32) 241 x3 = np.random.rand(*[filter_in_sizes[-1]]).astype(np.float32) 454 array_ops.placeholder(dtypes.float32), 455 array_ops.placeholder(dtypes.float32), 456 array_ops.placeholder(dtypes.float32), 465 array_ops.placeholder(dtypes.float32, shape=[1, 3]), 466 array_ops.placeholder(dtypes.float32), 467 array_ops.placeholder(dtypes.float32), [all …]
|
/external/tensorflow/tensorflow/contrib/lite/testing/ |
D | generate_examples.py | 231 tf.float32: (np.float32, "FLOAT"), 245 if dtype in (tf.float32, tf.float16): 275 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 276 filter_value = tf.zeros((3, 3, TEST_INPUT_DEPTH, 8), tf.float32) 284 input_values = create_tensor_data(tf.float32, parameters["input_shape"]) 528 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 538 input_values = create_tensor_data(tf.float32, parameters["input_shape"]) 557 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 563 np.float32, parameters["input_shape"], min_value=-4, max_value=10) 581 dtype=tf.float32, name="input", shape=parameters["input_shape"]) [all …]
|
/external/tensorflow/tensorflow/python/client/ |
D | session_partial_run_test.py | 45 a = array_ops.placeholder(dtypes.float32, shape=[]) 46 b = array_ops.placeholder(dtypes.float32, shape=[]) 47 c = array_ops.placeholder(dtypes.float32, shape=[]) 67 a = array_ops.placeholder(dtypes.float32, shape=[]) 68 b = array_ops.placeholder(dtypes.float32, shape=[]) 69 c = array_ops.placeholder(dtypes.float32, shape=[]) 78 a = array_ops.placeholder(dtypes.float32, shape=[]) 79 b = array_ops.placeholder(dtypes.float32, shape=[]) 80 c = array_ops.placeholder(dtypes.float32, shape=[]) 98 a = constant_op.constant(2.0, dtypes.float32) [all …]
|