Home
last modified time | relevance | path

Searched refs:num_periods (Results 1 – 6 of 6) sorted by relevance

/external/tensorflow/tensorflow/contrib/opt/python/training/
Dsign_decay_test.py36 def py_cosine_decay_fn(decay_steps, num_periods=0.5, zero_after=None): argument
40 fraction = 2.0 * num_periods * step / float(decay_steps)
48 def py_restart_decay_fn(decay_steps, num_periods=1, zero_after=None): argument
52 tmp = num_periods * step / float(decay_steps)
54 num_periods * step % decay_steps) / float(decay_steps)
78 num_training_steps, num_periods=5, zero_after=2)
88 num_training_steps, num_periods=5, zero_after=2)(step)
95 num_training_steps, num_periods=5, zero_after=2)
105 num_training_steps, num_periods=5, zero_after=2)(step)
Dsign_decay.py63 def get_cosine_decay_fn(decay_steps, num_periods=0.5, zero_after=None): argument
97 fraction = 2.0 * num_periods * completed_fraction
108 def get_restart_decay_fn(decay_steps, num_periods=1, zero_after=None): argument
146 num = math_ops.mod(num_periods * math_ops.to_float(global_step),
153 num_periods * global_step) / math_ops.to_float(decay_steps)
/external/tensorflow/tensorflow/python/training/
Dlearning_rate_decay.py611 num_periods=0.5, argument
676 num_periods = math_ops.cast(num_periods, dtype)
683 fraction = 2.0 * num_periods * completed_fraction
697 num_periods=0.5, argument
771 num_periods = math_ops.cast(num_periods, dtype)
784 fraction = 2.0 * num_periods * completed_fraction
Dlearning_rate_decay_test.py440 num_periods=0.5): argument
443 fraction = 2.0 * num_periods * step / float(decay_steps)
468 num_periods=5)
474 num_periods=5)
504 num_periods=5)
/external/tensorflow/tensorflow/tools/api/golden/
Dtensorflow.train.pbtxt341 …argspec: "args=[\'learning_rate\', \'global_step\', \'decay_steps\', \'num_periods\', \'alpha\', \…
381 …l_step\', \'decay_steps\', \'initial_variance\', \'variance_decay\', \'num_periods\', \'alpha\', \…
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/
Dar_model.py567 num_periods = len(self._periods)
570 self._periods, shape=[1, 1, num_periods, 1], dtype=time.dtype)