Searched refs:num_periods (Results 1 – 6 of 6) sorted by relevance
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | sign_decay_test.py | 36 def py_cosine_decay_fn(decay_steps, num_periods=0.5, zero_after=None): argument 40 fraction = 2.0 * num_periods * step / float(decay_steps) 48 def py_restart_decay_fn(decay_steps, num_periods=1, zero_after=None): argument 52 tmp = num_periods * step / float(decay_steps) 54 num_periods * step % decay_steps) / float(decay_steps) 78 num_training_steps, num_periods=5, zero_after=2) 88 num_training_steps, num_periods=5, zero_after=2)(step) 95 num_training_steps, num_periods=5, zero_after=2) 105 num_training_steps, num_periods=5, zero_after=2)(step)
|
D | sign_decay.py | 63 def get_cosine_decay_fn(decay_steps, num_periods=0.5, zero_after=None): argument 97 fraction = 2.0 * num_periods * completed_fraction 108 def get_restart_decay_fn(decay_steps, num_periods=1, zero_after=None): argument 146 num = math_ops.mod(num_periods * math_ops.to_float(global_step), 153 num_periods * global_step) / math_ops.to_float(decay_steps)
|
/external/tensorflow/tensorflow/python/training/ |
D | learning_rate_decay.py | 611 num_periods=0.5, argument 676 num_periods = math_ops.cast(num_periods, dtype) 683 fraction = 2.0 * num_periods * completed_fraction 697 num_periods=0.5, argument 771 num_periods = math_ops.cast(num_periods, dtype) 784 fraction = 2.0 * num_periods * completed_fraction
|
D | learning_rate_decay_test.py | 440 num_periods=0.5): argument 443 fraction = 2.0 * num_periods * step / float(decay_steps) 468 num_periods=5) 474 num_periods=5) 504 num_periods=5)
|
/external/tensorflow/tensorflow/tools/api/golden/ |
D | tensorflow.train.pbtxt | 341 …argspec: "args=[\'learning_rate\', \'global_step\', \'decay_steps\', \'num_periods\', \'alpha\', \… 381 …l_step\', \'decay_steps\', \'initial_variance\', \'variance_decay\', \'num_periods\', \'alpha\', \…
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | ar_model.py | 567 num_periods = len(self._periods) 570 self._periods, shape=[1, 1, num_periods, 1], dtype=time.dtype)
|