• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread_pool.h"
18 
19 #include <sys/mman.h>
20 #include <sys/resource.h>
21 #include <sys/time.h>
22 
23 #include <pthread.h>
24 
25 #include <android-base/logging.h>
26 #include <android-base/stringprintf.h>
27 
28 #include "base/bit_utils.h"
29 #include "base/casts.h"
30 #include "base/stl_util.h"
31 #include "base/time_utils.h"
32 #include "base/utils.h"
33 #include "runtime.h"
34 #include "thread-current-inl.h"
35 
36 namespace art {
37 
38 using android::base::StringPrintf;
39 
40 static constexpr bool kMeasureWaitTime = false;
41 
ThreadPoolWorker(ThreadPool * thread_pool,const std::string & name,size_t stack_size)42 ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
43                                    size_t stack_size)
44     : thread_pool_(thread_pool),
45       name_(name) {
46   // Add an inaccessible page to catch stack overflow.
47   stack_size += kPageSize;
48   std::string error_msg;
49   stack_.reset(MemMap::MapAnonymous(name.c_str(), nullptr, stack_size, PROT_READ | PROT_WRITE,
50                                     false, false, &error_msg));
51   CHECK(stack_.get() != nullptr) << error_msg;
52   CHECK_ALIGNED(stack_->Begin(), kPageSize);
53   CheckedCall(mprotect,
54               "mprotect bottom page of thread pool worker stack",
55               stack_->Begin(),
56               kPageSize,
57               PROT_NONE);
58   const char* reason = "new thread pool worker thread";
59   pthread_attr_t attr;
60   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
61   CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_->Begin(), stack_->Size()), reason);
62   CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
63   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
64 }
65 
~ThreadPoolWorker()66 ThreadPoolWorker::~ThreadPoolWorker() {
67   CHECK_PTHREAD_CALL(pthread_join, (pthread_, nullptr), "thread pool worker shutdown");
68 }
69 
SetPthreadPriority(int priority)70 void ThreadPoolWorker::SetPthreadPriority(int priority) {
71   CHECK_GE(priority, PRIO_MIN);
72   CHECK_LE(priority, PRIO_MAX);
73 #if defined(ART_TARGET_ANDROID)
74   int result = setpriority(PRIO_PROCESS, pthread_gettid_np(pthread_), priority);
75   if (result != 0) {
76     PLOG(ERROR) << "Failed to setpriority to :" << priority;
77   }
78 #else
79   UNUSED(priority);
80 #endif
81 }
82 
Run()83 void ThreadPoolWorker::Run() {
84   Thread* self = Thread::Current();
85   Task* task = nullptr;
86   thread_pool_->creation_barier_.Wait(self);
87   while ((task = thread_pool_->GetTask(self)) != nullptr) {
88     task->Run(self);
89     task->Finalize();
90   }
91 }
92 
Callback(void * arg)93 void* ThreadPoolWorker::Callback(void* arg) {
94   ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
95   Runtime* runtime = Runtime::Current();
96   CHECK(runtime->AttachCurrentThread(worker->name_.c_str(),
97                                      true,
98                                      nullptr,
99                                      worker->thread_pool_->create_peers_));
100   worker->thread_ = Thread::Current();
101   // Thread pool workers cannot call into java.
102   worker->thread_->SetCanCallIntoJava(false);
103   // Do work until its time to shut down.
104   worker->Run();
105   runtime->DetachCurrentThread();
106   return nullptr;
107 }
108 
AddTask(Thread * self,Task * task)109 void ThreadPool::AddTask(Thread* self, Task* task) {
110   MutexLock mu(self, task_queue_lock_);
111   tasks_.push_back(task);
112   // If we have any waiters, signal one.
113   if (started_ && waiting_count_ != 0) {
114     task_queue_condition_.Signal(self);
115   }
116 }
117 
RemoveAllTasks(Thread * self)118 void ThreadPool::RemoveAllTasks(Thread* self) {
119   MutexLock mu(self, task_queue_lock_);
120   tasks_.clear();
121 }
122 
ThreadPool(const char * name,size_t num_threads,bool create_peers)123 ThreadPool::ThreadPool(const char* name, size_t num_threads, bool create_peers)
124   : name_(name),
125     task_queue_lock_("task queue lock"),
126     task_queue_condition_("task queue condition", task_queue_lock_),
127     completion_condition_("task completion condition", task_queue_lock_),
128     started_(false),
129     shutting_down_(false),
130     waiting_count_(0),
131     start_time_(0),
132     total_wait_time_(0),
133     // Add one since the caller of constructor waits on the barrier too.
134     creation_barier_(num_threads + 1),
135     max_active_workers_(num_threads),
136     create_peers_(create_peers) {
137   Thread* self = Thread::Current();
138   while (GetThreadCount() < num_threads) {
139     const std::string worker_name = StringPrintf("%s worker thread %zu", name_.c_str(),
140                                                  GetThreadCount());
141     threads_.push_back(
142         new ThreadPoolWorker(this, worker_name, ThreadPoolWorker::kDefaultStackSize));
143   }
144   // Wait for all of the threads to attach.
145   creation_barier_.Wait(self);
146 }
147 
SetMaxActiveWorkers(size_t threads)148 void ThreadPool::SetMaxActiveWorkers(size_t threads) {
149   MutexLock mu(Thread::Current(), task_queue_lock_);
150   CHECK_LE(threads, GetThreadCount());
151   max_active_workers_ = threads;
152 }
153 
~ThreadPool()154 ThreadPool::~ThreadPool() {
155   {
156     Thread* self = Thread::Current();
157     MutexLock mu(self, task_queue_lock_);
158     // Tell any remaining workers to shut down.
159     shutting_down_ = true;
160     // Broadcast to everyone waiting.
161     task_queue_condition_.Broadcast(self);
162     completion_condition_.Broadcast(self);
163   }
164   // Wait for the threads to finish.
165   STLDeleteElements(&threads_);
166 }
167 
StartWorkers(Thread * self)168 void ThreadPool::StartWorkers(Thread* self) {
169   MutexLock mu(self, task_queue_lock_);
170   started_ = true;
171   task_queue_condition_.Broadcast(self);
172   start_time_ = NanoTime();
173   total_wait_time_ = 0;
174 }
175 
StopWorkers(Thread * self)176 void ThreadPool::StopWorkers(Thread* self) {
177   MutexLock mu(self, task_queue_lock_);
178   started_ = false;
179 }
180 
GetTask(Thread * self)181 Task* ThreadPool::GetTask(Thread* self) {
182   MutexLock mu(self, task_queue_lock_);
183   while (!IsShuttingDown()) {
184     const size_t thread_count = GetThreadCount();
185     // Ensure that we don't use more threads than the maximum active workers.
186     const size_t active_threads = thread_count - waiting_count_;
187     // <= since self is considered an active worker.
188     if (active_threads <= max_active_workers_) {
189       Task* task = TryGetTaskLocked();
190       if (task != nullptr) {
191         return task;
192       }
193     }
194 
195     ++waiting_count_;
196     if (waiting_count_ == GetThreadCount() && !HasOutstandingTasks()) {
197       // We may be done, lets broadcast to the completion condition.
198       completion_condition_.Broadcast(self);
199     }
200     const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
201     task_queue_condition_.Wait(self);
202     if (kMeasureWaitTime) {
203       const uint64_t wait_end = NanoTime();
204       total_wait_time_ += wait_end - std::max(wait_start, start_time_);
205     }
206     --waiting_count_;
207   }
208 
209   // We are shutting down, return null to tell the worker thread to stop looping.
210   return nullptr;
211 }
212 
TryGetTask(Thread * self)213 Task* ThreadPool::TryGetTask(Thread* self) {
214   MutexLock mu(self, task_queue_lock_);
215   return TryGetTaskLocked();
216 }
217 
TryGetTaskLocked()218 Task* ThreadPool::TryGetTaskLocked() {
219   if (HasOutstandingTasks()) {
220     Task* task = tasks_.front();
221     tasks_.pop_front();
222     return task;
223   }
224   return nullptr;
225 }
226 
Wait(Thread * self,bool do_work,bool may_hold_locks)227 void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
228   if (do_work) {
229     CHECK(!create_peers_);
230     Task* task = nullptr;
231     while ((task = TryGetTask(self)) != nullptr) {
232       task->Run(self);
233       task->Finalize();
234     }
235   }
236   // Wait until each thread is waiting and the task list is empty.
237   MutexLock mu(self, task_queue_lock_);
238   while (!shutting_down_ && (waiting_count_ != GetThreadCount() || HasOutstandingTasks())) {
239     if (!may_hold_locks) {
240       completion_condition_.Wait(self);
241     } else {
242       completion_condition_.WaitHoldingLocks(self);
243     }
244   }
245 }
246 
GetTaskCount(Thread * self)247 size_t ThreadPool::GetTaskCount(Thread* self) {
248   MutexLock mu(self, task_queue_lock_);
249   return tasks_.size();
250 }
251 
SetPthreadPriority(int priority)252 void ThreadPool::SetPthreadPriority(int priority) {
253   for (ThreadPoolWorker* worker : threads_) {
254     worker->SetPthreadPriority(priority);
255   }
256 }
257 
258 }  // namespace art
259