• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Originally written by Bodo Moeller for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <string.h>
71 
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75 #include <openssl/thread.h>
76 
77 #include "internal.h"
78 #include "../bn/internal.h"
79 #include "../../internal.h"
80 
81 
82 // This file implements the wNAF-based interleaving multi-exponentiation method
83 // at:
84 //   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
85 //   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
86 
87 // compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of
88 // |scalar| to |out| and returns one on success or zero on internal error. |out|
89 // must have room for |bits| + 1 elements, each of which will be either zero or
90 // odd with an absolute value less than  2^w  satisfying
91 //     scalar = \sum_j out[j]*2^j
92 // where at most one of any  w+1  consecutive digits is non-zero
93 // with the exception that the most significant digit may be only
94 // w-1 zeros away from that next non-zero digit.
compute_wNAF(const EC_GROUP * group,int8_t * out,const EC_SCALAR * scalar,size_t bits,int w)95 static int compute_wNAF(const EC_GROUP *group, int8_t *out,
96                         const EC_SCALAR *scalar, size_t bits, int w) {
97   // 'int8_t' can represent integers with absolute values less than 2^7.
98   if (w <= 0 || w > 7 || bits == 0) {
99     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
100     return 0;
101   }
102   int bit = 1 << w;         // at most 128
103   int next_bit = bit << 1;  // at most 256
104   int mask = next_bit - 1;  // at most 255
105 
106   int window_val = scalar->words[0] & mask;
107   size_t j = 0;
108   // If j+w+1 >= bits, window_val will not increase.
109   while (window_val != 0 || j + w + 1 < bits) {
110     int digit = 0;
111 
112     // 0 <= window_val <= 2^(w+1)
113 
114     if (window_val & 1) {
115       // 0 < window_val < 2^(w+1)
116 
117       if (window_val & bit) {
118         digit = window_val - next_bit;  // -2^w < digit < 0
119 
120 #if 1  // modified wNAF
121         if (j + w + 1 >= bits) {
122           // special case for generating modified wNAFs:
123           // no new bits will be added into window_val,
124           // so using a positive digit here will decrease
125           // the total length of the representation
126 
127           digit = window_val & (mask >> 1);  // 0 < digit < 2^w
128         }
129 #endif
130       } else {
131         digit = window_val;  // 0 < digit < 2^w
132       }
133 
134       if (digit <= -bit || digit >= bit || !(digit & 1)) {
135         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
136         return 0;
137       }
138 
139       window_val -= digit;
140 
141       // Now window_val is 0 or 2^(w+1) in standard wNAF generation;
142       // for modified window NAFs, it may also be 2^w.
143       if (window_val != 0 && window_val != next_bit && window_val != bit) {
144         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
145         return 0;
146       }
147     }
148 
149     out[j++] = digit;
150 
151     window_val >>= 1;
152     window_val +=
153         bit * bn_is_bit_set_words(scalar->words, group->order.top, j + w);
154 
155     if (window_val > next_bit) {
156       OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
157       return 0;
158     }
159   }
160 
161   // Fill the rest of the wNAF with zeros.
162   if (j > bits + 1) {
163     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
164     return 0;
165   }
166   for (size_t i = j; i < bits + 1; i++) {
167     out[i] = 0;
168   }
169 
170   return 1;
171 }
172 
173 // TODO: table should be optimised for the wNAF-based implementation,
174 //       sometimes smaller windows will give better performance
175 //       (thus the boundaries should be increased)
window_bits_for_scalar_size(size_t b)176 static size_t window_bits_for_scalar_size(size_t b) {
177   if (b >= 300) {
178     return 4;
179   }
180 
181   if (b >= 70) {
182     return 3;
183   }
184 
185   if (b >= 20) {
186     return 2;
187   }
188 
189   return 1;
190 }
191 
192 // EC_WNAF_MAX_WINDOW_BITS is the largest value returned by
193 // |window_bits_for_scalar_size|.
194 #define EC_WNAF_MAX_WINDOW_BITS 4
195 
196 // compute_precomp sets |out[i]| to a newly-allocated |EC_POINT| containing
197 // (2*i+1)*p, for i from 0 to |len|. It returns one on success and
198 // zero on error.
compute_precomp(const EC_GROUP * group,EC_POINT ** out,const EC_POINT * p,size_t len,BN_CTX * ctx)199 static int compute_precomp(const EC_GROUP *group, EC_POINT **out,
200                            const EC_POINT *p, size_t len, BN_CTX *ctx) {
201   out[0] = EC_POINT_new(group);
202   if (out[0] == NULL ||
203       !EC_POINT_copy(out[0], p)) {
204     return 0;
205   }
206 
207   int ret = 0;
208   EC_POINT *two_p = EC_POINT_new(group);
209   if (two_p == NULL ||
210       !EC_POINT_dbl(group, two_p, p, ctx)) {
211     goto err;
212   }
213 
214   for (size_t i = 1; i < len; i++) {
215     out[i] = EC_POINT_new(group);
216     if (out[i] == NULL ||
217         !EC_POINT_add(group, out[i], out[i - 1], two_p, ctx)) {
218       goto err;
219     }
220   }
221 
222   ret = 1;
223 
224 err:
225   EC_POINT_free(two_p);
226   return ret;
227 }
228 
lookup_precomp(const EC_GROUP * group,EC_POINT * out,EC_POINT * const * precomp,int digit,BN_CTX * ctx)229 static int lookup_precomp(const EC_GROUP *group, EC_POINT *out,
230                           EC_POINT *const *precomp, int digit, BN_CTX *ctx) {
231   if (digit < 0) {
232     digit = -digit;
233     return EC_POINT_copy(out, precomp[digit >> 1]) &&
234            EC_POINT_invert(group, out, ctx);
235   }
236 
237   return EC_POINT_copy(out, precomp[digit >> 1]);
238 }
239 
ec_wNAF_mul(const EC_GROUP * group,EC_POINT * r,const EC_SCALAR * g_scalar,const EC_POINT * p,const EC_SCALAR * p_scalar,BN_CTX * ctx)240 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const EC_SCALAR *g_scalar,
241                 const EC_POINT *p, const EC_SCALAR *p_scalar, BN_CTX *ctx) {
242   BN_CTX *new_ctx = NULL;
243   EC_POINT *precomp_storage[2 * (1 << (EC_WNAF_MAX_WINDOW_BITS - 1))] = {NULL};
244   EC_POINT **g_precomp = NULL, **p_precomp = NULL;
245   int8_t g_wNAF[EC_MAX_SCALAR_BYTES * 8 + 1];
246   int8_t p_wNAF[EC_MAX_SCALAR_BYTES * 8 + 1];
247   EC_POINT *tmp = NULL;
248   int ret = 0;
249 
250   if (ctx == NULL) {
251     ctx = new_ctx = BN_CTX_new();
252     if (ctx == NULL) {
253       goto err;
254     }
255   }
256 
257   size_t bits = BN_num_bits(&group->order);
258   size_t wsize = window_bits_for_scalar_size(bits);
259   size_t wNAF_len = bits + 1;
260   size_t precomp_len = (size_t)1 << (wsize - 1);
261   if (wNAF_len > OPENSSL_ARRAY_SIZE(g_wNAF) ||
262       wNAF_len > OPENSSL_ARRAY_SIZE(p_wNAF) ||
263       2 * precomp_len > OPENSSL_ARRAY_SIZE(precomp_storage)) {
264     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
265     goto err;
266   }
267 
268   // TODO(davidben): |mul_public| is for ECDSA verification which can assume
269   // non-NULL inputs, but this code is also used for |mul| which cannot. It's
270   // not constant-time, so replace the generic |mul| and remove the NULL checks.
271   size_t total_precomp = 0;
272   if (g_scalar != NULL) {
273     const EC_POINT *g = EC_GROUP_get0_generator(group);
274     if (g == NULL) {
275       OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
276       goto err;
277     }
278     g_precomp = precomp_storage + total_precomp;
279     total_precomp += precomp_len;
280     if (!compute_wNAF(group, g_wNAF, g_scalar, bits, wsize) ||
281         !compute_precomp(group, g_precomp, g, precomp_len, ctx)) {
282       goto err;
283     }
284   }
285 
286   if (p_scalar != NULL) {
287     p_precomp = precomp_storage + total_precomp;
288     total_precomp += precomp_len;
289     if (!compute_wNAF(group, p_wNAF, p_scalar, bits, wsize) ||
290         !compute_precomp(group, p_precomp, p, precomp_len, ctx)) {
291       goto err;
292     }
293   }
294 
295   tmp = EC_POINT_new(group);
296   if (tmp == NULL ||
297       // |window_bits_for_scalar_size| assumes we do this step.
298       !EC_POINTs_make_affine(group, total_precomp, precomp_storage, ctx)) {
299     goto err;
300   }
301 
302   int r_is_at_infinity = 1;
303   for (size_t k = wNAF_len - 1; k < wNAF_len; k--) {
304     if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
305       goto err;
306     }
307 
308     if (g_scalar != NULL) {
309       if (g_wNAF[k] != 0) {
310         if (!lookup_precomp(group, tmp, g_precomp, g_wNAF[k], ctx)) {
311           goto err;
312         }
313         if (r_is_at_infinity) {
314           if (!EC_POINT_copy(r, tmp)) {
315             goto err;
316           }
317           r_is_at_infinity = 0;
318         } else if (!EC_POINT_add(group, r, r, tmp, ctx)) {
319           goto err;
320         }
321       }
322     }
323 
324     if (p_scalar != NULL) {
325       if (p_wNAF[k] != 0) {
326         if (!lookup_precomp(group, tmp, p_precomp, p_wNAF[k], ctx)) {
327           goto err;
328         }
329         if (r_is_at_infinity) {
330           if (!EC_POINT_copy(r, tmp)) {
331             goto err;
332           }
333           r_is_at_infinity = 0;
334         } else if (!EC_POINT_add(group, r, r, tmp, ctx)) {
335           goto err;
336         }
337       }
338     }
339   }
340 
341   if (r_is_at_infinity &&
342       !EC_POINT_set_to_infinity(group, r)) {
343     goto err;
344   }
345 
346   ret = 1;
347 
348 err:
349   BN_CTX_free(new_ctx);
350   EC_POINT_free(tmp);
351   OPENSSL_cleanse(&g_wNAF, sizeof(g_wNAF));
352   OPENSSL_cleanse(&p_wNAF, sizeof(p_wNAF));
353   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(precomp_storage); i++) {
354     EC_POINT_free(precomp_storage[i]);
355   }
356   return ret;
357 }
358