1 //===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Mips implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsInstrInfo.h"
15 #include "InstPrinter/MipsInstPrinter.h"
16 #include "MipsMachineFunction.h"
17 #include "MipsSubtarget.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TargetRegistry.h"
23
24 using namespace llvm;
25
26 #define GET_INSTRINFO_CTOR_DTOR
27 #include "MipsGenInstrInfo.inc"
28
29 // Pin the vtable to this file.
anchor()30 void MipsInstrInfo::anchor() {}
31
MipsInstrInfo(const MipsSubtarget & STI,unsigned UncondBr)32 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr)
33 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
34 Subtarget(STI), UncondBrOpc(UncondBr) {}
35
create(MipsSubtarget & STI)36 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) {
37 if (STI.inMips16Mode())
38 return llvm::createMips16InstrInfo(STI);
39
40 return llvm::createMipsSEInstrInfo(STI);
41 }
42
isZeroImm(const MachineOperand & op) const43 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const {
44 return op.isImm() && op.getImm() == 0;
45 }
46
47 /// insertNoop - If data hazard condition is found insert the target nop
48 /// instruction.
49 // FIXME: This appears to be dead code.
50 void MipsInstrInfo::
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const51 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
52 {
53 DebugLoc DL;
54 BuildMI(MBB, MI, DL, get(Mips::NOP));
55 }
56
GetMemOperand(MachineBasicBlock & MBB,int FI,unsigned Flag) const57 MachineMemOperand *MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI,
58 unsigned Flag) const {
59 MachineFunction &MF = *MBB.getParent();
60 MachineFrameInfo &MFI = *MF.getFrameInfo();
61 unsigned Align = MFI.getObjectAlignment(FI);
62
63 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
64 Flag, MFI.getObjectSize(FI), Align);
65 }
66
67 //===----------------------------------------------------------------------===//
68 // Branch Analysis
69 //===----------------------------------------------------------------------===//
70
AnalyzeCondBr(const MachineInstr * Inst,unsigned Opc,MachineBasicBlock * & BB,SmallVectorImpl<MachineOperand> & Cond) const71 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
72 MachineBasicBlock *&BB,
73 SmallVectorImpl<MachineOperand> &Cond) const {
74 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
75 int NumOp = Inst->getNumExplicitOperands();
76
77 // for both int and fp branches, the last explicit operand is the
78 // MBB.
79 BB = Inst->getOperand(NumOp-1).getMBB();
80 Cond.push_back(MachineOperand::CreateImm(Opc));
81
82 for (int i=0; i<NumOp-1; i++)
83 Cond.push_back(Inst->getOperand(i));
84 }
85
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const86 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
87 MachineBasicBlock *&TBB,
88 MachineBasicBlock *&FBB,
89 SmallVectorImpl<MachineOperand> &Cond,
90 bool AllowModify) const {
91 SmallVector<MachineInstr*, 2> BranchInstrs;
92 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);
93
94 return (BT == BT_None) || (BT == BT_Indirect);
95 }
96
BuildCondBr(MachineBasicBlock & MBB,MachineBasicBlock * TBB,const DebugLoc & DL,ArrayRef<MachineOperand> Cond) const97 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
98 const DebugLoc &DL,
99 ArrayRef<MachineOperand> Cond) const {
100 unsigned Opc = Cond[0].getImm();
101 const MCInstrDesc &MCID = get(Opc);
102 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);
103
104 for (unsigned i = 1; i < Cond.size(); ++i) {
105 if (Cond[i].isReg())
106 MIB.addReg(Cond[i].getReg());
107 else if (Cond[i].isImm())
108 MIB.addImm(Cond[i].getImm());
109 else
110 assert(false && "Cannot copy operand");
111 }
112 MIB.addMBB(TBB);
113 }
114
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL) const115 unsigned MipsInstrInfo::InsertBranch(MachineBasicBlock &MBB,
116 MachineBasicBlock *TBB,
117 MachineBasicBlock *FBB,
118 ArrayRef<MachineOperand> Cond,
119 const DebugLoc &DL) const {
120 // Shouldn't be a fall through.
121 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
122
123 // # of condition operands:
124 // Unconditional branches: 0
125 // Floating point branches: 1 (opc)
126 // Int BranchZero: 2 (opc, reg)
127 // Int Branch: 3 (opc, reg0, reg1)
128 assert((Cond.size() <= 3) &&
129 "# of Mips branch conditions must be <= 3!");
130
131 // Two-way Conditional branch.
132 if (FBB) {
133 BuildCondBr(MBB, TBB, DL, Cond);
134 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB);
135 return 2;
136 }
137
138 // One way branch.
139 // Unconditional branch.
140 if (Cond.empty())
141 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB);
142 else // Conditional branch.
143 BuildCondBr(MBB, TBB, DL, Cond);
144 return 1;
145 }
146
RemoveBranch(MachineBasicBlock & MBB) const147 unsigned MipsInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
148 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
149 MachineBasicBlock::reverse_iterator FirstBr;
150 unsigned removed;
151
152 // Skip all the debug instructions.
153 while (I != REnd && I->isDebugValue())
154 ++I;
155
156 FirstBr = I;
157
158 // Up to 2 branches are removed.
159 // Note that indirect branches are not removed.
160 for (removed = 0; I != REnd && removed < 2; ++I, ++removed)
161 if (!getAnalyzableBrOpc(I->getOpcode()))
162 break;
163
164 MBB.erase(I.base(), FirstBr.base());
165
166 return removed;
167 }
168
169 /// ReverseBranchCondition - Return the inverse opcode of the
170 /// specified Branch instruction.
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const171 bool MipsInstrInfo::ReverseBranchCondition(
172 SmallVectorImpl<MachineOperand> &Cond) const {
173 assert( (Cond.size() && Cond.size() <= 3) &&
174 "Invalid Mips branch condition!");
175 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm()));
176 return false;
177 }
178
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify,SmallVectorImpl<MachineInstr * > & BranchInstrs) const179 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch(
180 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
181 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify,
182 SmallVectorImpl<MachineInstr *> &BranchInstrs) const {
183
184 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
185
186 // Skip all the debug instructions.
187 while (I != REnd && I->isDebugValue())
188 ++I;
189
190 if (I == REnd || !isUnpredicatedTerminator(*I)) {
191 // This block ends with no branches (it just falls through to its succ).
192 // Leave TBB/FBB null.
193 TBB = FBB = nullptr;
194 return BT_NoBranch;
195 }
196
197 MachineInstr *LastInst = &*I;
198 unsigned LastOpc = LastInst->getOpcode();
199 BranchInstrs.push_back(LastInst);
200
201 // Not an analyzable branch (e.g., indirect jump).
202 if (!getAnalyzableBrOpc(LastOpc))
203 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;
204
205 // Get the second to last instruction in the block.
206 unsigned SecondLastOpc = 0;
207 MachineInstr *SecondLastInst = nullptr;
208
209 if (++I != REnd) {
210 SecondLastInst = &*I;
211 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode());
212
213 // Not an analyzable branch (must be an indirect jump).
214 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc)
215 return BT_None;
216 }
217
218 // If there is only one terminator instruction, process it.
219 if (!SecondLastOpc) {
220 // Unconditional branch.
221 if (LastInst->isUnconditionalBranch()) {
222 TBB = LastInst->getOperand(0).getMBB();
223 return BT_Uncond;
224 }
225
226 // Conditional branch
227 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
228 return BT_Cond;
229 }
230
231 // If we reached here, there are two branches.
232 // If there are three terminators, we don't know what sort of block this is.
233 if (++I != REnd && isUnpredicatedTerminator(*I))
234 return BT_None;
235
236 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst);
237
238 // If second to last instruction is an unconditional branch,
239 // analyze it and remove the last instruction.
240 if (SecondLastInst->isUnconditionalBranch()) {
241 // Return if the last instruction cannot be removed.
242 if (!AllowModify)
243 return BT_None;
244
245 TBB = SecondLastInst->getOperand(0).getMBB();
246 LastInst->eraseFromParent();
247 BranchInstrs.pop_back();
248 return BT_Uncond;
249 }
250
251 // Conditional branch followed by an unconditional branch.
252 // The last one must be unconditional.
253 if (!LastInst->isUnconditionalBranch())
254 return BT_None;
255
256 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
257 FBB = LastInst->getOperand(0).getMBB();
258
259 return BT_CondUncond;
260 }
261
262 /// Return the corresponding compact (no delay slot) form of a branch.
getEquivalentCompactForm(const MachineBasicBlock::iterator I) const263 unsigned MipsInstrInfo::getEquivalentCompactForm(
264 const MachineBasicBlock::iterator I) const {
265 unsigned Opcode = I->getOpcode();
266 bool canUseShortMicroMipsCTI = false;
267
268 if (Subtarget.inMicroMipsMode()) {
269 switch (Opcode) {
270 case Mips::BNE:
271 case Mips::BEQ:
272 // microMIPS has NE,EQ branches that do not have delay slots provided one
273 // of the operands is zero.
274 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg())
275 canUseShortMicroMipsCTI = true;
276 break;
277 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always
278 // expanded to JR_MM, so they can be replaced with JRC16_MM.
279 case Mips::JR:
280 case Mips::PseudoReturn:
281 case Mips::PseudoIndirectBranch:
282 canUseShortMicroMipsCTI = true;
283 break;
284 }
285 }
286
287 // MIPSR6 forbids both operands being the zero register.
288 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) &&
289 (I->getOperand(0).isReg() &&
290 (I->getOperand(0).getReg() == Mips::ZERO ||
291 I->getOperand(0).getReg() == Mips::ZERO_64)) &&
292 (I->getOperand(1).isReg() &&
293 (I->getOperand(1).getReg() == Mips::ZERO ||
294 I->getOperand(1).getReg() == Mips::ZERO_64)))
295 return 0;
296
297 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) {
298 switch (Opcode) {
299 case Mips::B:
300 return Mips::BC;
301 case Mips::BAL:
302 return Mips::BALC;
303 case Mips::BEQ:
304 if (canUseShortMicroMipsCTI)
305 return Mips::BEQZC_MM;
306 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
307 return 0;
308 return Mips::BEQC;
309 case Mips::BNE:
310 if (canUseShortMicroMipsCTI)
311 return Mips::BNEZC_MM;
312 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
313 return 0;
314 return Mips::BNEC;
315 case Mips::BGE:
316 if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
317 return 0;
318 return Mips::BGEC;
319 case Mips::BGEU:
320 if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
321 return 0;
322 return Mips::BGEUC;
323 case Mips::BGEZ:
324 return Mips::BGEZC;
325 case Mips::BGTZ:
326 return Mips::BGTZC;
327 case Mips::BLEZ:
328 return Mips::BLEZC;
329 case Mips::BLT:
330 if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
331 return 0;
332 return Mips::BLTC;
333 case Mips::BLTU:
334 if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
335 return 0;
336 return Mips::BLTUC;
337 case Mips::BLTZ:
338 return Mips::BLTZC;
339 // For MIPSR6, the instruction 'jic' can be used for these cases. Some
340 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'.
341 case Mips::JR:
342 case Mips::PseudoReturn:
343 case Mips::PseudoIndirectBranch:
344 if (canUseShortMicroMipsCTI)
345 return Mips::JRC16_MM;
346 return Mips::JIC;
347 case Mips::JALRPseudo:
348 return Mips::JIALC;
349 case Mips::JR64:
350 case Mips::PseudoReturn64:
351 case Mips::PseudoIndirectBranch64:
352 return Mips::JIC64;
353 case Mips::JALR64Pseudo:
354 return Mips::JIALC64;
355 default:
356 return 0;
357 }
358 }
359
360 return 0;
361 }
362
363 /// Predicate for distingushing between control transfer instructions and all
364 /// other instructions for handling forbidden slots. Consider inline assembly
365 /// as unsafe as well.
SafeInForbiddenSlot(const MachineInstr & MI) const366 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const {
367 if (MI.isInlineAsm())
368 return false;
369
370 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0;
371
372 }
373
374 /// Predicate for distingushing instructions that have forbidden slots.
HasForbiddenSlot(const MachineInstr & MI) const375 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const {
376 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0;
377 }
378
379 /// Return the number of bytes of code the specified instruction may be.
GetInstSizeInBytes(const MachineInstr & MI) const380 unsigned MipsInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
381 switch (MI.getOpcode()) {
382 default:
383 return MI.getDesc().getSize();
384 case TargetOpcode::INLINEASM: { // Inline Asm: Variable size.
385 const MachineFunction *MF = MI.getParent()->getParent();
386 const char *AsmStr = MI.getOperand(0).getSymbolName();
387 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
388 }
389 case Mips::CONSTPOOL_ENTRY:
390 // If this machine instr is a constant pool entry, its size is recorded as
391 // operand #2.
392 return MI.getOperand(2).getImm();
393 }
394 }
395
396 MachineInstrBuilder
genInstrWithNewOpc(unsigned NewOpc,MachineBasicBlock::iterator I) const397 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc,
398 MachineBasicBlock::iterator I) const {
399 MachineInstrBuilder MIB;
400
401 // Certain branches have two forms: e.g beq $1, $zero, dst vs beqz $1, dest
402 // Pick the zero form of the branch for readable assembly and for greater
403 // branch distance in non-microMIPS mode.
404 // FIXME: Certain atomic sequences on mips64 generate 32bit references to
405 // Mips::ZERO, which is incorrect. This test should be updated to use
406 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others
407 // are fixed.
408 bool BranchWithZeroOperand =
409 (I->isBranch() && !I->isPseudo() && I->getOperand(1).isReg() &&
410 (I->getOperand(1).getReg() == Mips::ZERO ||
411 I->getOperand(1).getReg() == Mips::ZERO_64));
412
413 if (BranchWithZeroOperand) {
414 switch (NewOpc) {
415 case Mips::BEQC:
416 NewOpc = Mips::BEQZC;
417 break;
418 case Mips::BNEC:
419 NewOpc = Mips::BNEZC;
420 break;
421 case Mips::BGEC:
422 NewOpc = Mips::BGEZC;
423 break;
424 case Mips::BLTC:
425 NewOpc = Mips::BLTZC;
426 break;
427 }
428 }
429
430 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc));
431
432 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an
433 // immediate 0 as an operand and requires the removal of it's %RA<imp-def>
434 // implicit operand as copying the implicit operations of the instructio we're
435 // looking at will give us the correct flags.
436 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 ||
437 NewOpc == Mips::JIALC64) {
438
439 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64)
440 MIB->RemoveOperand(0);
441
442 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
443 MIB.addOperand(I->getOperand(J));
444 }
445
446 MIB.addImm(0);
447
448 } else if (BranchWithZeroOperand) {
449 // For MIPSR6 and microMIPS branches with an explicit zero operand, copy
450 // everything after the zero.
451 MIB.addOperand(I->getOperand(0));
452
453 for (unsigned J = 2, E = I->getDesc().getNumOperands(); J < E; ++J) {
454 MIB.addOperand(I->getOperand(J));
455 }
456 } else {
457 // All other cases copy all other operands.
458 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
459 MIB.addOperand(I->getOperand(J));
460 }
461 }
462
463 MIB.copyImplicitOps(*I);
464
465 MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end());
466 return MIB;
467 }
468