• Home
Name
Date
Size
#Lines
LOC

..--

BUILDD03-May-20243.4 KiB167147

README.mdD03-May-20242.1 KiB3524

boston.pyD03-May-20242.5 KiB7236

examples_test.shD03-May-20241.5 KiB5934

hdf5_classification.pyD03-May-20242.8 KiB8245

iris.pyD03-May-20243.9 KiB11766

iris_custom_decay_dnn.pyD03-May-20243.5 KiB10157

iris_custom_model.pyD03-May-20243.4 KiB9854

iris_run_config.pyD03-May-20242.5 KiB7235

mnist.pyD03-May-20244.6 KiB13483

multiple_gpu.pyD03-May-20243.9 KiB11768

random_forest_mnist.pyD03-May-20244 KiB138105

resnet.pyD03-May-20246.2 KiB201130

text_classification.pyD03-May-20246.4 KiB181111

text_classification_character_cnn.pyD03-May-20245.3 KiB161110

text_classification_character_rnn.pyD03-May-20243.9 KiB12381

text_classification_cnn.pyD03-May-20245.1 KiB154104

README.md

1# Estimator Examples
2
3TensorFlow Estimators are a high-level API for TensorFlow that allows you to
4create, train, and use deep learning models easily.
5
6See the [Quickstart tutorial](https://www.tensorflow.org/get_started/estimator)
7for an introduction to the API.
8
9To run most of these examples, you need to install the `scikit learn` library
10(`pip install -U scikit-learn`). Some examples use the `pandas` library for data
11processing (`pip install -U pandas`).
12
13## Basics
14
15* [Deep Neural Network Regression with Boston Data](https://www.tensorflow.org/code/tensorflow/examples/learn/boston.py)
16* [Deep Neural Network Classification with Iris Data](https://www.tensorflow.org/code/tensorflow/examples/learn/iris.py)
17* [Building a Custom Model](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_custom_model.py)
18* [Building a Model Using Different GPU Configurations](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_run_config.py)
19
20## Techniques
21
22* [Deep Neural Network with Customized Decay Function](https://www.tensorflow.org/code/tensorflow/examples/learn/iris_custom_decay_dnn.py)
23
24## Specialized Models
25* [Building a Random Forest Model](https://www.tensorflow.org/code/tensorflow/examples/learn/random_forest_mnist.py)
26* [Building a Wide & Deep Model](https://github.com/tensorflow/models/tree/master/official/wide_deep/wide_deep.py)
27* [Building a Residual Network Model](https://www.tensorflow.org/code/tensorflow/examples/learn/resnet.py)
28
29## Text classification
30
31* [Text Classification Using Recurrent Neural Networks on Words](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification.py)
32* [Text Classification Using Convolutional Neural Networks on Words](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_cnn.py)
33* [Text Classification Using Recurrent Neural Networks on Characters](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_character_rnn.py)
34* [Text Classification Using Convolutional Neural Networks on Characters](https://www.tensorflow.org/code/tensorflow/examples/learn/text_classification_character_cnn.py)
35