1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2006-2008 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #ifndef EFX_BITFIELD_H 12 #define EFX_BITFIELD_H 13 14 /* 15 * Efx bitfield access 16 * 17 * Efx NICs make extensive use of bitfields up to 128 bits 18 * wide. Since there is no native 128-bit datatype on most systems, 19 * and since 64-bit datatypes are inefficient on 32-bit systems and 20 * vice versa, we wrap accesses in a way that uses the most efficient 21 * datatype. 22 * 23 * The NICs are PCI devices and therefore little-endian. Since most 24 * of the quantities that we deal with are DMAed to/from host memory, 25 * we define our datatypes (efx_oword_t, efx_qword_t and 26 * efx_dword_t) to be little-endian. 27 */ 28 29 /* Lowest bit numbers and widths */ 30 #define EFX_DUMMY_FIELD_LBN 0 31 #define EFX_DUMMY_FIELD_WIDTH 0 32 #define EFX_DWORD_0_LBN 0 33 #define EFX_DWORD_0_WIDTH 32 34 #define EFX_DWORD_1_LBN 32 35 #define EFX_DWORD_1_WIDTH 32 36 #define EFX_DWORD_2_LBN 64 37 #define EFX_DWORD_2_WIDTH 32 38 #define EFX_DWORD_3_LBN 96 39 #define EFX_DWORD_3_WIDTH 32 40 41 /* Specified attribute (e.g. LBN) of the specified field */ 42 #define EFX_VAL(field, attribute) field ## _ ## attribute 43 /* Low bit number of the specified field */ 44 #define EFX_LOW_BIT(field) EFX_VAL(field, LBN) 45 /* Bit width of the specified field */ 46 #define EFX_WIDTH(field) EFX_VAL(field, WIDTH) 47 /* High bit number of the specified field */ 48 #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1) 49 /* Mask equal in width to the specified field. 50 * 51 * For example, a field with width 5 would have a mask of 0x1f. 52 * 53 * The maximum width mask that can be generated is 64 bits. 54 */ 55 #define EFX_MASK64(width) \ 56 ((width) == 64 ? ~((u64) 0) : \ 57 (((((u64) 1) << (width))) - 1)) 58 59 /* Mask equal in width to the specified field. 60 * 61 * For example, a field with width 5 would have a mask of 0x1f. 62 * 63 * The maximum width mask that can be generated is 32 bits. Use 64 * EFX_MASK64 for higher width fields. 65 */ 66 #define EFX_MASK32(width) \ 67 ((width) == 32 ? ~((u32) 0) : \ 68 (((((u32) 1) << (width))) - 1)) 69 70 /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */ 71 typedef union efx_dword { 72 __le32 u32[1]; 73 } efx_dword_t; 74 75 /* A quadword (i.e. 8 byte) datatype - little-endian in HW */ 76 typedef union efx_qword { 77 __le64 u64[1]; 78 __le32 u32[2]; 79 efx_dword_t dword[2]; 80 } efx_qword_t; 81 82 /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */ 83 typedef union efx_oword { 84 __le64 u64[2]; 85 efx_qword_t qword[2]; 86 __le32 u32[4]; 87 efx_dword_t dword[4]; 88 } efx_oword_t; 89 90 /* Format string and value expanders for printk */ 91 #define EFX_DWORD_FMT "%08x" 92 #define EFX_QWORD_FMT "%08x:%08x" 93 #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x" 94 #define EFX_DWORD_VAL(dword) \ 95 ((unsigned int) le32_to_cpu((dword).u32[0])) 96 #define EFX_QWORD_VAL(qword) \ 97 ((unsigned int) le32_to_cpu((qword).u32[1])), \ 98 ((unsigned int) le32_to_cpu((qword).u32[0])) 99 #define EFX_OWORD_VAL(oword) \ 100 ((unsigned int) le32_to_cpu((oword).u32[3])), \ 101 ((unsigned int) le32_to_cpu((oword).u32[2])), \ 102 ((unsigned int) le32_to_cpu((oword).u32[1])), \ 103 ((unsigned int) le32_to_cpu((oword).u32[0])) 104 105 /* 106 * Extract bit field portion [low,high) from the native-endian element 107 * which contains bits [min,max). 108 * 109 * For example, suppose "element" represents the high 32 bits of a 110 * 64-bit value, and we wish to extract the bits belonging to the bit 111 * field occupying bits 28-45 of this 64-bit value. 112 * 113 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give 114 * 115 * ( element ) << 4 116 * 117 * The result will contain the relevant bits filled in in the range 118 * [0,high-low), with garbage in bits [high-low+1,...). 119 */ 120 #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \ 121 (((low > max) || (high < min)) ? 0 : \ 122 ((low > min) ? \ 123 ((native_element) >> (low - min)) : \ 124 ((native_element) << (min - low)))) 125 126 /* 127 * Extract bit field portion [low,high) from the 64-bit little-endian 128 * element which contains bits [min,max) 129 */ 130 #define EFX_EXTRACT64(element, min, max, low, high) \ 131 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high) 132 133 /* 134 * Extract bit field portion [low,high) from the 32-bit little-endian 135 * element which contains bits [min,max) 136 */ 137 #define EFX_EXTRACT32(element, min, max, low, high) \ 138 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high) 139 140 #define EFX_EXTRACT_OWORD64(oword, low, high) \ 141 ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \ 142 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \ 143 EFX_MASK64(high + 1 - low)) 144 145 #define EFX_EXTRACT_QWORD64(qword, low, high) \ 146 (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \ 147 EFX_MASK64(high + 1 - low)) 148 149 #define EFX_EXTRACT_OWORD32(oword, low, high) \ 150 ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \ 151 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \ 152 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \ 153 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \ 154 EFX_MASK32(high + 1 - low)) 155 156 #define EFX_EXTRACT_QWORD32(qword, low, high) \ 157 ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \ 158 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \ 159 EFX_MASK32(high + 1 - low)) 160 161 #define EFX_EXTRACT_DWORD(dword, low, high) \ 162 (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \ 163 EFX_MASK32(high + 1 - low)) 164 165 #define EFX_OWORD_FIELD64(oword, field) \ 166 EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \ 167 EFX_HIGH_BIT(field)) 168 169 #define EFX_QWORD_FIELD64(qword, field) \ 170 EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \ 171 EFX_HIGH_BIT(field)) 172 173 #define EFX_OWORD_FIELD32(oword, field) \ 174 EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \ 175 EFX_HIGH_BIT(field)) 176 177 #define EFX_QWORD_FIELD32(qword, field) \ 178 EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \ 179 EFX_HIGH_BIT(field)) 180 181 #define EFX_DWORD_FIELD(dword, field) \ 182 EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \ 183 EFX_HIGH_BIT(field)) 184 185 #define EFX_OWORD_IS_ZERO64(oword) \ 186 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0) 187 188 #define EFX_QWORD_IS_ZERO64(qword) \ 189 (((qword).u64[0]) == (__force __le64) 0) 190 191 #define EFX_OWORD_IS_ZERO32(oword) \ 192 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \ 193 == (__force __le32) 0) 194 195 #define EFX_QWORD_IS_ZERO32(qword) \ 196 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0) 197 198 #define EFX_DWORD_IS_ZERO(dword) \ 199 (((dword).u32[0]) == (__force __le32) 0) 200 201 #define EFX_OWORD_IS_ALL_ONES64(oword) \ 202 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0)) 203 204 #define EFX_QWORD_IS_ALL_ONES64(qword) \ 205 ((qword).u64[0] == ~((__force __le64) 0)) 206 207 #define EFX_OWORD_IS_ALL_ONES32(oword) \ 208 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \ 209 == ~((__force __le32) 0)) 210 211 #define EFX_QWORD_IS_ALL_ONES32(qword) \ 212 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0)) 213 214 #define EFX_DWORD_IS_ALL_ONES(dword) \ 215 ((dword).u32[0] == ~((__force __le32) 0)) 216 217 #if BITS_PER_LONG == 64 218 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64 219 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64 220 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64 221 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64 222 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64 223 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64 224 #else 225 #define EFX_OWORD_FIELD EFX_OWORD_FIELD32 226 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32 227 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32 228 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32 229 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32 230 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32 231 #endif 232 233 /* 234 * Construct bit field portion 235 * 236 * Creates the portion of the bit field [low,high) that lies within 237 * the range [min,max). 238 */ 239 #define EFX_INSERT_NATIVE64(min, max, low, high, value) \ 240 (((low > max) || (high < min)) ? 0 : \ 241 ((low > min) ? \ 242 (((u64) (value)) << (low - min)) : \ 243 (((u64) (value)) >> (min - low)))) 244 245 #define EFX_INSERT_NATIVE32(min, max, low, high, value) \ 246 (((low > max) || (high < min)) ? 0 : \ 247 ((low > min) ? \ 248 (((u32) (value)) << (low - min)) : \ 249 (((u32) (value)) >> (min - low)))) 250 251 #define EFX_INSERT_NATIVE(min, max, low, high, value) \ 252 ((((max - min) >= 32) || ((high - low) >= 32)) ? \ 253 EFX_INSERT_NATIVE64(min, max, low, high, value) : \ 254 EFX_INSERT_NATIVE32(min, max, low, high, value)) 255 256 /* 257 * Construct bit field portion 258 * 259 * Creates the portion of the named bit field that lies within the 260 * range [min,max). 261 */ 262 #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \ 263 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \ 264 EFX_HIGH_BIT(field), value) 265 266 /* 267 * Construct bit field 268 * 269 * Creates the portion of the named bit fields that lie within the 270 * range [min,max). 271 */ 272 #define EFX_INSERT_FIELDS_NATIVE(min, max, \ 273 field1, value1, \ 274 field2, value2, \ 275 field3, value3, \ 276 field4, value4, \ 277 field5, value5, \ 278 field6, value6, \ 279 field7, value7, \ 280 field8, value8, \ 281 field9, value9, \ 282 field10, value10) \ 283 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \ 284 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \ 285 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \ 286 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \ 287 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \ 288 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \ 289 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \ 290 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \ 291 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \ 292 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10))) 293 294 #define EFX_INSERT_FIELDS64(...) \ 295 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) 296 297 #define EFX_INSERT_FIELDS32(...) \ 298 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) 299 300 #define EFX_POPULATE_OWORD64(oword, ...) do { \ 301 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ 302 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \ 303 } while (0) 304 305 #define EFX_POPULATE_QWORD64(qword, ...) do { \ 306 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ 307 } while (0) 308 309 #define EFX_POPULATE_OWORD32(oword, ...) do { \ 310 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 311 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ 312 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \ 313 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \ 314 } while (0) 315 316 #define EFX_POPULATE_QWORD32(qword, ...) do { \ 317 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 318 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ 319 } while (0) 320 321 #define EFX_POPULATE_DWORD(dword, ...) do { \ 322 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ 323 } while (0) 324 325 #if BITS_PER_LONG == 64 326 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64 327 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64 328 #else 329 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32 330 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32 331 #endif 332 333 /* Populate an octword field with various numbers of arguments */ 334 #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD 335 #define EFX_POPULATE_OWORD_9(oword, ...) \ 336 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 337 #define EFX_POPULATE_OWORD_8(oword, ...) \ 338 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 339 #define EFX_POPULATE_OWORD_7(oword, ...) \ 340 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 341 #define EFX_POPULATE_OWORD_6(oword, ...) \ 342 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 343 #define EFX_POPULATE_OWORD_5(oword, ...) \ 344 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 345 #define EFX_POPULATE_OWORD_4(oword, ...) \ 346 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 347 #define EFX_POPULATE_OWORD_3(oword, ...) \ 348 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 349 #define EFX_POPULATE_OWORD_2(oword, ...) \ 350 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 351 #define EFX_POPULATE_OWORD_1(oword, ...) \ 352 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 353 #define EFX_ZERO_OWORD(oword) \ 354 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0) 355 #define EFX_SET_OWORD(oword) \ 356 EFX_POPULATE_OWORD_4(oword, \ 357 EFX_DWORD_0, 0xffffffff, \ 358 EFX_DWORD_1, 0xffffffff, \ 359 EFX_DWORD_2, 0xffffffff, \ 360 EFX_DWORD_3, 0xffffffff) 361 362 /* Populate a quadword field with various numbers of arguments */ 363 #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD 364 #define EFX_POPULATE_QWORD_9(qword, ...) \ 365 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 366 #define EFX_POPULATE_QWORD_8(qword, ...) \ 367 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 368 #define EFX_POPULATE_QWORD_7(qword, ...) \ 369 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 370 #define EFX_POPULATE_QWORD_6(qword, ...) \ 371 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 372 #define EFX_POPULATE_QWORD_5(qword, ...) \ 373 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 374 #define EFX_POPULATE_QWORD_4(qword, ...) \ 375 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 376 #define EFX_POPULATE_QWORD_3(qword, ...) \ 377 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 378 #define EFX_POPULATE_QWORD_2(qword, ...) \ 379 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 380 #define EFX_POPULATE_QWORD_1(qword, ...) \ 381 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 382 #define EFX_ZERO_QWORD(qword) \ 383 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0) 384 #define EFX_SET_QWORD(qword) \ 385 EFX_POPULATE_QWORD_2(qword, \ 386 EFX_DWORD_0, 0xffffffff, \ 387 EFX_DWORD_1, 0xffffffff) 388 389 /* Populate a dword field with various numbers of arguments */ 390 #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD 391 #define EFX_POPULATE_DWORD_9(dword, ...) \ 392 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 393 #define EFX_POPULATE_DWORD_8(dword, ...) \ 394 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 395 #define EFX_POPULATE_DWORD_7(dword, ...) \ 396 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 397 #define EFX_POPULATE_DWORD_6(dword, ...) \ 398 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 399 #define EFX_POPULATE_DWORD_5(dword, ...) \ 400 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 401 #define EFX_POPULATE_DWORD_4(dword, ...) \ 402 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 403 #define EFX_POPULATE_DWORD_3(dword, ...) \ 404 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 405 #define EFX_POPULATE_DWORD_2(dword, ...) \ 406 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 407 #define EFX_POPULATE_DWORD_1(dword, ...) \ 408 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) 409 #define EFX_ZERO_DWORD(dword) \ 410 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0) 411 #define EFX_SET_DWORD(dword) \ 412 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff) 413 414 /* 415 * Modify a named field within an already-populated structure. Used 416 * for read-modify-write operations. 417 * 418 */ 419 #define EFX_INVERT_OWORD(oword) do { \ 420 (oword).u64[0] = ~((oword).u64[0]); \ 421 (oword).u64[1] = ~((oword).u64[1]); \ 422 } while (0) 423 424 #define EFX_AND_OWORD(oword, from, mask) \ 425 do { \ 426 (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \ 427 (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \ 428 } while (0) 429 430 #define EFX_OR_OWORD(oword, from, mask) \ 431 do { \ 432 (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \ 433 (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \ 434 } while (0) 435 436 #define EFX_INSERT64(min, max, low, high, value) \ 437 cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value)) 438 439 #define EFX_INSERT32(min, max, low, high, value) \ 440 cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value)) 441 442 #define EFX_INPLACE_MASK64(min, max, low, high) \ 443 EFX_INSERT64(min, max, low, high, EFX_MASK64(high + 1 - low)) 444 445 #define EFX_INPLACE_MASK32(min, max, low, high) \ 446 EFX_INSERT32(min, max, low, high, EFX_MASK32(high + 1 - low)) 447 448 #define EFX_SET_OWORD64(oword, low, high, value) do { \ 449 (oword).u64[0] = (((oword).u64[0] \ 450 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ 451 | EFX_INSERT64(0, 63, low, high, value)); \ 452 (oword).u64[1] = (((oword).u64[1] \ 453 & ~EFX_INPLACE_MASK64(64, 127, low, high)) \ 454 | EFX_INSERT64(64, 127, low, high, value)); \ 455 } while (0) 456 457 #define EFX_SET_QWORD64(qword, low, high, value) do { \ 458 (qword).u64[0] = (((qword).u64[0] \ 459 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ 460 | EFX_INSERT64(0, 63, low, high, value)); \ 461 } while (0) 462 463 #define EFX_SET_OWORD32(oword, low, high, value) do { \ 464 (oword).u32[0] = (((oword).u32[0] \ 465 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 466 | EFX_INSERT32(0, 31, low, high, value)); \ 467 (oword).u32[1] = (((oword).u32[1] \ 468 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ 469 | EFX_INSERT32(32, 63, low, high, value)); \ 470 (oword).u32[2] = (((oword).u32[2] \ 471 & ~EFX_INPLACE_MASK32(64, 95, low, high)) \ 472 | EFX_INSERT32(64, 95, low, high, value)); \ 473 (oword).u32[3] = (((oword).u32[3] \ 474 & ~EFX_INPLACE_MASK32(96, 127, low, high)) \ 475 | EFX_INSERT32(96, 127, low, high, value)); \ 476 } while (0) 477 478 #define EFX_SET_QWORD32(qword, low, high, value) do { \ 479 (qword).u32[0] = (((qword).u32[0] \ 480 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 481 | EFX_INSERT32(0, 31, low, high, value)); \ 482 (qword).u32[1] = (((qword).u32[1] \ 483 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ 484 | EFX_INSERT32(32, 63, low, high, value)); \ 485 } while (0) 486 487 #define EFX_SET_DWORD32(dword, low, high, value) do { \ 488 (dword).u32[0] = (((dword).u32[0] \ 489 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ 490 | EFX_INSERT32(0, 31, low, high, value)); \ 491 } while (0) 492 493 #define EFX_SET_OWORD_FIELD64(oword, field, value) \ 494 EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \ 495 EFX_HIGH_BIT(field), value) 496 497 #define EFX_SET_QWORD_FIELD64(qword, field, value) \ 498 EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \ 499 EFX_HIGH_BIT(field), value) 500 501 #define EFX_SET_OWORD_FIELD32(oword, field, value) \ 502 EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \ 503 EFX_HIGH_BIT(field), value) 504 505 #define EFX_SET_QWORD_FIELD32(qword, field, value) \ 506 EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \ 507 EFX_HIGH_BIT(field), value) 508 509 #define EFX_SET_DWORD_FIELD(dword, field, value) \ 510 EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \ 511 EFX_HIGH_BIT(field), value) 512 513 514 515 #if BITS_PER_LONG == 64 516 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64 517 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64 518 #else 519 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32 520 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32 521 #endif 522 523 #define EFX_SET_OWORD_FIELD_VER(efx, oword, field, value) do { \ 524 if (falcon_rev(efx) >= FALCON_REV_B0) { \ 525 EFX_SET_OWORD_FIELD((oword), field##_B0, (value)); \ 526 } else { \ 527 EFX_SET_OWORD_FIELD((oword), field##_A1, (value)); \ 528 } \ 529 } while (0) 530 531 #define EFX_QWORD_FIELD_VER(efx, qword, field) \ 532 (falcon_rev(efx) >= FALCON_REV_B0 ? \ 533 EFX_QWORD_FIELD((qword), field##_B0) : \ 534 EFX_QWORD_FIELD((qword), field##_A1)) 535 536 /* Used to avoid compiler warnings about shift range exceeding width 537 * of the data types when dma_addr_t is only 32 bits wide. 538 */ 539 #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t)) 540 #define EFX_DMA_TYPE_WIDTH(width) \ 541 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH) 542 543 544 /* Static initialiser */ 545 #define EFX_OWORD32(a, b, c, d) \ 546 { .u32 = { __constant_cpu_to_le32(a), __constant_cpu_to_le32(b), \ 547 __constant_cpu_to_le32(c), __constant_cpu_to_le32(d) } } 548 549 #endif /* EFX_BITFIELD_H */ 550