• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*---------------------------------------------------------------------------+
2  |  errors.c                                                                 |
3  |                                                                           |
4  |  The error handling functions for wm-FPU-emu                              |
5  |                                                                           |
6  | Copyright (C) 1992,1993,1994,1996                                         |
7  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
8  |                  E-mail   billm@jacobi.maths.monash.edu.au                |
9  |                                                                           |
10  |                                                                           |
11  +---------------------------------------------------------------------------*/
12 
13 /*---------------------------------------------------------------------------+
14  | Note:                                                                     |
15  |    The file contains code which accesses user memory.                     |
16  |    Emulator static data may change when user memory is accessed, due to   |
17  |    other processes using the emulator while swapping is in progress.      |
18  +---------------------------------------------------------------------------*/
19 
20 #include <linux/signal.h>
21 
22 #include <asm/uaccess.h>
23 
24 #include "fpu_emu.h"
25 #include "fpu_system.h"
26 #include "exception.h"
27 #include "status_w.h"
28 #include "control_w.h"
29 #include "reg_constant.h"
30 #include "version.h"
31 
32 /* */
33 #undef PRINT_MESSAGES
34 /* */
35 
36 #if 0
37 void Un_impl(void)
38 {
39 	u_char byte1, FPU_modrm;
40 	unsigned long address = FPU_ORIG_EIP;
41 
42 	RE_ENTRANT_CHECK_OFF;
43 	/* No need to check access_ok(), we have previously fetched these bytes. */
44 	printk("Unimplemented FPU Opcode at eip=%p : ", (void __user *)address);
45 	if (FPU_CS == __USER_CS) {
46 		while (1) {
47 			FPU_get_user(byte1, (u_char __user *) address);
48 			if ((byte1 & 0xf8) == 0xd8)
49 				break;
50 			printk("[%02x]", byte1);
51 			address++;
52 		}
53 		printk("%02x ", byte1);
54 		FPU_get_user(FPU_modrm, 1 + (u_char __user *) address);
55 
56 		if (FPU_modrm >= 0300)
57 			printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8,
58 			       FPU_modrm & 7);
59 		else
60 			printk("/%d\n", (FPU_modrm >> 3) & 7);
61 	} else {
62 		printk("cs selector = %04x\n", FPU_CS);
63 	}
64 
65 	RE_ENTRANT_CHECK_ON;
66 
67 	EXCEPTION(EX_Invalid);
68 
69 }
70 #endif /*  0  */
71 
72 /*
73    Called for opcodes which are illegal and which are known to result in a
74    SIGILL with a real 80486.
75    */
FPU_illegal(void)76 void FPU_illegal(void)
77 {
78 	math_abort(FPU_info, SIGILL);
79 }
80 
FPU_printall(void)81 void FPU_printall(void)
82 {
83 	int i;
84 	static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty",
85 		"DeNorm", "Inf", "NaN"
86 	};
87 	u_char byte1, FPU_modrm;
88 	unsigned long address = FPU_ORIG_EIP;
89 
90 	RE_ENTRANT_CHECK_OFF;
91 	/* No need to check access_ok(), we have previously fetched these bytes. */
92 	printk("At %p:", (void *)address);
93 	if (FPU_CS == __USER_CS) {
94 #define MAX_PRINTED_BYTES 20
95 		for (i = 0; i < MAX_PRINTED_BYTES; i++) {
96 			FPU_get_user(byte1, (u_char __user *) address);
97 			if ((byte1 & 0xf8) == 0xd8) {
98 				printk(" %02x", byte1);
99 				break;
100 			}
101 			printk(" [%02x]", byte1);
102 			address++;
103 		}
104 		if (i == MAX_PRINTED_BYTES)
105 			printk(" [more..]\n");
106 		else {
107 			FPU_get_user(FPU_modrm, 1 + (u_char __user *) address);
108 
109 			if (FPU_modrm >= 0300)
110 				printk(" %02x (%02x+%d)\n", FPU_modrm,
111 				       FPU_modrm & 0xf8, FPU_modrm & 7);
112 			else
113 				printk(" /%d, mod=%d rm=%d\n",
114 				       (FPU_modrm >> 3) & 7,
115 				       (FPU_modrm >> 6) & 3, FPU_modrm & 7);
116 		}
117 	} else {
118 		printk("%04x\n", FPU_CS);
119 	}
120 
121 	partial_status = status_word();
122 
123 #ifdef DEBUGGING
124 	if (partial_status & SW_Backward)
125 		printk("SW: backward compatibility\n");
126 	if (partial_status & SW_C3)
127 		printk("SW: condition bit 3\n");
128 	if (partial_status & SW_C2)
129 		printk("SW: condition bit 2\n");
130 	if (partial_status & SW_C1)
131 		printk("SW: condition bit 1\n");
132 	if (partial_status & SW_C0)
133 		printk("SW: condition bit 0\n");
134 	if (partial_status & SW_Summary)
135 		printk("SW: exception summary\n");
136 	if (partial_status & SW_Stack_Fault)
137 		printk("SW: stack fault\n");
138 	if (partial_status & SW_Precision)
139 		printk("SW: loss of precision\n");
140 	if (partial_status & SW_Underflow)
141 		printk("SW: underflow\n");
142 	if (partial_status & SW_Overflow)
143 		printk("SW: overflow\n");
144 	if (partial_status & SW_Zero_Div)
145 		printk("SW: divide by zero\n");
146 	if (partial_status & SW_Denorm_Op)
147 		printk("SW: denormalized operand\n");
148 	if (partial_status & SW_Invalid)
149 		printk("SW: invalid operation\n");
150 #endif /* DEBUGGING */
151 
152 	printk(" SW: b=%d st=%d es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n", partial_status & 0x8000 ? 1 : 0,	/* busy */
153 	       (partial_status & 0x3800) >> 11,	/* stack top pointer */
154 	       partial_status & 0x80 ? 1 : 0,	/* Error summary status */
155 	       partial_status & 0x40 ? 1 : 0,	/* Stack flag */
156 	       partial_status & SW_C3 ? 1 : 0, partial_status & SW_C2 ? 1 : 0,	/* cc */
157 	       partial_status & SW_C1 ? 1 : 0, partial_status & SW_C0 ? 1 : 0,	/* cc */
158 	       partial_status & SW_Precision ? 1 : 0,
159 	       partial_status & SW_Underflow ? 1 : 0,
160 	       partial_status & SW_Overflow ? 1 : 0,
161 	       partial_status & SW_Zero_Div ? 1 : 0,
162 	       partial_status & SW_Denorm_Op ? 1 : 0,
163 	       partial_status & SW_Invalid ? 1 : 0);
164 
165 	printk(" CW: ic=%d rc=%d%d pc=%d%d iem=%d     ef=%d%d%d%d%d%d\n",
166 	       control_word & 0x1000 ? 1 : 0,
167 	       (control_word & 0x800) >> 11, (control_word & 0x400) >> 10,
168 	       (control_word & 0x200) >> 9, (control_word & 0x100) >> 8,
169 	       control_word & 0x80 ? 1 : 0,
170 	       control_word & SW_Precision ? 1 : 0,
171 	       control_word & SW_Underflow ? 1 : 0,
172 	       control_word & SW_Overflow ? 1 : 0,
173 	       control_word & SW_Zero_Div ? 1 : 0,
174 	       control_word & SW_Denorm_Op ? 1 : 0,
175 	       control_word & SW_Invalid ? 1 : 0);
176 
177 	for (i = 0; i < 8; i++) {
178 		FPU_REG *r = &st(i);
179 		u_char tagi = FPU_gettagi(i);
180 		switch (tagi) {
181 		case TAG_Empty:
182 			continue;
183 			break;
184 		case TAG_Zero:
185 		case TAG_Special:
186 			tagi = FPU_Special(r);
187 		case TAG_Valid:
188 			printk("st(%d)  %c .%04lx %04lx %04lx %04lx e%+-6d ", i,
189 			       getsign(r) ? '-' : '+',
190 			       (long)(r->sigh >> 16),
191 			       (long)(r->sigh & 0xFFFF),
192 			       (long)(r->sigl >> 16),
193 			       (long)(r->sigl & 0xFFFF),
194 			       exponent(r) - EXP_BIAS + 1);
195 			break;
196 		default:
197 			printk("Whoops! Error in errors.c: tag%d is %d ", i,
198 			       tagi);
199 			continue;
200 			break;
201 		}
202 		printk("%s\n", tag_desc[(int)(unsigned)tagi]);
203 	}
204 
205 	RE_ENTRANT_CHECK_ON;
206 
207 }
208 
209 static struct {
210 	int type;
211 	const char *name;
212 } exception_names[] = {
213 	{
214 	EX_StackOver, "stack overflow"}, {
215 	EX_StackUnder, "stack underflow"}, {
216 	EX_Precision, "loss of precision"}, {
217 	EX_Underflow, "underflow"}, {
218 	EX_Overflow, "overflow"}, {
219 	EX_ZeroDiv, "divide by zero"}, {
220 	EX_Denormal, "denormalized operand"}, {
221 	EX_Invalid, "invalid operation"}, {
222 	EX_INTERNAL, "INTERNAL BUG in " FPU_VERSION}, {
223 	0, NULL}
224 };
225 
226 /*
227  EX_INTERNAL is always given with a code which indicates where the
228  error was detected.
229 
230  Internal error types:
231        0x14   in fpu_etc.c
232        0x1nn  in a *.c file:
233               0x101  in reg_add_sub.c
234               0x102  in reg_mul.c
235               0x104  in poly_atan.c
236               0x105  in reg_mul.c
237               0x107  in fpu_trig.c
238 	      0x108  in reg_compare.c
239 	      0x109  in reg_compare.c
240 	      0x110  in reg_add_sub.c
241 	      0x111  in fpe_entry.c
242 	      0x112  in fpu_trig.c
243 	      0x113  in errors.c
244 	      0x115  in fpu_trig.c
245 	      0x116  in fpu_trig.c
246 	      0x117  in fpu_trig.c
247 	      0x118  in fpu_trig.c
248 	      0x119  in fpu_trig.c
249 	      0x120  in poly_atan.c
250 	      0x121  in reg_compare.c
251 	      0x122  in reg_compare.c
252 	      0x123  in reg_compare.c
253 	      0x125  in fpu_trig.c
254 	      0x126  in fpu_entry.c
255 	      0x127  in poly_2xm1.c
256 	      0x128  in fpu_entry.c
257 	      0x129  in fpu_entry.c
258 	      0x130  in get_address.c
259 	      0x131  in get_address.c
260 	      0x132  in get_address.c
261 	      0x133  in get_address.c
262 	      0x140  in load_store.c
263 	      0x141  in load_store.c
264               0x150  in poly_sin.c
265               0x151  in poly_sin.c
266 	      0x160  in reg_ld_str.c
267 	      0x161  in reg_ld_str.c
268 	      0x162  in reg_ld_str.c
269 	      0x163  in reg_ld_str.c
270 	      0x164  in reg_ld_str.c
271 	      0x170  in fpu_tags.c
272 	      0x171  in fpu_tags.c
273 	      0x172  in fpu_tags.c
274 	      0x180  in reg_convert.c
275        0x2nn  in an *.S file:
276               0x201  in reg_u_add.S
277               0x202  in reg_u_div.S
278               0x203  in reg_u_div.S
279               0x204  in reg_u_div.S
280               0x205  in reg_u_mul.S
281               0x206  in reg_u_sub.S
282               0x207  in wm_sqrt.S
283 	      0x208  in reg_div.S
284               0x209  in reg_u_sub.S
285               0x210  in reg_u_sub.S
286               0x211  in reg_u_sub.S
287               0x212  in reg_u_sub.S
288 	      0x213  in wm_sqrt.S
289 	      0x214  in wm_sqrt.S
290 	      0x215  in wm_sqrt.S
291 	      0x220  in reg_norm.S
292 	      0x221  in reg_norm.S
293 	      0x230  in reg_round.S
294 	      0x231  in reg_round.S
295 	      0x232  in reg_round.S
296 	      0x233  in reg_round.S
297 	      0x234  in reg_round.S
298 	      0x235  in reg_round.S
299 	      0x236  in reg_round.S
300 	      0x240  in div_Xsig.S
301 	      0x241  in div_Xsig.S
302 	      0x242  in div_Xsig.S
303  */
304 
FPU_exception(int n)305 asmlinkage void FPU_exception(int n)
306 {
307 	int i, int_type;
308 
309 	int_type = 0;		/* Needed only to stop compiler warnings */
310 	if (n & EX_INTERNAL) {
311 		int_type = n - EX_INTERNAL;
312 		n = EX_INTERNAL;
313 		/* Set lots of exception bits! */
314 		partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward);
315 	} else {
316 		/* Extract only the bits which we use to set the status word */
317 		n &= (SW_Exc_Mask);
318 		/* Set the corresponding exception bit */
319 		partial_status |= n;
320 		/* Set summary bits iff exception isn't masked */
321 		if (partial_status & ~control_word & CW_Exceptions)
322 			partial_status |= (SW_Summary | SW_Backward);
323 		if (n & (SW_Stack_Fault | EX_Precision)) {
324 			if (!(n & SW_C1))
325 				/* This bit distinguishes over- from underflow for a stack fault,
326 				   and roundup from round-down for precision loss. */
327 				partial_status &= ~SW_C1;
328 		}
329 	}
330 
331 	RE_ENTRANT_CHECK_OFF;
332 	if ((~control_word & n & CW_Exceptions) || (n == EX_INTERNAL)) {
333 #ifdef PRINT_MESSAGES
334 		/* My message from the sponsor */
335 		printk(FPU_VERSION " " __DATE__ " (C) W. Metzenthen.\n");
336 #endif /* PRINT_MESSAGES */
337 
338 		/* Get a name string for error reporting */
339 		for (i = 0; exception_names[i].type; i++)
340 			if ((exception_names[i].type & n) ==
341 			    exception_names[i].type)
342 				break;
343 
344 		if (exception_names[i].type) {
345 #ifdef PRINT_MESSAGES
346 			printk("FP Exception: %s!\n", exception_names[i].name);
347 #endif /* PRINT_MESSAGES */
348 		} else
349 			printk("FPU emulator: Unknown Exception: 0x%04x!\n", n);
350 
351 		if (n == EX_INTERNAL) {
352 			printk("FPU emulator: Internal error type 0x%04x\n",
353 			       int_type);
354 			FPU_printall();
355 		}
356 #ifdef PRINT_MESSAGES
357 		else
358 			FPU_printall();
359 #endif /* PRINT_MESSAGES */
360 
361 		/*
362 		 * The 80486 generates an interrupt on the next non-control FPU
363 		 * instruction. So we need some means of flagging it.
364 		 * We use the ES (Error Summary) bit for this.
365 		 */
366 	}
367 	RE_ENTRANT_CHECK_ON;
368 
369 #ifdef __DEBUG__
370 	math_abort(FPU_info, SIGFPE);
371 #endif /* __DEBUG__ */
372 
373 }
374 
375 /* Real operation attempted on a NaN. */
376 /* Returns < 0 if the exception is unmasked */
real_1op_NaN(FPU_REG * a)377 int real_1op_NaN(FPU_REG *a)
378 {
379 	int signalling, isNaN;
380 
381 	isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000);
382 
383 	/* The default result for the case of two "equal" NaNs (signs may
384 	   differ) is chosen to reproduce 80486 behaviour */
385 	signalling = isNaN && !(a->sigh & 0x40000000);
386 
387 	if (!signalling) {
388 		if (!isNaN) {	/* pseudo-NaN, or other unsupported? */
389 			if (control_word & CW_Invalid) {
390 				/* Masked response */
391 				reg_copy(&CONST_QNaN, a);
392 			}
393 			EXCEPTION(EX_Invalid);
394 			return (!(control_word & CW_Invalid) ? FPU_Exception :
395 				0) | TAG_Special;
396 		}
397 		return TAG_Special;
398 	}
399 
400 	if (control_word & CW_Invalid) {
401 		/* The masked response */
402 		if (!(a->sigh & 0x80000000)) {	/* pseudo-NaN ? */
403 			reg_copy(&CONST_QNaN, a);
404 		}
405 		/* ensure a Quiet NaN */
406 		a->sigh |= 0x40000000;
407 	}
408 
409 	EXCEPTION(EX_Invalid);
410 
411 	return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
412 }
413 
414 /* Real operation attempted on two operands, one a NaN. */
415 /* Returns < 0 if the exception is unmasked */
real_2op_NaN(FPU_REG const * b,u_char tagb,int deststnr,FPU_REG const * defaultNaN)416 int real_2op_NaN(FPU_REG const *b, u_char tagb,
417 		 int deststnr, FPU_REG const *defaultNaN)
418 {
419 	FPU_REG *dest = &st(deststnr);
420 	FPU_REG const *a = dest;
421 	u_char taga = FPU_gettagi(deststnr);
422 	FPU_REG const *x;
423 	int signalling, unsupported;
424 
425 	if (taga == TAG_Special)
426 		taga = FPU_Special(a);
427 	if (tagb == TAG_Special)
428 		tagb = FPU_Special(b);
429 
430 	/* TW_NaN is also used for unsupported data types. */
431 	unsupported = ((taga == TW_NaN)
432 		       && !((exponent(a) == EXP_OVER)
433 			    && (a->sigh & 0x80000000)))
434 	    || ((tagb == TW_NaN)
435 		&& !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000)));
436 	if (unsupported) {
437 		if (control_word & CW_Invalid) {
438 			/* Masked response */
439 			FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
440 		}
441 		EXCEPTION(EX_Invalid);
442 		return (!(control_word & CW_Invalid) ? FPU_Exception : 0) |
443 		    TAG_Special;
444 	}
445 
446 	if (taga == TW_NaN) {
447 		x = a;
448 		if (tagb == TW_NaN) {
449 			signalling = !(a->sigh & b->sigh & 0x40000000);
450 			if (significand(b) > significand(a))
451 				x = b;
452 			else if (significand(b) == significand(a)) {
453 				/* The default result for the case of two "equal" NaNs (signs may
454 				   differ) is chosen to reproduce 80486 behaviour */
455 				x = defaultNaN;
456 			}
457 		} else {
458 			/* return the quiet version of the NaN in a */
459 			signalling = !(a->sigh & 0x40000000);
460 		}
461 	} else
462 #ifdef PARANOID
463 	if (tagb == TW_NaN)
464 #endif /* PARANOID */
465 	{
466 		signalling = !(b->sigh & 0x40000000);
467 		x = b;
468 	}
469 #ifdef PARANOID
470 	else {
471 		signalling = 0;
472 		EXCEPTION(EX_INTERNAL | 0x113);
473 		x = &CONST_QNaN;
474 	}
475 #endif /* PARANOID */
476 
477 	if ((!signalling) || (control_word & CW_Invalid)) {
478 		if (!x)
479 			x = b;
480 
481 		if (!(x->sigh & 0x80000000))	/* pseudo-NaN ? */
482 			x = &CONST_QNaN;
483 
484 		FPU_copy_to_regi(x, TAG_Special, deststnr);
485 
486 		if (!signalling)
487 			return TAG_Special;
488 
489 		/* ensure a Quiet NaN */
490 		dest->sigh |= 0x40000000;
491 	}
492 
493 	EXCEPTION(EX_Invalid);
494 
495 	return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
496 }
497 
498 /* Invalid arith operation on Valid registers */
499 /* Returns < 0 if the exception is unmasked */
arith_invalid(int deststnr)500 asmlinkage int arith_invalid(int deststnr)
501 {
502 
503 	EXCEPTION(EX_Invalid);
504 
505 	if (control_word & CW_Invalid) {
506 		/* The masked response */
507 		FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
508 	}
509 
510 	return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid;
511 
512 }
513 
514 /* Divide a finite number by zero */
FPU_divide_by_zero(int deststnr,u_char sign)515 asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign)
516 {
517 	FPU_REG *dest = &st(deststnr);
518 	int tag = TAG_Valid;
519 
520 	if (control_word & CW_ZeroDiv) {
521 		/* The masked response */
522 		FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr);
523 		setsign(dest, sign);
524 		tag = TAG_Special;
525 	}
526 
527 	EXCEPTION(EX_ZeroDiv);
528 
529 	return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag;
530 
531 }
532 
533 /* This may be called often, so keep it lean */
set_precision_flag(int flags)534 int set_precision_flag(int flags)
535 {
536 	if (control_word & CW_Precision) {
537 		partial_status &= ~(SW_C1 & flags);
538 		partial_status |= flags;	/* The masked response */
539 		return 0;
540 	} else {
541 		EXCEPTION(flags);
542 		return 1;
543 	}
544 }
545 
546 /* This may be called often, so keep it lean */
set_precision_flag_up(void)547 asmlinkage void set_precision_flag_up(void)
548 {
549 	if (control_word & CW_Precision)
550 		partial_status |= (SW_Precision | SW_C1);	/* The masked response */
551 	else
552 		EXCEPTION(EX_Precision | SW_C1);
553 }
554 
555 /* This may be called often, so keep it lean */
set_precision_flag_down(void)556 asmlinkage void set_precision_flag_down(void)
557 {
558 	if (control_word & CW_Precision) {	/* The masked response */
559 		partial_status &= ~SW_C1;
560 		partial_status |= SW_Precision;
561 	} else
562 		EXCEPTION(EX_Precision);
563 }
564 
denormal_operand(void)565 asmlinkage int denormal_operand(void)
566 {
567 	if (control_word & CW_Denormal) {	/* The masked response */
568 		partial_status |= SW_Denorm_Op;
569 		return TAG_Special;
570 	} else {
571 		EXCEPTION(EX_Denormal);
572 		return TAG_Special | FPU_Exception;
573 	}
574 }
575 
arith_overflow(FPU_REG * dest)576 asmlinkage int arith_overflow(FPU_REG *dest)
577 {
578 	int tag = TAG_Valid;
579 
580 	if (control_word & CW_Overflow) {
581 		/* The masked response */
582 /* ###### The response here depends upon the rounding mode */
583 		reg_copy(&CONST_INF, dest);
584 		tag = TAG_Special;
585 	} else {
586 		/* Subtract the magic number from the exponent */
587 		addexponent(dest, (-3 * (1 << 13)));
588 	}
589 
590 	EXCEPTION(EX_Overflow);
591 	if (control_word & CW_Overflow) {
592 		/* The overflow exception is masked. */
593 		/* By definition, precision is lost.
594 		   The roundup bit (C1) is also set because we have
595 		   "rounded" upwards to Infinity. */
596 		EXCEPTION(EX_Precision | SW_C1);
597 		return tag;
598 	}
599 
600 	return tag;
601 
602 }
603 
arith_underflow(FPU_REG * dest)604 asmlinkage int arith_underflow(FPU_REG *dest)
605 {
606 	int tag = TAG_Valid;
607 
608 	if (control_word & CW_Underflow) {
609 		/* The masked response */
610 		if (exponent16(dest) <= EXP_UNDER - 63) {
611 			reg_copy(&CONST_Z, dest);
612 			partial_status &= ~SW_C1;	/* Round down. */
613 			tag = TAG_Zero;
614 		} else {
615 			stdexp(dest);
616 		}
617 	} else {
618 		/* Add the magic number to the exponent. */
619 		addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias);
620 	}
621 
622 	EXCEPTION(EX_Underflow);
623 	if (control_word & CW_Underflow) {
624 		/* The underflow exception is masked. */
625 		EXCEPTION(EX_Precision);
626 		return tag;
627 	}
628 
629 	return tag;
630 
631 }
632 
FPU_stack_overflow(void)633 void FPU_stack_overflow(void)
634 {
635 
636 	if (control_word & CW_Invalid) {
637 		/* The masked response */
638 		top--;
639 		FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
640 	}
641 
642 	EXCEPTION(EX_StackOver);
643 
644 	return;
645 
646 }
647 
FPU_stack_underflow(void)648 void FPU_stack_underflow(void)
649 {
650 
651 	if (control_word & CW_Invalid) {
652 		/* The masked response */
653 		FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
654 	}
655 
656 	EXCEPTION(EX_StackUnder);
657 
658 	return;
659 
660 }
661 
FPU_stack_underflow_i(int i)662 void FPU_stack_underflow_i(int i)
663 {
664 
665 	if (control_word & CW_Invalid) {
666 		/* The masked response */
667 		FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
668 	}
669 
670 	EXCEPTION(EX_StackUnder);
671 
672 	return;
673 
674 }
675 
FPU_stack_underflow_pop(int i)676 void FPU_stack_underflow_pop(int i)
677 {
678 
679 	if (control_word & CW_Invalid) {
680 		/* The masked response */
681 		FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
682 		FPU_pop();
683 	}
684 
685 	EXCEPTION(EX_StackUnder);
686 
687 	return;
688 
689 }
690