• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file contains the routines for handling the MMU on those
3  * PowerPC implementations where the MMU substantially follows the
4  * architecture specification.  This includes the 6xx, 7xx, 7xxx,
5  * 8260, and POWER3 implementations but excludes the 8xx and 4xx.
6  *  -- paulus
7  *
8  *  Derived from arch/ppc/mm/init.c:
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
12  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
13  *    Copyright (C) 1996 Paul Mackerras
14  *
15  *  Derived from "arch/i386/mm/init.c"
16  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
17  *
18  *  This program is free software; you can redistribute it and/or
19  *  modify it under the terms of the GNU General Public License
20  *  as published by the Free Software Foundation; either version
21  *  2 of the License, or (at your option) any later version.
22  *
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/init.h>
28 #include <linux/highmem.h>
29 #include <linux/lmb.h>
30 
31 #include <asm/prom.h>
32 #include <asm/mmu.h>
33 #include <asm/machdep.h>
34 
35 #include "mmu_decl.h"
36 
37 struct hash_pte *Hash, *Hash_end;
38 unsigned long Hash_size, Hash_mask;
39 unsigned long _SDR1;
40 
41 struct ppc_bat BATS[8][2];	/* 8 pairs of IBAT, DBAT */
42 
43 struct batrange {		/* stores address ranges mapped by BATs */
44 	unsigned long start;
45 	unsigned long limit;
46 	phys_addr_t phys;
47 } bat_addrs[8];
48 
49 /*
50  * Return PA for this VA if it is mapped by a BAT, or 0
51  */
v_mapped_by_bats(unsigned long va)52 phys_addr_t v_mapped_by_bats(unsigned long va)
53 {
54 	int b;
55 	for (b = 0; b < 4; ++b)
56 		if (va >= bat_addrs[b].start && va < bat_addrs[b].limit)
57 			return bat_addrs[b].phys + (va - bat_addrs[b].start);
58 	return 0;
59 }
60 
61 /*
62  * Return VA for a given PA or 0 if not mapped
63  */
p_mapped_by_bats(phys_addr_t pa)64 unsigned long p_mapped_by_bats(phys_addr_t pa)
65 {
66 	int b;
67 	for (b = 0; b < 4; ++b)
68 		if (pa >= bat_addrs[b].phys
69 	    	    && pa < (bat_addrs[b].limit-bat_addrs[b].start)
70 		              +bat_addrs[b].phys)
71 			return bat_addrs[b].start+(pa-bat_addrs[b].phys);
72 	return 0;
73 }
74 
mmu_mapin_ram(void)75 unsigned long __init mmu_mapin_ram(void)
76 {
77 #ifdef CONFIG_POWER4
78 	return 0;
79 #else
80 	unsigned long tot, bl, done;
81 	unsigned long max_size = (256<<20);
82 
83 	if (__map_without_bats) {
84 		printk(KERN_DEBUG "RAM mapped without BATs\n");
85 		return 0;
86 	}
87 
88 	/* Set up BAT2 and if necessary BAT3 to cover RAM. */
89 
90 	/* Make sure we don't map a block larger than the
91 	   smallest alignment of the physical address. */
92 	tot = total_lowmem;
93 	for (bl = 128<<10; bl < max_size; bl <<= 1) {
94 		if (bl * 2 > tot)
95 			break;
96 	}
97 
98 	setbat(2, PAGE_OFFSET, 0, bl, _PAGE_RAM);
99 	done = (unsigned long)bat_addrs[2].limit - PAGE_OFFSET + 1;
100 	if ((done < tot) && !bat_addrs[3].limit) {
101 		/* use BAT3 to cover a bit more */
102 		tot -= done;
103 		for (bl = 128<<10; bl < max_size; bl <<= 1)
104 			if (bl * 2 > tot)
105 				break;
106 		setbat(3, PAGE_OFFSET+done, done, bl, _PAGE_RAM);
107 		done = (unsigned long)bat_addrs[3].limit - PAGE_OFFSET + 1;
108 	}
109 
110 	return done;
111 #endif
112 }
113 
114 /*
115  * Set up one of the I/D BAT (block address translation) register pairs.
116  * The parameters are not checked; in particular size must be a power
117  * of 2 between 128k and 256M.
118  */
setbat(int index,unsigned long virt,phys_addr_t phys,unsigned int size,int flags)119 void __init setbat(int index, unsigned long virt, phys_addr_t phys,
120 		   unsigned int size, int flags)
121 {
122 	unsigned int bl;
123 	int wimgxpp;
124 	struct ppc_bat *bat = BATS[index];
125 
126 	if ((flags & _PAGE_NO_CACHE) ||
127 	    (cpu_has_feature(CPU_FTR_NEED_COHERENT) == 0))
128 		flags &= ~_PAGE_COHERENT;
129 
130 	bl = (size >> 17) - 1;
131 	if (PVR_VER(mfspr(SPRN_PVR)) != 1) {
132 		/* 603, 604, etc. */
133 		/* Do DBAT first */
134 		wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
135 				   | _PAGE_COHERENT | _PAGE_GUARDED);
136 		wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX;
137 		bat[1].batu = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */
138 		bat[1].batl = BAT_PHYS_ADDR(phys) | wimgxpp;
139 #ifndef CONFIG_KGDB /* want user access for breakpoints */
140 		if (flags & _PAGE_USER)
141 #endif
142 			bat[1].batu |= 1; 	/* Vp = 1 */
143 		if (flags & _PAGE_GUARDED) {
144 			/* G bit must be zero in IBATs */
145 			bat[0].batu = bat[0].batl = 0;
146 		} else {
147 			/* make IBAT same as DBAT */
148 			bat[0] = bat[1];
149 		}
150 	} else {
151 		/* 601 cpu */
152 		if (bl > BL_8M)
153 			bl = BL_8M;
154 		wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
155 				   | _PAGE_COHERENT);
156 		wimgxpp |= (flags & _PAGE_RW)?
157 			((flags & _PAGE_USER)? PP_RWRW: PP_RWXX): PP_RXRX;
158 		bat->batu = virt | wimgxpp | 4;	/* Ks=0, Ku=1 */
159 		bat->batl = phys | bl | 0x40;	/* V=1 */
160 	}
161 
162 	bat_addrs[index].start = virt;
163 	bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1;
164 	bat_addrs[index].phys = phys;
165 }
166 
167 /*
168  * Preload a translation in the hash table
169  */
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)170 void hash_preload(struct mm_struct *mm, unsigned long ea,
171 		  unsigned long access, unsigned long trap)
172 {
173 	pmd_t *pmd;
174 
175 	if (Hash == 0)
176 		return;
177 	pmd = pmd_offset(pud_offset(pgd_offset(mm, ea), ea), ea);
178 	if (!pmd_none(*pmd))
179 		add_hash_page(mm->context.id, ea, pmd_val(*pmd));
180 }
181 
182 /*
183  * Initialize the hash table and patch the instructions in hashtable.S.
184  */
MMU_init_hw(void)185 void __init MMU_init_hw(void)
186 {
187 	unsigned int hmask, mb, mb2;
188 	unsigned int n_hpteg, lg_n_hpteg;
189 
190 	extern unsigned int hash_page_patch_A[];
191 	extern unsigned int hash_page_patch_B[], hash_page_patch_C[];
192 	extern unsigned int hash_page[];
193 	extern unsigned int flush_hash_patch_A[], flush_hash_patch_B[];
194 
195 	if (!mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
196 		/*
197 		 * Put a blr (procedure return) instruction at the
198 		 * start of hash_page, since we can still get DSI
199 		 * exceptions on a 603.
200 		 */
201 		hash_page[0] = 0x4e800020;
202 		flush_icache_range((unsigned long) &hash_page[0],
203 				   (unsigned long) &hash_page[1]);
204 		return;
205 	}
206 
207 	if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105);
208 
209 #define LG_HPTEG_SIZE	6		/* 64 bytes per HPTEG */
210 #define SDR1_LOW_BITS	((n_hpteg - 1) >> 10)
211 #define MIN_N_HPTEG	1024		/* min 64kB hash table */
212 
213 	/*
214 	 * Allow 1 HPTE (1/8 HPTEG) for each page of memory.
215 	 * This is less than the recommended amount, but then
216 	 * Linux ain't AIX.
217 	 */
218 	n_hpteg = total_memory / (PAGE_SIZE * 8);
219 	if (n_hpteg < MIN_N_HPTEG)
220 		n_hpteg = MIN_N_HPTEG;
221 	lg_n_hpteg = __ilog2(n_hpteg);
222 	if (n_hpteg & (n_hpteg - 1)) {
223 		++lg_n_hpteg;		/* round up if not power of 2 */
224 		n_hpteg = 1 << lg_n_hpteg;
225 	}
226 	Hash_size = n_hpteg << LG_HPTEG_SIZE;
227 
228 	/*
229 	 * Find some memory for the hash table.
230 	 */
231 	if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322);
232 	Hash = __va(lmb_alloc_base(Hash_size, Hash_size,
233 				   __initial_memory_limit_addr));
234 	cacheable_memzero(Hash, Hash_size);
235 	_SDR1 = __pa(Hash) | SDR1_LOW_BITS;
236 
237 	Hash_end = (struct hash_pte *) ((unsigned long)Hash + Hash_size);
238 
239 	printk("Total memory = %lldMB; using %ldkB for hash table (at %p)\n",
240 	       (unsigned long long)(total_memory >> 20), Hash_size >> 10, Hash);
241 
242 
243 	/*
244 	 * Patch up the instructions in hashtable.S:create_hpte
245 	 */
246 	if ( ppc_md.progress ) ppc_md.progress("hash:patch", 0x345);
247 	Hash_mask = n_hpteg - 1;
248 	hmask = Hash_mask >> (16 - LG_HPTEG_SIZE);
249 	mb2 = mb = 32 - LG_HPTEG_SIZE - lg_n_hpteg;
250 	if (lg_n_hpteg > 16)
251 		mb2 = 16 - LG_HPTEG_SIZE;
252 
253 	hash_page_patch_A[0] = (hash_page_patch_A[0] & ~0xffff)
254 		| ((unsigned int)(Hash) >> 16);
255 	hash_page_patch_A[1] = (hash_page_patch_A[1] & ~0x7c0) | (mb << 6);
256 	hash_page_patch_A[2] = (hash_page_patch_A[2] & ~0x7c0) | (mb2 << 6);
257 	hash_page_patch_B[0] = (hash_page_patch_B[0] & ~0xffff) | hmask;
258 	hash_page_patch_C[0] = (hash_page_patch_C[0] & ~0xffff) | hmask;
259 
260 	/*
261 	 * Ensure that the locations we've patched have been written
262 	 * out from the data cache and invalidated in the instruction
263 	 * cache, on those machines with split caches.
264 	 */
265 	flush_icache_range((unsigned long) &hash_page_patch_A[0],
266 			   (unsigned long) &hash_page_patch_C[1]);
267 
268 	/*
269 	 * Patch up the instructions in hashtable.S:flush_hash_page
270 	 */
271 	flush_hash_patch_A[0] = (flush_hash_patch_A[0] & ~0xffff)
272 		| ((unsigned int)(Hash) >> 16);
273 	flush_hash_patch_A[1] = (flush_hash_patch_A[1] & ~0x7c0) | (mb << 6);
274 	flush_hash_patch_A[2] = (flush_hash_patch_A[2] & ~0x7c0) | (mb2 << 6);
275 	flush_hash_patch_B[0] = (flush_hash_patch_B[0] & ~0xffff) | hmask;
276 	flush_icache_range((unsigned long) &flush_hash_patch_A[0],
277 			   (unsigned long) &flush_hash_patch_B[1]);
278 
279 	if ( ppc_md.progress ) ppc_md.progress("hash:done", 0x205);
280 }
281