1 /* align.c - handle alignment exceptions for the Power PC.
2 *
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 * PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 * PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 * 64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 * <benh@kernel.crashing.org>
12 * Merge ppc32 and ppc64 implementations
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <asm/uaccess.h>
24 #include <asm/system.h>
25 #include <asm/cache.h>
26 #include <asm/cputable.h>
27
28 struct aligninfo {
29 unsigned char len;
30 unsigned char flags;
31 };
32
33 #define IS_XFORM(inst) (((inst) >> 26) == 31)
34 #define IS_DSFORM(inst) (((inst) >> 26) >= 56)
35
36 #define INVALID { 0, 0 }
37
38 /* Bits in the flags field */
39 #define LD 0 /* load */
40 #define ST 1 /* store */
41 #define SE 2 /* sign-extend value, or FP ld/st as word */
42 #define F 4 /* to/from fp regs */
43 #define U 8 /* update index register */
44 #define M 0x10 /* multiple load/store */
45 #define SW 0x20 /* byte swap */
46 #define S 0x40 /* single-precision fp or... */
47 #define SX 0x40 /* ... byte count in XER */
48 #define HARD 0x80 /* string, stwcx. */
49 #define E4 0x40 /* SPE endianness is word */
50 #define E8 0x80 /* SPE endianness is double word */
51 #define SPLT 0x80 /* VSX SPLAT load */
52
53 /* DSISR bits reported for a DCBZ instruction: */
54 #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
55
56 #define SWAP(a, b) (t = (a), (a) = (b), (b) = t)
57
58 /*
59 * The PowerPC stores certain bits of the instruction that caused the
60 * alignment exception in the DSISR register. This array maps those
61 * bits to information about the operand length and what the
62 * instruction would do.
63 */
64 static struct aligninfo aligninfo[128] = {
65 { 4, LD }, /* 00 0 0000: lwz / lwarx */
66 INVALID, /* 00 0 0001 */
67 { 4, ST }, /* 00 0 0010: stw */
68 INVALID, /* 00 0 0011 */
69 { 2, LD }, /* 00 0 0100: lhz */
70 { 2, LD+SE }, /* 00 0 0101: lha */
71 { 2, ST }, /* 00 0 0110: sth */
72 { 4, LD+M }, /* 00 0 0111: lmw */
73 { 4, LD+F+S }, /* 00 0 1000: lfs */
74 { 8, LD+F }, /* 00 0 1001: lfd */
75 { 4, ST+F+S }, /* 00 0 1010: stfs */
76 { 8, ST+F }, /* 00 0 1011: stfd */
77 INVALID, /* 00 0 1100 */
78 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
79 INVALID, /* 00 0 1110 */
80 { 8, ST }, /* 00 0 1111: std/stdu */
81 { 4, LD+U }, /* 00 1 0000: lwzu */
82 INVALID, /* 00 1 0001 */
83 { 4, ST+U }, /* 00 1 0010: stwu */
84 INVALID, /* 00 1 0011 */
85 { 2, LD+U }, /* 00 1 0100: lhzu */
86 { 2, LD+SE+U }, /* 00 1 0101: lhau */
87 { 2, ST+U }, /* 00 1 0110: sthu */
88 { 4, ST+M }, /* 00 1 0111: stmw */
89 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
90 { 8, LD+F+U }, /* 00 1 1001: lfdu */
91 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
92 { 8, ST+F+U }, /* 00 1 1011: stfdu */
93 { 16, LD+F }, /* 00 1 1100: lfdp */
94 INVALID, /* 00 1 1101 */
95 { 16, ST+F }, /* 00 1 1110: stfdp */
96 INVALID, /* 00 1 1111 */
97 { 8, LD }, /* 01 0 0000: ldx */
98 INVALID, /* 01 0 0001 */
99 { 8, ST }, /* 01 0 0010: stdx */
100 INVALID, /* 01 0 0011 */
101 INVALID, /* 01 0 0100 */
102 { 4, LD+SE }, /* 01 0 0101: lwax */
103 INVALID, /* 01 0 0110 */
104 INVALID, /* 01 0 0111 */
105 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
106 { 4, LD+M+HARD }, /* 01 0 1001: lswi */
107 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
108 { 4, ST+M+HARD }, /* 01 0 1011: stswi */
109 INVALID, /* 01 0 1100 */
110 { 8, LD+U }, /* 01 0 1101: ldu */
111 INVALID, /* 01 0 1110 */
112 { 8, ST+U }, /* 01 0 1111: stdu */
113 { 8, LD+U }, /* 01 1 0000: ldux */
114 INVALID, /* 01 1 0001 */
115 { 8, ST+U }, /* 01 1 0010: stdux */
116 INVALID, /* 01 1 0011 */
117 INVALID, /* 01 1 0100 */
118 { 4, LD+SE+U }, /* 01 1 0101: lwaux */
119 INVALID, /* 01 1 0110 */
120 INVALID, /* 01 1 0111 */
121 INVALID, /* 01 1 1000 */
122 INVALID, /* 01 1 1001 */
123 INVALID, /* 01 1 1010 */
124 INVALID, /* 01 1 1011 */
125 INVALID, /* 01 1 1100 */
126 INVALID, /* 01 1 1101 */
127 INVALID, /* 01 1 1110 */
128 INVALID, /* 01 1 1111 */
129 INVALID, /* 10 0 0000 */
130 INVALID, /* 10 0 0001 */
131 INVALID, /* 10 0 0010: stwcx. */
132 INVALID, /* 10 0 0011 */
133 INVALID, /* 10 0 0100 */
134 INVALID, /* 10 0 0101 */
135 INVALID, /* 10 0 0110 */
136 INVALID, /* 10 0 0111 */
137 { 4, LD+SW }, /* 10 0 1000: lwbrx */
138 INVALID, /* 10 0 1001 */
139 { 4, ST+SW }, /* 10 0 1010: stwbrx */
140 INVALID, /* 10 0 1011 */
141 { 2, LD+SW }, /* 10 0 1100: lhbrx */
142 { 4, LD+SE }, /* 10 0 1101 lwa */
143 { 2, ST+SW }, /* 10 0 1110: sthbrx */
144 INVALID, /* 10 0 1111 */
145 INVALID, /* 10 1 0000 */
146 INVALID, /* 10 1 0001 */
147 INVALID, /* 10 1 0010 */
148 INVALID, /* 10 1 0011 */
149 INVALID, /* 10 1 0100 */
150 INVALID, /* 10 1 0101 */
151 INVALID, /* 10 1 0110 */
152 INVALID, /* 10 1 0111 */
153 INVALID, /* 10 1 1000 */
154 INVALID, /* 10 1 1001 */
155 INVALID, /* 10 1 1010 */
156 INVALID, /* 10 1 1011 */
157 INVALID, /* 10 1 1100 */
158 INVALID, /* 10 1 1101 */
159 INVALID, /* 10 1 1110 */
160 { 0, ST+HARD }, /* 10 1 1111: dcbz */
161 { 4, LD }, /* 11 0 0000: lwzx */
162 INVALID, /* 11 0 0001 */
163 { 4, ST }, /* 11 0 0010: stwx */
164 INVALID, /* 11 0 0011 */
165 { 2, LD }, /* 11 0 0100: lhzx */
166 { 2, LD+SE }, /* 11 0 0101: lhax */
167 { 2, ST }, /* 11 0 0110: sthx */
168 INVALID, /* 11 0 0111 */
169 { 4, LD+F+S }, /* 11 0 1000: lfsx */
170 { 8, LD+F }, /* 11 0 1001: lfdx */
171 { 4, ST+F+S }, /* 11 0 1010: stfsx */
172 { 8, ST+F }, /* 11 0 1011: stfdx */
173 { 16, LD+F }, /* 11 0 1100: lfdpx */
174 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
175 { 16, ST+F }, /* 11 0 1110: stfdpx */
176 { 4, ST+F }, /* 11 0 1111: stfiwx */
177 { 4, LD+U }, /* 11 1 0000: lwzux */
178 INVALID, /* 11 1 0001 */
179 { 4, ST+U }, /* 11 1 0010: stwux */
180 INVALID, /* 11 1 0011 */
181 { 2, LD+U }, /* 11 1 0100: lhzux */
182 { 2, LD+SE+U }, /* 11 1 0101: lhaux */
183 { 2, ST+U }, /* 11 1 0110: sthux */
184 INVALID, /* 11 1 0111 */
185 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
186 { 8, LD+F+U }, /* 11 1 1001: lfdux */
187 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
188 { 8, ST+F+U }, /* 11 1 1011: stfdux */
189 INVALID, /* 11 1 1100 */
190 INVALID, /* 11 1 1101 */
191 INVALID, /* 11 1 1110 */
192 INVALID, /* 11 1 1111 */
193 };
194
195 /*
196 * Create a DSISR value from the instruction
197 */
make_dsisr(unsigned instr)198 static inline unsigned make_dsisr(unsigned instr)
199 {
200 unsigned dsisr;
201
202
203 /* bits 6:15 --> 22:31 */
204 dsisr = (instr & 0x03ff0000) >> 16;
205
206 if (IS_XFORM(instr)) {
207 /* bits 29:30 --> 15:16 */
208 dsisr |= (instr & 0x00000006) << 14;
209 /* bit 25 --> 17 */
210 dsisr |= (instr & 0x00000040) << 8;
211 /* bits 21:24 --> 18:21 */
212 dsisr |= (instr & 0x00000780) << 3;
213 } else {
214 /* bit 5 --> 17 */
215 dsisr |= (instr & 0x04000000) >> 12;
216 /* bits 1: 4 --> 18:21 */
217 dsisr |= (instr & 0x78000000) >> 17;
218 /* bits 30:31 --> 12:13 */
219 if (IS_DSFORM(instr))
220 dsisr |= (instr & 0x00000003) << 18;
221 }
222
223 return dsisr;
224 }
225
226 /*
227 * The dcbz (data cache block zero) instruction
228 * gives an alignment fault if used on non-cacheable
229 * memory. We handle the fault mainly for the
230 * case when we are running with the cache disabled
231 * for debugging.
232 */
emulate_dcbz(struct pt_regs * regs,unsigned char __user * addr)233 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
234 {
235 long __user *p;
236 int i, size;
237
238 #ifdef __powerpc64__
239 size = ppc64_caches.dline_size;
240 #else
241 size = L1_CACHE_BYTES;
242 #endif
243 p = (long __user *) (regs->dar & -size);
244 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
245 return -EFAULT;
246 for (i = 0; i < size / sizeof(long); ++i)
247 if (__put_user_inatomic(0, p+i))
248 return -EFAULT;
249 return 1;
250 }
251
252 /*
253 * Emulate load & store multiple instructions
254 * On 64-bit machines, these instructions only affect/use the
255 * bottom 4 bytes of each register, and the loads clear the
256 * top 4 bytes of the affected register.
257 */
258 #ifdef CONFIG_PPC64
259 #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
260 #else
261 #define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
262 #endif
263
264 #define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
265
emulate_multiple(struct pt_regs * regs,unsigned char __user * addr,unsigned int reg,unsigned int nb,unsigned int flags,unsigned int instr,unsigned long swiz)266 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
267 unsigned int reg, unsigned int nb,
268 unsigned int flags, unsigned int instr,
269 unsigned long swiz)
270 {
271 unsigned long *rptr;
272 unsigned int nb0, i, bswiz;
273 unsigned long p;
274
275 /*
276 * We do not try to emulate 8 bytes multiple as they aren't really
277 * available in our operating environments and we don't try to
278 * emulate multiples operations in kernel land as they should never
279 * be used/generated there at least not on unaligned boundaries
280 */
281 if (unlikely((nb > 4) || !user_mode(regs)))
282 return 0;
283
284 /* lmw, stmw, lswi/x, stswi/x */
285 nb0 = 0;
286 if (flags & HARD) {
287 if (flags & SX) {
288 nb = regs->xer & 127;
289 if (nb == 0)
290 return 1;
291 } else {
292 unsigned long pc = regs->nip ^ (swiz & 4);
293
294 if (__get_user_inatomic(instr,
295 (unsigned int __user *)pc))
296 return -EFAULT;
297 if (swiz == 0 && (flags & SW))
298 instr = cpu_to_le32(instr);
299 nb = (instr >> 11) & 0x1f;
300 if (nb == 0)
301 nb = 32;
302 }
303 if (nb + reg * 4 > 128) {
304 nb0 = nb + reg * 4 - 128;
305 nb = 128 - reg * 4;
306 }
307 } else {
308 /* lwm, stmw */
309 nb = (32 - reg) * 4;
310 }
311
312 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
313 return -EFAULT; /* bad address */
314
315 rptr = ®s->gpr[reg];
316 p = (unsigned long) addr;
317 bswiz = (flags & SW)? 3: 0;
318
319 if (!(flags & ST)) {
320 /*
321 * This zeroes the top 4 bytes of the affected registers
322 * in 64-bit mode, and also zeroes out any remaining
323 * bytes of the last register for lsw*.
324 */
325 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
326 if (nb0 > 0)
327 memset(®s->gpr[0], 0,
328 ((nb0 + 3) / 4) * sizeof(unsigned long));
329
330 for (i = 0; i < nb; ++i, ++p)
331 if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
332 SWIZ_PTR(p)))
333 return -EFAULT;
334 if (nb0 > 0) {
335 rptr = ®s->gpr[0];
336 addr += nb;
337 for (i = 0; i < nb0; ++i, ++p)
338 if (__get_user_inatomic(REG_BYTE(rptr,
339 i ^ bswiz),
340 SWIZ_PTR(p)))
341 return -EFAULT;
342 }
343
344 } else {
345 for (i = 0; i < nb; ++i, ++p)
346 if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
347 SWIZ_PTR(p)))
348 return -EFAULT;
349 if (nb0 > 0) {
350 rptr = ®s->gpr[0];
351 addr += nb;
352 for (i = 0; i < nb0; ++i, ++p)
353 if (__put_user_inatomic(REG_BYTE(rptr,
354 i ^ bswiz),
355 SWIZ_PTR(p)))
356 return -EFAULT;
357 }
358 }
359 return 1;
360 }
361
362 /*
363 * Emulate floating-point pair loads and stores.
364 * Only POWER6 has these instructions, and it does true little-endian,
365 * so we don't need the address swizzling.
366 */
emulate_fp_pair(unsigned char __user * addr,unsigned int reg,unsigned int flags)367 static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
368 unsigned int flags)
369 {
370 char *ptr0 = (char *) ¤t->thread.TS_FPR(reg);
371 char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1);
372 int i, ret, sw = 0;
373
374 if (!(flags & F))
375 return 0;
376 if (reg & 1)
377 return 0; /* invalid form: FRS/FRT must be even */
378 if (flags & SW)
379 sw = 7;
380 ret = 0;
381 for (i = 0; i < 8; ++i) {
382 if (!(flags & ST)) {
383 ret |= __get_user(ptr0[i^sw], addr + i);
384 ret |= __get_user(ptr1[i^sw], addr + i + 8);
385 } else {
386 ret |= __put_user(ptr0[i^sw], addr + i);
387 ret |= __put_user(ptr1[i^sw], addr + i + 8);
388 }
389 }
390 if (ret)
391 return -EFAULT;
392 return 1; /* exception handled and fixed up */
393 }
394
395 #ifdef CONFIG_SPE
396
397 static struct aligninfo spe_aligninfo[32] = {
398 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
399 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
400 { 8, LD }, /* 0 00 10: evldh[x] */
401 INVALID, /* 0 00 11 */
402 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
403 INVALID, /* 0 01 01 */
404 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
405 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
406 { 4, LD }, /* 0 10 00: evlwhe[x] */
407 INVALID, /* 0 10 01 */
408 { 4, LD }, /* 0 10 10: evlwhou[x] */
409 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
410 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
411 INVALID, /* 0 11 01 */
412 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
413 INVALID, /* 0 11 11 */
414
415 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
416 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
417 { 8, ST }, /* 1 00 10: evstdh[x] */
418 INVALID, /* 1 00 11 */
419 INVALID, /* 1 01 00 */
420 INVALID, /* 1 01 01 */
421 INVALID, /* 1 01 10 */
422 INVALID, /* 1 01 11 */
423 { 4, ST }, /* 1 10 00: evstwhe[x] */
424 INVALID, /* 1 10 01 */
425 { 4, ST }, /* 1 10 10: evstwho[x] */
426 INVALID, /* 1 10 11 */
427 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
428 INVALID, /* 1 11 01 */
429 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
430 INVALID, /* 1 11 11 */
431 };
432
433 #define EVLDD 0x00
434 #define EVLDW 0x01
435 #define EVLDH 0x02
436 #define EVLHHESPLAT 0x04
437 #define EVLHHOUSPLAT 0x06
438 #define EVLHHOSSPLAT 0x07
439 #define EVLWHE 0x08
440 #define EVLWHOU 0x0A
441 #define EVLWHOS 0x0B
442 #define EVLWWSPLAT 0x0C
443 #define EVLWHSPLAT 0x0E
444 #define EVSTDD 0x10
445 #define EVSTDW 0x11
446 #define EVSTDH 0x12
447 #define EVSTWHE 0x18
448 #define EVSTWHO 0x1A
449 #define EVSTWWE 0x1C
450 #define EVSTWWO 0x1E
451
452 /*
453 * Emulate SPE loads and stores.
454 * Only Book-E has these instructions, and it does true little-endian,
455 * so we don't need the address swizzling.
456 */
emulate_spe(struct pt_regs * regs,unsigned int reg,unsigned int instr)457 static int emulate_spe(struct pt_regs *regs, unsigned int reg,
458 unsigned int instr)
459 {
460 int t, ret;
461 union {
462 u64 ll;
463 u32 w[2];
464 u16 h[4];
465 u8 v[8];
466 } data, temp;
467 unsigned char __user *p, *addr;
468 unsigned long *evr = ¤t->thread.evr[reg];
469 unsigned int nb, flags;
470
471 instr = (instr >> 1) & 0x1f;
472
473 /* DAR has the operand effective address */
474 addr = (unsigned char __user *)regs->dar;
475
476 nb = spe_aligninfo[instr].len;
477 flags = spe_aligninfo[instr].flags;
478
479 /* Verify the address of the operand */
480 if (unlikely(user_mode(regs) &&
481 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
482 addr, nb)))
483 return -EFAULT;
484
485 /* userland only */
486 if (unlikely(!user_mode(regs)))
487 return 0;
488
489 flush_spe_to_thread(current);
490
491 /* If we are loading, get the data from user space, else
492 * get it from register values
493 */
494 if (flags & ST) {
495 data.ll = 0;
496 switch (instr) {
497 case EVSTDD:
498 case EVSTDW:
499 case EVSTDH:
500 data.w[0] = *evr;
501 data.w[1] = regs->gpr[reg];
502 break;
503 case EVSTWHE:
504 data.h[2] = *evr >> 16;
505 data.h[3] = regs->gpr[reg] >> 16;
506 break;
507 case EVSTWHO:
508 data.h[2] = *evr & 0xffff;
509 data.h[3] = regs->gpr[reg] & 0xffff;
510 break;
511 case EVSTWWE:
512 data.w[1] = *evr;
513 break;
514 case EVSTWWO:
515 data.w[1] = regs->gpr[reg];
516 break;
517 default:
518 return -EINVAL;
519 }
520 } else {
521 temp.ll = data.ll = 0;
522 ret = 0;
523 p = addr;
524
525 switch (nb) {
526 case 8:
527 ret |= __get_user_inatomic(temp.v[0], p++);
528 ret |= __get_user_inatomic(temp.v[1], p++);
529 ret |= __get_user_inatomic(temp.v[2], p++);
530 ret |= __get_user_inatomic(temp.v[3], p++);
531 case 4:
532 ret |= __get_user_inatomic(temp.v[4], p++);
533 ret |= __get_user_inatomic(temp.v[5], p++);
534 case 2:
535 ret |= __get_user_inatomic(temp.v[6], p++);
536 ret |= __get_user_inatomic(temp.v[7], p++);
537 if (unlikely(ret))
538 return -EFAULT;
539 }
540
541 switch (instr) {
542 case EVLDD:
543 case EVLDW:
544 case EVLDH:
545 data.ll = temp.ll;
546 break;
547 case EVLHHESPLAT:
548 data.h[0] = temp.h[3];
549 data.h[2] = temp.h[3];
550 break;
551 case EVLHHOUSPLAT:
552 case EVLHHOSSPLAT:
553 data.h[1] = temp.h[3];
554 data.h[3] = temp.h[3];
555 break;
556 case EVLWHE:
557 data.h[0] = temp.h[2];
558 data.h[2] = temp.h[3];
559 break;
560 case EVLWHOU:
561 case EVLWHOS:
562 data.h[1] = temp.h[2];
563 data.h[3] = temp.h[3];
564 break;
565 case EVLWWSPLAT:
566 data.w[0] = temp.w[1];
567 data.w[1] = temp.w[1];
568 break;
569 case EVLWHSPLAT:
570 data.h[0] = temp.h[2];
571 data.h[1] = temp.h[2];
572 data.h[2] = temp.h[3];
573 data.h[3] = temp.h[3];
574 break;
575 default:
576 return -EINVAL;
577 }
578 }
579
580 if (flags & SW) {
581 switch (flags & 0xf0) {
582 case E8:
583 SWAP(data.v[0], data.v[7]);
584 SWAP(data.v[1], data.v[6]);
585 SWAP(data.v[2], data.v[5]);
586 SWAP(data.v[3], data.v[4]);
587 break;
588 case E4:
589
590 SWAP(data.v[0], data.v[3]);
591 SWAP(data.v[1], data.v[2]);
592 SWAP(data.v[4], data.v[7]);
593 SWAP(data.v[5], data.v[6]);
594 break;
595 /* Its half word endian */
596 default:
597 SWAP(data.v[0], data.v[1]);
598 SWAP(data.v[2], data.v[3]);
599 SWAP(data.v[4], data.v[5]);
600 SWAP(data.v[6], data.v[7]);
601 break;
602 }
603 }
604
605 if (flags & SE) {
606 data.w[0] = (s16)data.h[1];
607 data.w[1] = (s16)data.h[3];
608 }
609
610 /* Store result to memory or update registers */
611 if (flags & ST) {
612 ret = 0;
613 p = addr;
614 switch (nb) {
615 case 8:
616 ret |= __put_user_inatomic(data.v[0], p++);
617 ret |= __put_user_inatomic(data.v[1], p++);
618 ret |= __put_user_inatomic(data.v[2], p++);
619 ret |= __put_user_inatomic(data.v[3], p++);
620 case 4:
621 ret |= __put_user_inatomic(data.v[4], p++);
622 ret |= __put_user_inatomic(data.v[5], p++);
623 case 2:
624 ret |= __put_user_inatomic(data.v[6], p++);
625 ret |= __put_user_inatomic(data.v[7], p++);
626 }
627 if (unlikely(ret))
628 return -EFAULT;
629 } else {
630 *evr = data.w[0];
631 regs->gpr[reg] = data.w[1];
632 }
633
634 return 1;
635 }
636 #endif /* CONFIG_SPE */
637
638 #ifdef CONFIG_VSX
639 /*
640 * Emulate VSX instructions...
641 */
emulate_vsx(unsigned char __user * addr,unsigned int reg,unsigned int areg,struct pt_regs * regs,unsigned int flags,unsigned int length)642 static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
643 unsigned int areg, struct pt_regs *regs,
644 unsigned int flags, unsigned int length)
645 {
646 char *ptr;
647 int ret = 0;
648
649 flush_vsx_to_thread(current);
650
651 if (reg < 32)
652 ptr = (char *) ¤t->thread.TS_FPR(reg);
653 else
654 ptr = (char *) ¤t->thread.vr[reg - 32];
655
656 if (flags & ST)
657 ret = __copy_to_user(addr, ptr, length);
658 else {
659 if (flags & SPLT){
660 ret = __copy_from_user(ptr, addr, length);
661 ptr += length;
662 }
663 ret |= __copy_from_user(ptr, addr, length);
664 }
665 if (flags & U)
666 regs->gpr[areg] = regs->dar;
667 if (ret)
668 return -EFAULT;
669 return 1;
670 }
671 #endif
672
673 /*
674 * Called on alignment exception. Attempts to fixup
675 *
676 * Return 1 on success
677 * Return 0 if unable to handle the interrupt
678 * Return -EFAULT if data address is bad
679 */
680
fix_alignment(struct pt_regs * regs)681 int fix_alignment(struct pt_regs *regs)
682 {
683 unsigned int instr, nb, flags, instruction = 0;
684 unsigned int reg, areg;
685 unsigned int dsisr;
686 unsigned char __user *addr;
687 unsigned long p, swiz;
688 int ret, t;
689 union {
690 u64 ll;
691 double dd;
692 unsigned char v[8];
693 struct {
694 unsigned hi32;
695 int low32;
696 } x32;
697 struct {
698 unsigned char hi48[6];
699 short low16;
700 } x16;
701 } data;
702
703 /*
704 * We require a complete register set, if not, then our assembly
705 * is broken
706 */
707 CHECK_FULL_REGS(regs);
708
709 dsisr = regs->dsisr;
710
711 /* Some processors don't provide us with a DSISR we can use here,
712 * let's make one up from the instruction
713 */
714 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
715 unsigned long pc = regs->nip;
716
717 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
718 pc ^= 4;
719 if (unlikely(__get_user_inatomic(instr,
720 (unsigned int __user *)pc)))
721 return -EFAULT;
722 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
723 instr = cpu_to_le32(instr);
724 dsisr = make_dsisr(instr);
725 instruction = instr;
726 }
727
728 /* extract the operation and registers from the dsisr */
729 reg = (dsisr >> 5) & 0x1f; /* source/dest register */
730 areg = dsisr & 0x1f; /* register to update */
731
732 #ifdef CONFIG_SPE
733 if ((instr >> 26) == 0x4)
734 return emulate_spe(regs, reg, instr);
735 #endif
736
737 instr = (dsisr >> 10) & 0x7f;
738 instr |= (dsisr >> 13) & 0x60;
739
740 /* Lookup the operation in our table */
741 nb = aligninfo[instr].len;
742 flags = aligninfo[instr].flags;
743
744 /* Byteswap little endian loads and stores */
745 swiz = 0;
746 if (regs->msr & MSR_LE) {
747 flags ^= SW;
748 /*
749 * So-called "PowerPC little endian" mode works by
750 * swizzling addresses rather than by actually doing
751 * any byte-swapping. To emulate this, we XOR each
752 * byte address with 7. We also byte-swap, because
753 * the processor's address swizzling depends on the
754 * operand size (it xors the address with 7 for bytes,
755 * 6 for halfwords, 4 for words, 0 for doublewords) but
756 * we will xor with 7 and load/store each byte separately.
757 */
758 if (cpu_has_feature(CPU_FTR_PPC_LE))
759 swiz = 7;
760 }
761
762 /* DAR has the operand effective address */
763 addr = (unsigned char __user *)regs->dar;
764
765 #ifdef CONFIG_VSX
766 if ((instruction & 0xfc00003e) == 0x7c000018) {
767 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR */
768 reg |= (instruction & 0x1) << 5;
769 /* Simple inline decoder instead of a table */
770 if (instruction & 0x200)
771 nb = 16;
772 else if (instruction & 0x080)
773 nb = 8;
774 else
775 nb = 4;
776 flags = 0;
777 if (instruction & 0x100)
778 flags |= ST;
779 if (instruction & 0x040)
780 flags |= U;
781 /* splat load needs a special decoder */
782 if ((instruction & 0x400) == 0){
783 flags |= SPLT;
784 nb = 8;
785 }
786 return emulate_vsx(addr, reg, areg, regs, flags, nb);
787 }
788 #endif
789 /* A size of 0 indicates an instruction we don't support, with
790 * the exception of DCBZ which is handled as a special case here
791 */
792 if (instr == DCBZ)
793 return emulate_dcbz(regs, addr);
794 if (unlikely(nb == 0))
795 return 0;
796
797 /* Load/Store Multiple instructions are handled in their own
798 * function
799 */
800 if (flags & M)
801 return emulate_multiple(regs, addr, reg, nb,
802 flags, instr, swiz);
803
804 /* Verify the address of the operand */
805 if (unlikely(user_mode(regs) &&
806 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
807 addr, nb)))
808 return -EFAULT;
809
810 /* Force the fprs into the save area so we can reference them */
811 if (flags & F) {
812 /* userland only */
813 if (unlikely(!user_mode(regs)))
814 return 0;
815 flush_fp_to_thread(current);
816 }
817
818 /* Special case for 16-byte FP loads and stores */
819 if (nb == 16)
820 return emulate_fp_pair(addr, reg, flags);
821
822 /* If we are loading, get the data from user space, else
823 * get it from register values
824 */
825 if (!(flags & ST)) {
826 data.ll = 0;
827 ret = 0;
828 p = (unsigned long) addr;
829 switch (nb) {
830 case 8:
831 ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++));
832 ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++));
833 ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++));
834 ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++));
835 case 4:
836 ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++));
837 ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++));
838 case 2:
839 ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++));
840 ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++));
841 if (unlikely(ret))
842 return -EFAULT;
843 }
844 } else if (flags & F) {
845 data.dd = current->thread.TS_FPR(reg);
846 if (flags & S) {
847 /* Single-precision FP store requires conversion... */
848 #ifdef CONFIG_PPC_FPU
849 preempt_disable();
850 enable_kernel_fp();
851 cvt_df(&data.dd, (float *)&data.v[4], ¤t->thread);
852 preempt_enable();
853 #else
854 return 0;
855 #endif
856 }
857 } else
858 data.ll = regs->gpr[reg];
859
860 if (flags & SW) {
861 switch (nb) {
862 case 8:
863 SWAP(data.v[0], data.v[7]);
864 SWAP(data.v[1], data.v[6]);
865 SWAP(data.v[2], data.v[5]);
866 SWAP(data.v[3], data.v[4]);
867 break;
868 case 4:
869 SWAP(data.v[4], data.v[7]);
870 SWAP(data.v[5], data.v[6]);
871 break;
872 case 2:
873 SWAP(data.v[6], data.v[7]);
874 break;
875 }
876 }
877
878 /* Perform other misc operations like sign extension
879 * or floating point single precision conversion
880 */
881 switch (flags & ~(U|SW)) {
882 case LD+SE: /* sign extending integer loads */
883 case LD+F+SE: /* sign extend for lfiwax */
884 if ( nb == 2 )
885 data.ll = data.x16.low16;
886 else /* nb must be 4 */
887 data.ll = data.x32.low32;
888 break;
889
890 /* Single-precision FP load requires conversion... */
891 case LD+F+S:
892 #ifdef CONFIG_PPC_FPU
893 preempt_disable();
894 enable_kernel_fp();
895 cvt_fd((float *)&data.v[4], &data.dd, ¤t->thread);
896 preempt_enable();
897 #else
898 return 0;
899 #endif
900 break;
901 }
902
903 /* Store result to memory or update registers */
904 if (flags & ST) {
905 ret = 0;
906 p = (unsigned long) addr;
907 switch (nb) {
908 case 8:
909 ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++));
910 ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++));
911 ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++));
912 ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++));
913 case 4:
914 ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++));
915 ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++));
916 case 2:
917 ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++));
918 ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++));
919 }
920 if (unlikely(ret))
921 return -EFAULT;
922 } else if (flags & F)
923 current->thread.TS_FPR(reg) = data.dd;
924 else
925 regs->gpr[reg] = data.ll;
926
927 /* Update RA as needed */
928 if (flags & U)
929 regs->gpr[areg] = regs->dar;
930
931 return 1;
932 }
933