1 #ifndef _ASM_IA64_SN_SN_SAL_H
2 #define _ASM_IA64_SN_SN_SAL_H
3
4 /*
5 * System Abstraction Layer definitions for IA64
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
11 * Copyright (c) 2000-2006 Silicon Graphics, Inc. All rights reserved.
12 */
13
14
15 #include <asm/sal.h>
16 #include <asm/sn/sn_cpuid.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/geo.h>
19 #include <asm/sn/nodepda.h>
20 #include <asm/sn/shub_mmr.h>
21
22 // SGI Specific Calls
23 #define SN_SAL_POD_MODE 0x02000001
24 #define SN_SAL_SYSTEM_RESET 0x02000002
25 #define SN_SAL_PROBE 0x02000003
26 #define SN_SAL_GET_MASTER_NASID 0x02000004
27 #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
28 #define SN_SAL_LOG_CE 0x02000006
29 #define SN_SAL_REGISTER_CE 0x02000007
30 #define SN_SAL_GET_PARTITION_ADDR 0x02000009
31 #define SN_SAL_XP_ADDR_REGION 0x0200000f
32 #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
33 #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
34 #define SN_SAL_PRINT_ERROR 0x02000012
35 #define SN_SAL_REGISTER_PMI_HANDLER 0x02000014
36 #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
37 #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
38 #define SN_SAL_GET_SAPIC_INFO 0x0200001d
39 #define SN_SAL_GET_SN_INFO 0x0200001e
40 #define SN_SAL_CONSOLE_PUTC 0x02000021
41 #define SN_SAL_CONSOLE_GETC 0x02000022
42 #define SN_SAL_CONSOLE_PUTS 0x02000023
43 #define SN_SAL_CONSOLE_GETS 0x02000024
44 #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
45 #define SN_SAL_CONSOLE_POLL 0x02000026
46 #define SN_SAL_CONSOLE_INTR 0x02000027
47 #define SN_SAL_CONSOLE_PUTB 0x02000028
48 #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
49 #define SN_SAL_CONSOLE_READC 0x0200002b
50 #define SN_SAL_SYSCTL_OP 0x02000030
51 #define SN_SAL_SYSCTL_MODID_GET 0x02000031
52 #define SN_SAL_SYSCTL_GET 0x02000032
53 #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
54 #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
55 #define SN_SAL_SYSCTL_SLAB_GET 0x02000036
56 #define SN_SAL_BUS_CONFIG 0x02000037
57 #define SN_SAL_SYS_SERIAL_GET 0x02000038
58 #define SN_SAL_PARTITION_SERIAL_GET 0x02000039
59 #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
60 #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
61 #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
62 #define SN_SAL_COHERENCE 0x0200003d
63 #define SN_SAL_MEMPROTECT 0x0200003e
64 #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
65
66 #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
67 #define SN_SAL_IROUTER_OP 0x02000043
68 #define SN_SAL_SYSCTL_EVENT 0x02000044
69 #define SN_SAL_IOIF_INTERRUPT 0x0200004a
70 #define SN_SAL_HWPERF_OP 0x02000050 // lock
71 #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
72 #define SN_SAL_IOIF_PCI_SAFE 0x02000052
73 #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
74 #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
75 #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
76 #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
77 #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
78 #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 // deprecated
79 #define SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST 0x0200005a
80
81 #define SN_SAL_IOIF_INIT 0x0200005f
82 #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
83 #define SN_SAL_BTE_RECOVER 0x02000061
84 #define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
85 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
86
87 #define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
88 #define SN_SAL_SET_OS_FEATURE_SET 0x02000066
89 #define SN_SAL_INJECT_ERROR 0x02000067
90 #define SN_SAL_SET_CPU_NUMBER 0x02000068
91
92 #define SN_SAL_KERNEL_LAUNCH_EVENT 0x02000069
93 #define SN_SAL_WATCHLIST_ALLOC 0x02000070
94 #define SN_SAL_WATCHLIST_FREE 0x02000071
95
96 /*
97 * Service-specific constants
98 */
99
100 /* Console interrupt manipulation */
101 /* action codes */
102 #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
103 #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
104 #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
105 /* interrupt specification & status return codes */
106 #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
107 #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
108
109 /* interrupt handling */
110 #define SAL_INTR_ALLOC 1
111 #define SAL_INTR_FREE 2
112 #define SAL_INTR_REDIRECT 3
113
114 /*
115 * operations available on the generic SN_SAL_SYSCTL_OP
116 * runtime service
117 */
118 #define SAL_SYSCTL_OP_IOBOARD 0x0001 /* retrieve board type */
119 #define SAL_SYSCTL_OP_TIO_JLCK_RST 0x0002 /* issue TIO clock reset */
120
121 /*
122 * IRouter (i.e. generalized system controller) operations
123 */
124 #define SAL_IROUTER_OPEN 0 /* open a subchannel */
125 #define SAL_IROUTER_CLOSE 1 /* close a subchannel */
126 #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
127 #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
128 #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
129 * an open subchannel
130 */
131 #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
132 #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
133 #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
134
135 /* IRouter interrupt mask bits */
136 #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
137 #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
138
139 /*
140 * Error Handling Features
141 */
142 #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
143 #define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
144 #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
145 #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
146
147 /*
148 * SAL Error Codes
149 */
150 #define SALRET_MORE_PASSES 1
151 #define SALRET_OK 0
152 #define SALRET_NOT_IMPLEMENTED (-1)
153 #define SALRET_INVALID_ARG (-2)
154 #define SALRET_ERROR (-3)
155
156 #define SN_SAL_FAKE_PROM 0x02009999
157
158 /**
159 * sn_sal_revision - get the SGI SAL revision number
160 *
161 * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
162 * This routine simply extracts the major and minor values and
163 * presents them in a u32 format.
164 *
165 * For example, version 4.05 would be represented at 0x0405.
166 */
167 static inline u32
sn_sal_rev(void)168 sn_sal_rev(void)
169 {
170 struct ia64_sal_systab *systab = __va(efi.sal_systab);
171
172 return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
173 }
174
175 /*
176 * Returns the master console nasid, if the call fails, return an illegal
177 * value.
178 */
179 static inline u64
ia64_sn_get_console_nasid(void)180 ia64_sn_get_console_nasid(void)
181 {
182 struct ia64_sal_retval ret_stuff;
183
184 ret_stuff.status = 0;
185 ret_stuff.v0 = 0;
186 ret_stuff.v1 = 0;
187 ret_stuff.v2 = 0;
188 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
189
190 if (ret_stuff.status < 0)
191 return ret_stuff.status;
192
193 /* Master console nasid is in 'v0' */
194 return ret_stuff.v0;
195 }
196
197 /*
198 * Returns the master baseio nasid, if the call fails, return an illegal
199 * value.
200 */
201 static inline u64
ia64_sn_get_master_baseio_nasid(void)202 ia64_sn_get_master_baseio_nasid(void)
203 {
204 struct ia64_sal_retval ret_stuff;
205
206 ret_stuff.status = 0;
207 ret_stuff.v0 = 0;
208 ret_stuff.v1 = 0;
209 ret_stuff.v2 = 0;
210 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
211
212 if (ret_stuff.status < 0)
213 return ret_stuff.status;
214
215 /* Master baseio nasid is in 'v0' */
216 return ret_stuff.v0;
217 }
218
219 static inline void *
ia64_sn_get_klconfig_addr(nasid_t nasid)220 ia64_sn_get_klconfig_addr(nasid_t nasid)
221 {
222 struct ia64_sal_retval ret_stuff;
223
224 ret_stuff.status = 0;
225 ret_stuff.v0 = 0;
226 ret_stuff.v1 = 0;
227 ret_stuff.v2 = 0;
228 SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
229 return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
230 }
231
232 /*
233 * Returns the next console character.
234 */
235 static inline u64
ia64_sn_console_getc(int * ch)236 ia64_sn_console_getc(int *ch)
237 {
238 struct ia64_sal_retval ret_stuff;
239
240 ret_stuff.status = 0;
241 ret_stuff.v0 = 0;
242 ret_stuff.v1 = 0;
243 ret_stuff.v2 = 0;
244 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
245
246 /* character is in 'v0' */
247 *ch = (int)ret_stuff.v0;
248
249 return ret_stuff.status;
250 }
251
252 /*
253 * Read a character from the SAL console device, after a previous interrupt
254 * or poll operation has given us to know that a character is available
255 * to be read.
256 */
257 static inline u64
ia64_sn_console_readc(void)258 ia64_sn_console_readc(void)
259 {
260 struct ia64_sal_retval ret_stuff;
261
262 ret_stuff.status = 0;
263 ret_stuff.v0 = 0;
264 ret_stuff.v1 = 0;
265 ret_stuff.v2 = 0;
266 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
267
268 /* character is in 'v0' */
269 return ret_stuff.v0;
270 }
271
272 /*
273 * Sends the given character to the console.
274 */
275 static inline u64
ia64_sn_console_putc(char ch)276 ia64_sn_console_putc(char ch)
277 {
278 struct ia64_sal_retval ret_stuff;
279
280 ret_stuff.status = 0;
281 ret_stuff.v0 = 0;
282 ret_stuff.v1 = 0;
283 ret_stuff.v2 = 0;
284 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
285
286 return ret_stuff.status;
287 }
288
289 /*
290 * Sends the given buffer to the console.
291 */
292 static inline u64
ia64_sn_console_putb(const char * buf,int len)293 ia64_sn_console_putb(const char *buf, int len)
294 {
295 struct ia64_sal_retval ret_stuff;
296
297 ret_stuff.status = 0;
298 ret_stuff.v0 = 0;
299 ret_stuff.v1 = 0;
300 ret_stuff.v2 = 0;
301 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
302
303 if ( ret_stuff.status == 0 ) {
304 return ret_stuff.v0;
305 }
306 return (u64)0;
307 }
308
309 /*
310 * Print a platform error record
311 */
312 static inline u64
ia64_sn_plat_specific_err_print(int (* hook)(const char *,...),char * rec)313 ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
314 {
315 struct ia64_sal_retval ret_stuff;
316
317 ret_stuff.status = 0;
318 ret_stuff.v0 = 0;
319 ret_stuff.v1 = 0;
320 ret_stuff.v2 = 0;
321 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
322
323 return ret_stuff.status;
324 }
325
326 /*
327 * Check for Platform errors
328 */
329 static inline u64
ia64_sn_plat_cpei_handler(void)330 ia64_sn_plat_cpei_handler(void)
331 {
332 struct ia64_sal_retval ret_stuff;
333
334 ret_stuff.status = 0;
335 ret_stuff.v0 = 0;
336 ret_stuff.v1 = 0;
337 ret_stuff.v2 = 0;
338 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
339
340 return ret_stuff.status;
341 }
342
343 /*
344 * Set Error Handling Features (Obsolete)
345 */
346 static inline u64
ia64_sn_plat_set_error_handling_features(void)347 ia64_sn_plat_set_error_handling_features(void)
348 {
349 struct ia64_sal_retval ret_stuff;
350
351 ret_stuff.status = 0;
352 ret_stuff.v0 = 0;
353 ret_stuff.v1 = 0;
354 ret_stuff.v2 = 0;
355 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
356 SAL_ERR_FEAT_LOG_SBES,
357 0, 0, 0, 0, 0, 0);
358
359 return ret_stuff.status;
360 }
361
362 /*
363 * Checks for console input.
364 */
365 static inline u64
ia64_sn_console_check(int * result)366 ia64_sn_console_check(int *result)
367 {
368 struct ia64_sal_retval ret_stuff;
369
370 ret_stuff.status = 0;
371 ret_stuff.v0 = 0;
372 ret_stuff.v1 = 0;
373 ret_stuff.v2 = 0;
374 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
375
376 /* result is in 'v0' */
377 *result = (int)ret_stuff.v0;
378
379 return ret_stuff.status;
380 }
381
382 /*
383 * Checks console interrupt status
384 */
385 static inline u64
ia64_sn_console_intr_status(void)386 ia64_sn_console_intr_status(void)
387 {
388 struct ia64_sal_retval ret_stuff;
389
390 ret_stuff.status = 0;
391 ret_stuff.v0 = 0;
392 ret_stuff.v1 = 0;
393 ret_stuff.v2 = 0;
394 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
395 0, SAL_CONSOLE_INTR_STATUS,
396 0, 0, 0, 0, 0);
397
398 if (ret_stuff.status == 0) {
399 return ret_stuff.v0;
400 }
401
402 return 0;
403 }
404
405 /*
406 * Enable an interrupt on the SAL console device.
407 */
408 static inline void
ia64_sn_console_intr_enable(u64 intr)409 ia64_sn_console_intr_enable(u64 intr)
410 {
411 struct ia64_sal_retval ret_stuff;
412
413 ret_stuff.status = 0;
414 ret_stuff.v0 = 0;
415 ret_stuff.v1 = 0;
416 ret_stuff.v2 = 0;
417 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
418 intr, SAL_CONSOLE_INTR_ON,
419 0, 0, 0, 0, 0);
420 }
421
422 /*
423 * Disable an interrupt on the SAL console device.
424 */
425 static inline void
ia64_sn_console_intr_disable(u64 intr)426 ia64_sn_console_intr_disable(u64 intr)
427 {
428 struct ia64_sal_retval ret_stuff;
429
430 ret_stuff.status = 0;
431 ret_stuff.v0 = 0;
432 ret_stuff.v1 = 0;
433 ret_stuff.v2 = 0;
434 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
435 intr, SAL_CONSOLE_INTR_OFF,
436 0, 0, 0, 0, 0);
437 }
438
439 /*
440 * Sends a character buffer to the console asynchronously.
441 */
442 static inline u64
ia64_sn_console_xmit_chars(char * buf,int len)443 ia64_sn_console_xmit_chars(char *buf, int len)
444 {
445 struct ia64_sal_retval ret_stuff;
446
447 ret_stuff.status = 0;
448 ret_stuff.v0 = 0;
449 ret_stuff.v1 = 0;
450 ret_stuff.v2 = 0;
451 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
452 (u64)buf, (u64)len,
453 0, 0, 0, 0, 0);
454
455 if (ret_stuff.status == 0) {
456 return ret_stuff.v0;
457 }
458
459 return 0;
460 }
461
462 /*
463 * Returns the iobrick module Id
464 */
465 static inline u64
ia64_sn_sysctl_iobrick_module_get(nasid_t nasid,int * result)466 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
467 {
468 struct ia64_sal_retval ret_stuff;
469
470 ret_stuff.status = 0;
471 ret_stuff.v0 = 0;
472 ret_stuff.v1 = 0;
473 ret_stuff.v2 = 0;
474 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
475
476 /* result is in 'v0' */
477 *result = (int)ret_stuff.v0;
478
479 return ret_stuff.status;
480 }
481
482 /**
483 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
484 *
485 * SN_SAL_POD_MODE actually takes an argument, but it's always
486 * 0 when we call it from the kernel, so we don't have to expose
487 * it to the caller.
488 */
489 static inline u64
ia64_sn_pod_mode(void)490 ia64_sn_pod_mode(void)
491 {
492 struct ia64_sal_retval isrv;
493 SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
494 if (isrv.status)
495 return 0;
496 return isrv.v0;
497 }
498
499 /**
500 * ia64_sn_probe_mem - read from memory safely
501 * @addr: address to probe
502 * @size: number bytes to read (1,2,4,8)
503 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
504 *
505 * Call into the SAL to do a memory read. If the read generates a machine
506 * check, this routine will recover gracefully and return -1 to the caller.
507 * @addr is usually a kernel virtual address in uncached space (i.e. the
508 * address starts with 0xc), but if called in physical mode, @addr should
509 * be a physical address.
510 *
511 * Return values:
512 * 0 - probe successful
513 * 1 - probe failed (generated MCA)
514 * 2 - Bad arg
515 * <0 - PAL error
516 */
517 static inline u64
ia64_sn_probe_mem(long addr,long size,void * data_ptr)518 ia64_sn_probe_mem(long addr, long size, void *data_ptr)
519 {
520 struct ia64_sal_retval isrv;
521
522 SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
523
524 if (data_ptr) {
525 switch (size) {
526 case 1:
527 *((u8*)data_ptr) = (u8)isrv.v0;
528 break;
529 case 2:
530 *((u16*)data_ptr) = (u16)isrv.v0;
531 break;
532 case 4:
533 *((u32*)data_ptr) = (u32)isrv.v0;
534 break;
535 case 8:
536 *((u64*)data_ptr) = (u64)isrv.v0;
537 break;
538 default:
539 isrv.status = 2;
540 }
541 }
542 return isrv.status;
543 }
544
545 /*
546 * Retrieve the system serial number as an ASCII string.
547 */
548 static inline u64
ia64_sn_sys_serial_get(char * buf)549 ia64_sn_sys_serial_get(char *buf)
550 {
551 struct ia64_sal_retval ret_stuff;
552 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
553 return ret_stuff.status;
554 }
555
556 extern char sn_system_serial_number_string[];
557 extern u64 sn_partition_serial_number;
558
559 static inline char *
sn_system_serial_number(void)560 sn_system_serial_number(void) {
561 if (sn_system_serial_number_string[0]) {
562 return(sn_system_serial_number_string);
563 } else {
564 ia64_sn_sys_serial_get(sn_system_serial_number_string);
565 return(sn_system_serial_number_string);
566 }
567 }
568
569
570 /*
571 * Returns a unique id number for this system and partition (suitable for
572 * use with license managers), based in part on the system serial number.
573 */
574 static inline u64
ia64_sn_partition_serial_get(void)575 ia64_sn_partition_serial_get(void)
576 {
577 struct ia64_sal_retval ret_stuff;
578 ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
579 0, 0, 0, 0, 0, 0);
580 if (ret_stuff.status != 0)
581 return 0;
582 return ret_stuff.v0;
583 }
584
585 static inline u64
sn_partition_serial_number_val(void)586 sn_partition_serial_number_val(void) {
587 if (unlikely(sn_partition_serial_number == 0)) {
588 sn_partition_serial_number = ia64_sn_partition_serial_get();
589 }
590 return sn_partition_serial_number;
591 }
592
593 /*
594 * Returns the partition id of the nasid passed in as an argument,
595 * or INVALID_PARTID if the partition id cannot be retrieved.
596 */
597 static inline partid_t
ia64_sn_sysctl_partition_get(nasid_t nasid)598 ia64_sn_sysctl_partition_get(nasid_t nasid)
599 {
600 struct ia64_sal_retval ret_stuff;
601 SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
602 0, 0, 0, 0, 0, 0);
603 if (ret_stuff.status != 0)
604 return -1;
605 return ((partid_t)ret_stuff.v0);
606 }
607
608 /*
609 * Returns the physical address of the partition's reserved page through
610 * an iterative number of calls.
611 *
612 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
613 * set to the nasid of the partition whose reserved page's address is
614 * being sought.
615 * On subsequent calls, pass the values, that were passed back on the
616 * previous call.
617 *
618 * While the return status equals SALRET_MORE_PASSES, keep calling
619 * this function after first copying 'len' bytes starting at 'addr'
620 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
621 * be the physical address of the partition's reserved page. If the
622 * return status equals neither of these, an error as occurred.
623 */
624 static inline s64
sn_partition_reserved_page_pa(u64 buf,u64 * cookie,u64 * addr,u64 * len)625 sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
626 {
627 struct ia64_sal_retval rv;
628 ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
629 *addr, buf, *len, 0, 0, 0);
630 *cookie = rv.v0;
631 *addr = rv.v1;
632 *len = rv.v2;
633 return rv.status;
634 }
635
636 /*
637 * Register or unregister a physical address range being referenced across
638 * a partition boundary for which certain SAL errors should be scanned for,
639 * cleaned up and ignored. This is of value for kernel partitioning code only.
640 * Values for the operation argument:
641 * 1 = register this address range with SAL
642 * 0 = unregister this address range with SAL
643 *
644 * SAL maintains a reference count on an address range in case it is registered
645 * multiple times.
646 *
647 * On success, returns the reference count of the address range after the SAL
648 * call has performed the current registration/unregistration. Returns a
649 * negative value if an error occurred.
650 */
651 static inline int
sn_register_xp_addr_region(u64 paddr,u64 len,int operation)652 sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
653 {
654 struct ia64_sal_retval ret_stuff;
655 ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
656 (u64)operation, 0, 0, 0, 0);
657 return ret_stuff.status;
658 }
659
660 /*
661 * Register or unregister an instruction range for which SAL errors should
662 * be ignored. If an error occurs while in the registered range, SAL jumps
663 * to return_addr after ignoring the error. Values for the operation argument:
664 * 1 = register this instruction range with SAL
665 * 0 = unregister this instruction range with SAL
666 *
667 * Returns 0 on success, or a negative value if an error occurred.
668 */
669 static inline int
sn_register_nofault_code(u64 start_addr,u64 end_addr,u64 return_addr,int virtual,int operation)670 sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
671 int virtual, int operation)
672 {
673 struct ia64_sal_retval ret_stuff;
674 u64 call;
675 if (virtual) {
676 call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
677 } else {
678 call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
679 }
680 ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
681 (u64)1, 0, 0, 0);
682 return ret_stuff.status;
683 }
684
685 /*
686 * Register or unregister a function to handle a PMI received by a CPU.
687 * Before calling the registered handler, SAL sets r1 to the value that
688 * was passed in as the global_pointer.
689 *
690 * If the handler pointer is NULL, then the currently registered handler
691 * will be unregistered.
692 *
693 * Returns 0 on success, or a negative value if an error occurred.
694 */
695 static inline int
sn_register_pmi_handler(u64 handler,u64 global_pointer)696 sn_register_pmi_handler(u64 handler, u64 global_pointer)
697 {
698 struct ia64_sal_retval ret_stuff;
699 ia64_sal_oemcall(&ret_stuff, SN_SAL_REGISTER_PMI_HANDLER, handler,
700 global_pointer, 0, 0, 0, 0, 0);
701 return ret_stuff.status;
702 }
703
704 /*
705 * Change or query the coherence domain for this partition. Each cpu-based
706 * nasid is represented by a bit in an array of 64-bit words:
707 * 0 = not in this partition's coherency domain
708 * 1 = in this partition's coherency domain
709 *
710 * It is not possible for the local system's nasids to be removed from
711 * the coherency domain. Purpose of the domain arguments:
712 * new_domain = set the coherence domain to the given nasids
713 * old_domain = return the current coherence domain
714 *
715 * Returns 0 on success, or a negative value if an error occurred.
716 */
717 static inline int
sn_change_coherence(u64 * new_domain,u64 * old_domain)718 sn_change_coherence(u64 *new_domain, u64 *old_domain)
719 {
720 struct ia64_sal_retval ret_stuff;
721 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
722 (u64)old_domain, 0, 0, 0, 0, 0);
723 return ret_stuff.status;
724 }
725
726 /*
727 * Change memory access protections for a physical address range.
728 * nasid_array is not used on Altix, but may be in future architectures.
729 * Available memory protection access classes are defined after the function.
730 */
731 static inline int
sn_change_memprotect(u64 paddr,u64 len,u64 perms,u64 * nasid_array)732 sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
733 {
734 struct ia64_sal_retval ret_stuff;
735
736 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
737 (u64)nasid_array, perms, 0, 0, 0);
738 return ret_stuff.status;
739 }
740 #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
741 #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
742 #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
743 #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
744 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080
745 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080
746
747 /*
748 * Turns off system power.
749 */
750 static inline void
ia64_sn_power_down(void)751 ia64_sn_power_down(void)
752 {
753 struct ia64_sal_retval ret_stuff;
754 SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
755 while(1)
756 cpu_relax();
757 /* never returns */
758 }
759
760 /**
761 * ia64_sn_fru_capture - tell the system controller to capture hw state
762 *
763 * This routine will call the SAL which will tell the system controller(s)
764 * to capture hw mmr information from each SHub in the system.
765 */
766 static inline u64
ia64_sn_fru_capture(void)767 ia64_sn_fru_capture(void)
768 {
769 struct ia64_sal_retval isrv;
770 SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
771 if (isrv.status)
772 return 0;
773 return isrv.v0;
774 }
775
776 /*
777 * Performs an operation on a PCI bus or slot -- power up, power down
778 * or reset.
779 */
780 static inline u64
ia64_sn_sysctl_iobrick_pci_op(nasid_t n,u64 connection_type,u64 bus,char slot,u64 action)781 ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
782 u64 bus, char slot,
783 u64 action)
784 {
785 struct ia64_sal_retval rv = {0, 0, 0, 0};
786
787 SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
788 bus, (u64) slot, 0, 0);
789 if (rv.status)
790 return rv.v0;
791 return 0;
792 }
793
794
795 /*
796 * Open a subchannel for sending arbitrary data to the system
797 * controller network via the system controller device associated with
798 * 'nasid'. Return the subchannel number or a negative error code.
799 */
800 static inline int
ia64_sn_irtr_open(nasid_t nasid)801 ia64_sn_irtr_open(nasid_t nasid)
802 {
803 struct ia64_sal_retval rv;
804 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
805 0, 0, 0, 0, 0);
806 return (int) rv.v0;
807 }
808
809 /*
810 * Close system controller subchannel 'subch' previously opened on 'nasid'.
811 */
812 static inline int
ia64_sn_irtr_close(nasid_t nasid,int subch)813 ia64_sn_irtr_close(nasid_t nasid, int subch)
814 {
815 struct ia64_sal_retval rv;
816 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
817 (u64) nasid, (u64) subch, 0, 0, 0, 0);
818 return (int) rv.status;
819 }
820
821 /*
822 * Read data from system controller associated with 'nasid' on
823 * subchannel 'subch'. The buffer to be filled is pointed to by
824 * 'buf', and its capacity is in the integer pointed to by 'len'. The
825 * referent of 'len' is set to the number of bytes read by the SAL
826 * call. The return value is either SALRET_OK (for bytes read) or
827 * SALRET_ERROR (for error or "no data available").
828 */
829 static inline int
ia64_sn_irtr_recv(nasid_t nasid,int subch,char * buf,int * len)830 ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
831 {
832 struct ia64_sal_retval rv;
833 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
834 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
835 0, 0);
836 return (int) rv.status;
837 }
838
839 /*
840 * Write data to the system controller network via the system
841 * controller associated with 'nasid' on suchannel 'subch'. The
842 * buffer to be written out is pointed to by 'buf', and 'len' is the
843 * number of bytes to be written. The return value is either the
844 * number of bytes written (which could be zero) or a negative error
845 * code.
846 */
847 static inline int
ia64_sn_irtr_send(nasid_t nasid,int subch,char * buf,int len)848 ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
849 {
850 struct ia64_sal_retval rv;
851 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
852 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
853 0, 0);
854 return (int) rv.v0;
855 }
856
857 /*
858 * Check whether any interrupts are pending for the system controller
859 * associated with 'nasid' and its subchannel 'subch'. The return
860 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
861 * SAL_IROUTER_INTR_RECV).
862 */
863 static inline int
ia64_sn_irtr_intr(nasid_t nasid,int subch)864 ia64_sn_irtr_intr(nasid_t nasid, int subch)
865 {
866 struct ia64_sal_retval rv;
867 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
868 (u64) nasid, (u64) subch, 0, 0, 0, 0);
869 return (int) rv.v0;
870 }
871
872 /*
873 * Enable the interrupt indicated by the intr parameter (either
874 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
875 */
876 static inline int
ia64_sn_irtr_intr_enable(nasid_t nasid,int subch,u64 intr)877 ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
878 {
879 struct ia64_sal_retval rv;
880 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
881 (u64) nasid, (u64) subch, intr, 0, 0, 0);
882 return (int) rv.v0;
883 }
884
885 /*
886 * Disable the interrupt indicated by the intr parameter (either
887 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
888 */
889 static inline int
ia64_sn_irtr_intr_disable(nasid_t nasid,int subch,u64 intr)890 ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
891 {
892 struct ia64_sal_retval rv;
893 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
894 (u64) nasid, (u64) subch, intr, 0, 0, 0);
895 return (int) rv.v0;
896 }
897
898 /*
899 * Set up a node as the point of contact for system controller
900 * environmental event delivery.
901 */
902 static inline int
ia64_sn_sysctl_event_init(nasid_t nasid)903 ia64_sn_sysctl_event_init(nasid_t nasid)
904 {
905 struct ia64_sal_retval rv;
906 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
907 0, 0, 0, 0, 0, 0);
908 return (int) rv.v0;
909 }
910
911 /*
912 * Ask the system controller on the specified nasid to reset
913 * the CX corelet clock. Only valid on TIO nodes.
914 */
915 static inline int
ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)916 ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
917 {
918 struct ia64_sal_retval rv;
919 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
920 nasid, 0, 0, 0, 0, 0);
921 if (rv.status != 0)
922 return (int)rv.status;
923 if (rv.v0 != 0)
924 return (int)rv.v0;
925
926 return 0;
927 }
928
929 /*
930 * Get the associated ioboard type for a given nasid.
931 */
932 static inline s64
ia64_sn_sysctl_ioboard_get(nasid_t nasid,u16 * ioboard)933 ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
934 {
935 struct ia64_sal_retval isrv;
936 SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
937 nasid, 0, 0, 0, 0, 0);
938 if (isrv.v0 != 0) {
939 *ioboard = isrv.v0;
940 return isrv.status;
941 }
942 if (isrv.v1 != 0) {
943 *ioboard = isrv.v1;
944 return isrv.status;
945 }
946
947 return isrv.status;
948 }
949
950 /**
951 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
952 * @nasid: NASID of node to read
953 * @index: FIT entry index to be retrieved (0..n)
954 * @fitentry: 16 byte buffer where FIT entry will be stored.
955 * @banbuf: optional buffer for retrieving banner
956 * @banlen: length of banner buffer
957 *
958 * Access to the physical PROM chips needs to be serialized since reads and
959 * writes can't occur at the same time, so we need to call into the SAL when
960 * we want to look at the FIT entries on the chips.
961 *
962 * Returns:
963 * %SALRET_OK if ok
964 * %SALRET_INVALID_ARG if index too big
965 * %SALRET_NOT_IMPLEMENTED if running on older PROM
966 * ??? if nasid invalid OR banner buffer not large enough
967 */
968 static inline int
ia64_sn_get_fit_compt(u64 nasid,u64 index,void * fitentry,void * banbuf,u64 banlen)969 ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
970 u64 banlen)
971 {
972 struct ia64_sal_retval rv;
973 SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
974 banbuf, banlen, 0, 0);
975 return (int) rv.status;
976 }
977
978 /*
979 * Initialize the SAL components of the system controller
980 * communication driver; specifically pass in a sizable buffer that
981 * can be used for allocation of subchannel queues as new subchannels
982 * are opened. "buf" points to the buffer, and "len" specifies its
983 * length.
984 */
985 static inline int
ia64_sn_irtr_init(nasid_t nasid,void * buf,int len)986 ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
987 {
988 struct ia64_sal_retval rv;
989 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
990 (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
991 return (int) rv.status;
992 }
993
994 /*
995 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
996 *
997 * In:
998 * arg0 - SN_SAL_GET_SAPIC_INFO
999 * arg1 - sapicid (lid >> 16)
1000 * Out:
1001 * v0 - nasid
1002 * v1 - subnode
1003 * v2 - slice
1004 */
1005 static inline u64
ia64_sn_get_sapic_info(int sapicid,int * nasid,int * subnode,int * slice)1006 ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
1007 {
1008 struct ia64_sal_retval ret_stuff;
1009
1010 ret_stuff.status = 0;
1011 ret_stuff.v0 = 0;
1012 ret_stuff.v1 = 0;
1013 ret_stuff.v2 = 0;
1014 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
1015
1016 /***** BEGIN HACK - temp til old proms no longer supported ********/
1017 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1018 if (nasid) *nasid = sapicid & 0xfff;
1019 if (subnode) *subnode = (sapicid >> 13) & 1;
1020 if (slice) *slice = (sapicid >> 12) & 3;
1021 return 0;
1022 }
1023 /***** END HACK *******/
1024
1025 if (ret_stuff.status < 0)
1026 return ret_stuff.status;
1027
1028 if (nasid) *nasid = (int) ret_stuff.v0;
1029 if (subnode) *subnode = (int) ret_stuff.v1;
1030 if (slice) *slice = (int) ret_stuff.v2;
1031 return 0;
1032 }
1033
1034 /*
1035 * Returns information about the HUB/SHUB.
1036 * In:
1037 * arg0 - SN_SAL_GET_SN_INFO
1038 * arg1 - 0 (other values reserved for future use)
1039 * Out:
1040 * v0
1041 * [7:0] - shub type (0=shub1, 1=shub2)
1042 * [15:8] - Log2 max number of nodes in entire system (includes
1043 * C-bricks, I-bricks, etc)
1044 * [23:16] - Log2 of nodes per sharing domain
1045 * [31:24] - partition ID
1046 * [39:32] - coherency_id
1047 * [47:40] - regionsize
1048 * v1
1049 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
1050 * [23:15] - bit position of low nasid bit
1051 */
1052 static inline u64
ia64_sn_get_sn_info(int fc,u8 * shubtype,u16 * nasid_bitmask,u8 * nasid_shift,u8 * systemsize,u8 * sharing_domain_size,u8 * partid,u8 * coher,u8 * reg)1053 ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
1054 u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1055 {
1056 struct ia64_sal_retval ret_stuff;
1057
1058 ret_stuff.status = 0;
1059 ret_stuff.v0 = 0;
1060 ret_stuff.v1 = 0;
1061 ret_stuff.v2 = 0;
1062 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1063
1064 /***** BEGIN HACK - temp til old proms no longer supported ********/
1065 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1066 int nasid = get_sapicid() & 0xfff;
1067 #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1068 #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1069 if (shubtype) *shubtype = 0;
1070 if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1071 if (nasid_shift) *nasid_shift = 38;
1072 if (systemsize) *systemsize = 10;
1073 if (sharing_domain_size) *sharing_domain_size = 8;
1074 if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1075 if (coher) *coher = nasid >> 9;
1076 if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1077 SH_SHUB_ID_NODES_PER_BIT_SHFT;
1078 return 0;
1079 }
1080 /***** END HACK *******/
1081
1082 if (ret_stuff.status < 0)
1083 return ret_stuff.status;
1084
1085 if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1086 if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1087 if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1088 if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1089 if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1090 if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1091 if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1092 if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1093 return 0;
1094 }
1095
1096 /*
1097 * This is the access point to the Altix PROM hardware performance
1098 * and status monitoring interface. For info on using this, see
1099 * arch/ia64/include/asm/sn/sn2/sn_hwperf.h
1100 */
1101 static inline int
ia64_sn_hwperf_op(nasid_t nasid,u64 opcode,u64 a0,u64 a1,u64 a2,u64 a3,u64 a4,int * v0)1102 ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1103 u64 a3, u64 a4, int *v0)
1104 {
1105 struct ia64_sal_retval rv;
1106 SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1107 opcode, a0, a1, a2, a3, a4);
1108 if (v0)
1109 *v0 = (int) rv.v0;
1110 return (int) rv.status;
1111 }
1112
1113 static inline int
ia64_sn_ioif_get_pci_topology(u64 buf,u64 len)1114 ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
1115 {
1116 struct ia64_sal_retval rv;
1117 SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
1118 return (int) rv.status;
1119 }
1120
1121 /*
1122 * BTE error recovery is implemented in SAL
1123 */
1124 static inline int
ia64_sn_bte_recovery(nasid_t nasid)1125 ia64_sn_bte_recovery(nasid_t nasid)
1126 {
1127 struct ia64_sal_retval rv;
1128
1129 rv.status = 0;
1130 SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
1131 if (rv.status == SALRET_NOT_IMPLEMENTED)
1132 return 0;
1133 return (int) rv.status;
1134 }
1135
1136 static inline int
ia64_sn_is_fake_prom(void)1137 ia64_sn_is_fake_prom(void)
1138 {
1139 struct ia64_sal_retval rv;
1140 SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1141 return (rv.status == 0);
1142 }
1143
1144 static inline int
ia64_sn_get_prom_feature_set(int set,unsigned long * feature_set)1145 ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1146 {
1147 struct ia64_sal_retval rv;
1148
1149 SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1150 if (rv.status != 0)
1151 return rv.status;
1152 *feature_set = rv.v0;
1153 return 0;
1154 }
1155
1156 static inline int
ia64_sn_set_os_feature(int feature)1157 ia64_sn_set_os_feature(int feature)
1158 {
1159 struct ia64_sal_retval rv;
1160
1161 SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1162 return rv.status;
1163 }
1164
1165 static inline int
sn_inject_error(u64 paddr,u64 * data,u64 * ecc)1166 sn_inject_error(u64 paddr, u64 *data, u64 *ecc)
1167 {
1168 struct ia64_sal_retval ret_stuff;
1169
1170 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_INJECT_ERROR, paddr, (u64)data,
1171 (u64)ecc, 0, 0, 0, 0);
1172 return ret_stuff.status;
1173 }
1174
1175 static inline int
ia64_sn_set_cpu_number(int cpu)1176 ia64_sn_set_cpu_number(int cpu)
1177 {
1178 struct ia64_sal_retval rv;
1179
1180 SAL_CALL_NOLOCK(rv, SN_SAL_SET_CPU_NUMBER, cpu, 0, 0, 0, 0, 0, 0);
1181 return rv.status;
1182 }
1183 static inline int
ia64_sn_kernel_launch_event(void)1184 ia64_sn_kernel_launch_event(void)
1185 {
1186 struct ia64_sal_retval rv;
1187 SAL_CALL_NOLOCK(rv, SN_SAL_KERNEL_LAUNCH_EVENT, 0, 0, 0, 0, 0, 0, 0);
1188 return rv.status;
1189 }
1190
1191 union sn_watchlist_u {
1192 u64 val;
1193 struct {
1194 u64 blade : 16,
1195 size : 32,
1196 filler : 16;
1197 };
1198 };
1199
1200 static inline int
sn_mq_watchlist_alloc(int blade,void * mq,unsigned int mq_size,unsigned long * intr_mmr_offset)1201 sn_mq_watchlist_alloc(int blade, void *mq, unsigned int mq_size,
1202 unsigned long *intr_mmr_offset)
1203 {
1204 struct ia64_sal_retval rv;
1205 unsigned long addr;
1206 union sn_watchlist_u size_blade;
1207 int watchlist;
1208
1209 addr = (unsigned long)mq;
1210 size_blade.size = mq_size;
1211 size_blade.blade = blade;
1212
1213 /*
1214 * bios returns watchlist number or negative error number.
1215 */
1216 ia64_sal_oemcall_nolock(&rv, SN_SAL_WATCHLIST_ALLOC, addr,
1217 size_blade.val, (u64)intr_mmr_offset,
1218 (u64)&watchlist, 0, 0, 0);
1219 if (rv.status < 0)
1220 return rv.status;
1221
1222 return watchlist;
1223 }
1224
1225 static inline int
sn_mq_watchlist_free(int blade,int watchlist_num)1226 sn_mq_watchlist_free(int blade, int watchlist_num)
1227 {
1228 struct ia64_sal_retval rv;
1229 ia64_sal_oemcall_nolock(&rv, SN_SAL_WATCHLIST_FREE, blade,
1230 watchlist_num, 0, 0, 0, 0, 0);
1231 return rv.status;
1232 }
1233 #endif /* _ASM_IA64_SN_SN_SAL_H */
1234