• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * include/asm-xtensa/pgtable.h
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Copyright (C) 2001 - 2007 Tensilica Inc.
9  */
10 
11 #ifndef _XTENSA_PGTABLE_H
12 #define _XTENSA_PGTABLE_H
13 
14 #include <asm-generic/pgtable-nopmd.h>
15 #include <asm/page.h>
16 
17 /*
18  * We only use two ring levels, user and kernel space.
19  */
20 
21 #define USER_RING		1	/* user ring level */
22 #define KERNEL_RING		0	/* kernel ring level */
23 
24 /*
25  * The Xtensa architecture port of Linux has a two-level page table system,
26  * i.e. the logical three-level Linux page table layout is folded.
27  * Each task has the following memory page tables:
28  *
29  *   PGD table (page directory), ie. 3rd-level page table:
30  *	One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
31  *	(Architectures that don't have the PMD folded point to the PMD tables)
32  *
33  *	The pointer to the PGD table for a given task can be retrieved from
34  *	the task structure (struct task_struct*) t, e.g. current():
35  *	  (t->mm ? t->mm : t->active_mm)->pgd
36  *
37  *   PMD tables (page middle-directory), ie. 2nd-level page tables:
38  *	Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
39  *
40  *   PTE tables (page table entry), ie. 1st-level page tables:
41  *	One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
42  *	invalid_pte_table for absent mappings.
43  *
44  * The individual pages are 4 kB big with special pages for the empty_zero_page.
45  */
46 
47 #define PGDIR_SHIFT	22
48 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
49 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
50 
51 /*
52  * Entries per page directory level: we use two-level, so
53  * we don't really have any PMD directory physically.
54  */
55 #define PTRS_PER_PTE		1024
56 #define PTRS_PER_PTE_SHIFT	10
57 #define PTRS_PER_PGD		1024
58 #define PGD_ORDER		0
59 #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
60 #define FIRST_USER_ADDRESS	0
61 #define FIRST_USER_PGD_NR	(FIRST_USER_ADDRESS >> PGDIR_SHIFT)
62 
63 /*
64  * Virtual memory area. We keep a distance to other memory regions to be
65  * on the safe side. We also use this area for cache aliasing.
66  */
67 
68 #define VMALLOC_START		0xC0000000
69 #define VMALLOC_END		0xC7FEFFFF
70 #define TLBTEMP_BASE_1		0xC7FF0000
71 #define TLBTEMP_BASE_2		0xC7FF8000
72 
73 /*
74  * Xtensa Linux config PTE layout (when present):
75  *	31-12:	PPN
76  *	11-6:	Software
77  *	5-4:	RING
78  *	3-0:	CA
79  *
80  * Similar to the Alpha and MIPS ports, we need to keep track of the ref
81  * and mod bits in software.  We have a software "you can read
82  * from this page" bit, and a hardware one which actually lets the
83  * process read from the page.  On the same token we have a software
84  * writable bit and the real hardware one which actually lets the
85  * process write to the page.
86  *
87  * See further below for PTE layout for swapped-out pages.
88  */
89 
90 #define _PAGE_HW_EXEC		(1<<0)	/* hardware: page is executable */
91 #define _PAGE_HW_WRITE		(1<<1)	/* hardware: page is writable */
92 
93 #define _PAGE_FILE		(1<<1)	/* non-linear mapping, if !present */
94 #define _PAGE_PROTNONE		(3<<0)	/* special case for VM_PROT_NONE */
95 
96 /* None of these cache modes include MP coherency:  */
97 #define _PAGE_CA_BYPASS		(0<<2)	/* bypass, non-speculative */
98 #define _PAGE_CA_WB		(1<<2)	/* write-back */
99 #define _PAGE_CA_WT		(2<<2)	/* write-through */
100 #define _PAGE_CA_MASK		(3<<2)
101 #define _PAGE_INVALID		(3<<2)
102 
103 #define _PAGE_USER		(1<<4)	/* user access (ring=1) */
104 
105 /* Software */
106 #define _PAGE_WRITABLE_BIT	6
107 #define _PAGE_WRITABLE		(1<<6)	/* software: page writable */
108 #define _PAGE_DIRTY		(1<<7)	/* software: page dirty */
109 #define _PAGE_ACCESSED		(1<<8)	/* software: page accessed (read) */
110 
111 /* On older HW revisions, we always have to set bit 0 */
112 #if XCHAL_HW_VERSION_MAJOR < 2000
113 # define _PAGE_VALID		(1<<0)
114 #else
115 # define _PAGE_VALID		0
116 #endif
117 
118 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
119 #define _PAGE_PRESENT	(_PAGE_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
120 
121 #ifdef CONFIG_MMU
122 
123 #define PAGE_NONE	   __pgprot(_PAGE_INVALID | _PAGE_USER | _PAGE_PROTNONE)
124 #define PAGE_COPY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
125 #define PAGE_COPY_EXEC	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
126 #define PAGE_READONLY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
127 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
128 #define PAGE_SHARED	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
129 #define PAGE_SHARED_EXEC \
130 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
131 #define PAGE_KERNEL	   __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
132 #define PAGE_KERNEL_EXEC   __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
133 
134 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
135 # define _PAGE_DIRECTORY (_PAGE_VALID | _PAGE_ACCESSED)
136 #else
137 # define _PAGE_DIRECTORY (_PAGE_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
138 #endif
139 
140 #else /* no mmu */
141 
142 # define PAGE_NONE       __pgprot(0)
143 # define PAGE_SHARED     __pgprot(0)
144 # define PAGE_COPY       __pgprot(0)
145 # define PAGE_READONLY   __pgprot(0)
146 # define PAGE_KERNEL     __pgprot(0)
147 
148 #endif
149 
150 /*
151  * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
152  * the MMU can't do page protection for execute, and considers that the same as
153  * read.  Also, write permissions may imply read permissions.
154  * What follows is the closest we can get by reasonable means..
155  * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
156  */
157 #define __P000	PAGE_NONE		/* private --- */
158 #define __P001	PAGE_READONLY		/* private --r */
159 #define __P010	PAGE_COPY		/* private -w- */
160 #define __P011	PAGE_COPY		/* private -wr */
161 #define __P100	PAGE_READONLY_EXEC	/* private x-- */
162 #define __P101	PAGE_READONLY_EXEC	/* private x-r */
163 #define __P110	PAGE_COPY_EXEC		/* private xw- */
164 #define __P111	PAGE_COPY_EXEC		/* private xwr */
165 
166 #define __S000	PAGE_NONE		/* shared  --- */
167 #define __S001	PAGE_READONLY		/* shared  --r */
168 #define __S010	PAGE_SHARED		/* shared  -w- */
169 #define __S011	PAGE_SHARED		/* shared  -wr */
170 #define __S100	PAGE_READONLY_EXEC	/* shared  x-- */
171 #define __S101	PAGE_READONLY_EXEC	/* shared  x-r */
172 #define __S110	PAGE_SHARED_EXEC	/* shared  xw- */
173 #define __S111	PAGE_SHARED_EXEC	/* shared  xwr */
174 
175 #ifndef __ASSEMBLY__
176 
177 #define pte_ERROR(e) \
178 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
179 #define pgd_ERROR(e) \
180 	printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
181 
182 extern unsigned long empty_zero_page[1024];
183 
184 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
185 
186 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
187 
188 /*
189  * The pmd contains the kernel virtual address of the pte page.
190  */
191 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
192 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
193 
194 /*
195  * pte status.
196  */
197 #define pte_none(pte)	 (pte_val(pte) == _PAGE_INVALID)
198 #define pte_present(pte)						\
199 	(((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_INVALID)		\
200 	 || ((pte_val(pte) & _PAGE_PROTNONE) == _PAGE_PROTNONE))
201 #define pte_clear(mm,addr,ptep)						\
202 	do { update_pte(ptep, __pte(_PAGE_INVALID)); } while(0)
203 
204 #define pmd_none(pmd)	 (!pmd_val(pmd))
205 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
206 #define pmd_bad(pmd)	 (pmd_val(pmd) & ~PAGE_MASK)
207 #define pmd_clear(pmdp)	 do { set_pmd(pmdp, __pmd(0)); } while (0)
208 
pte_write(pte_t pte)209 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
pte_dirty(pte_t pte)210 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)211 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
pte_file(pte_t pte)212 static inline int pte_file(pte_t pte)  { return pte_val(pte) & _PAGE_FILE; }
pte_special(pte_t pte)213 static inline int pte_special(pte_t pte) { return 0; }
214 
pte_wrprotect(pte_t pte)215 static inline pte_t pte_wrprotect(pte_t pte)
216 	{ pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
pte_mkclean(pte_t pte)217 static inline pte_t pte_mkclean(pte_t pte)
218 	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
pte_mkold(pte_t pte)219 static inline pte_t pte_mkold(pte_t pte)
220 	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_mkdirty(pte_t pte)221 static inline pte_t pte_mkdirty(pte_t pte)
222 	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)223 static inline pte_t pte_mkyoung(pte_t pte)
224 	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)225 static inline pte_t pte_mkwrite(pte_t pte)
226 	{ pte_val(pte) |= _PAGE_WRITABLE; return pte; }
pte_mkspecial(pte_t pte)227 static inline pte_t pte_mkspecial(pte_t pte)
228 	{ return pte; }
229 
230 /*
231  * Conversion functions: convert a page and protection to a page entry,
232  * and a page entry and page directory to the page they refer to.
233  */
234 
235 #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
236 #define pte_same(a,b)		(pte_val(a) == pte_val(b))
237 #define pte_page(x)		pfn_to_page(pte_pfn(x))
238 #define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
239 #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)
240 
pte_modify(pte_t pte,pgprot_t newprot)241 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
242 {
243 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
244 }
245 
246 /*
247  * Certain architectures need to do special things when pte's
248  * within a page table are directly modified.  Thus, the following
249  * hook is made available.
250  */
update_pte(pte_t * ptep,pte_t pteval)251 static inline void update_pte(pte_t *ptep, pte_t pteval)
252 {
253 	*ptep = pteval;
254 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
255 	__asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
256 #endif
257 
258 }
259 
260 struct mm_struct;
261 
262 static inline void
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)263 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
264 {
265 	update_pte(ptep, pteval);
266 }
267 
268 
269 static inline void
set_pmd(pmd_t * pmdp,pmd_t pmdval)270 set_pmd(pmd_t *pmdp, pmd_t pmdval)
271 {
272 	*pmdp = pmdval;
273 }
274 
275 struct vm_area_struct;
276 
277 static inline int
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)278 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
279     			  pte_t *ptep)
280 {
281 	pte_t pte = *ptep;
282 	if (!pte_young(pte))
283 		return 0;
284 	update_pte(ptep, pte_mkold(pte));
285 	return 1;
286 }
287 
288 static inline pte_t
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)289 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
290 {
291 	pte_t pte = *ptep;
292 	pte_clear(mm, addr, ptep);
293 	return pte;
294 }
295 
296 static inline void
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)297 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
298 {
299   	pte_t pte = *ptep;
300   	update_pte(ptep, pte_wrprotect(pte));
301 }
302 
303 /* to find an entry in a kernel page-table-directory */
304 #define pgd_offset_k(address)	pgd_offset(&init_mm, address)
305 
306 /* to find an entry in a page-table-directory */
307 #define pgd_offset(mm,address)	((mm)->pgd + pgd_index(address))
308 
309 #define pgd_index(address)	((address) >> PGDIR_SHIFT)
310 
311 /* Find an entry in the second-level page table.. */
312 #define pmd_offset(dir,address) ((pmd_t*)(dir))
313 
314 /* Find an entry in the third-level page table.. */
315 #define pte_index(address)	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
316 #define pte_offset_kernel(dir,addr) 					\
317 	((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
318 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir),(addr))
319 #define pte_offset_map_nested(dir,addr)	pte_offset_kernel((dir),(addr))
320 
321 #define pte_unmap(pte)		do { } while (0)
322 #define pte_unmap_nested(pte)	do { } while (0)
323 
324 
325 /*
326  * Encode and decode a swap entry.
327  *
328  * Format of swap pte:
329  *  bit	   0	   MBZ
330  *  bit	   1	   page-file (must be zero)
331  *  bits   2 -  3  page hw access mode (must be 11: _PAGE_INVALID)
332  *  bits   4 -  5  ring protection (must be 01: _PAGE_USER)
333  *  bits   6 - 10  swap type (5 bits -> 32 types)
334  *  bits  11 - 31  swap offset / PAGE_SIZE (21 bits -> 8GB)
335 
336  * Format of file pte:
337  *  bit	   0	   MBZ
338  *  bit	   1	   page-file (must be one: _PAGE_FILE)
339  *  bits   2 -  3  page hw access mode (must be 11: _PAGE_INVALID)
340  *  bits   4 -  5  ring protection (must be 01: _PAGE_USER)
341  *  bits   6 - 31  file offset / PAGE_SIZE
342  */
343 
344 #define __swp_type(entry)	(((entry).val >> 6) & 0x1f)
345 #define __swp_offset(entry)	((entry).val >> 11)
346 #define __swp_entry(type,offs)	\
347 	((swp_entry_t) {((type) << 6) | ((offs) << 11) | _PAGE_INVALID})
348 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
349 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
350 
351 #define PTE_FILE_MAX_BITS	28
352 #define pte_to_pgoff(pte)	(pte_val(pte) >> 4)
353 #define pgoff_to_pte(off)	\
354 	((pte_t) { ((off) << 4) | _PAGE_INVALID | _PAGE_FILE })
355 
356 #endif /*  !defined (__ASSEMBLY__) */
357 
358 
359 #ifdef __ASSEMBLY__
360 
361 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
362  *                _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
363  *                _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
364  *                _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
365  *
366  * Note: We require an additional temporary register which can be the same as
367  *       the register that holds the address.
368  *
369  * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
370  *
371  */
372 #define _PGD_INDEX(rt,rs)	extui	rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
373 #define _PTE_INDEX(rt,rs)	extui	rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
374 
375 #define _PGD_OFFSET(mm,adr,tmp)		l32i	mm, mm, MM_PGD;		\
376 					_PGD_INDEX(tmp, adr);		\
377 					addx4	mm, tmp, mm
378 
379 #define _PTE_OFFSET(pmd,adr,tmp)	_PTE_INDEX(tmp, adr);		\
380 					srli	pmd, pmd, PAGE_SHIFT;	\
381 					slli	pmd, pmd, PAGE_SHIFT;	\
382 					addx4	pmd, tmp, pmd
383 
384 #else
385 
386 extern void paging_init(void);
387 
388 #define kern_addr_valid(addr)	(1)
389 
390 extern  void update_mmu_cache(struct vm_area_struct * vma,
391 			      unsigned long address, pte_t pte);
392 
393 /*
394  * remap a physical page `pfn' of size `size' with page protection `prot'
395  * into virtual address `from'
396  */
397 
398 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
399                 remap_pfn_range(vma, from, pfn, size, prot)
400 
401 
402 extern void pgtable_cache_init(void);
403 
404 typedef pte_t *pte_addr_t;
405 
406 #endif /* !defined (__ASSEMBLY__) */
407 
408 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
409 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
410 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
411 #define __HAVE_ARCH_PTEP_MKDIRTY
412 #define __HAVE_ARCH_PTE_SAME
413 
414 #include <asm-generic/pgtable.h>
415 
416 #endif /* _XTENSA_PGTABLE_H */
417