1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3
4 #define FIRST_USER_ADDRESS 0
5
6 #define _PAGE_BIT_PRESENT 0 /* is present */
7 #define _PAGE_BIT_RW 1 /* writeable */
8 #define _PAGE_BIT_USER 2 /* userspace addressable */
9 #define _PAGE_BIT_PWT 3 /* page write through */
10 #define _PAGE_BIT_PCD 4 /* page cache disabled */
11 #define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */
12 #define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */
13 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */
14 #define _PAGE_BIT_PAT 7 /* on 4KB pages */
15 #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
16 #define _PAGE_BIT_UNUSED1 9 /* available for programmer */
17 #define _PAGE_BIT_IOMAP 10 /* flag used to indicate IO mapping */
18 #define _PAGE_BIT_UNUSED3 11
19 #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */
20 #define _PAGE_BIT_SPECIAL _PAGE_BIT_UNUSED1
21 #define _PAGE_BIT_CPA_TEST _PAGE_BIT_UNUSED1
22 #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
23
24 /* If _PAGE_BIT_PRESENT is clear, we use these: */
25 /* - if the user mapped it with PROT_NONE; pte_present gives true */
26 #define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL
27 /* - set: nonlinear file mapping, saved PTE; unset:swap */
28 #define _PAGE_BIT_FILE _PAGE_BIT_DIRTY
29
30 #define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT)
31 #define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW)
32 #define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER)
33 #define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT)
34 #define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD)
35 #define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED)
36 #define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY)
37 #define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE)
38 #define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL)
39 #define _PAGE_UNUSED1 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED1)
40 #define _PAGE_IOMAP (_AT(pteval_t, 1) << _PAGE_BIT_IOMAP)
41 #define _PAGE_UNUSED3 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED3)
42 #define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT)
43 #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE)
44 #define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL)
45 #define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST)
46 #define __HAVE_ARCH_PTE_SPECIAL
47
48 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
49 #define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX)
50 #else
51 #define _PAGE_NX (_AT(pteval_t, 0))
52 #endif
53
54 #define _PAGE_FILE (_AT(pteval_t, 1) << _PAGE_BIT_FILE)
55 #define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE)
56
57 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
58 _PAGE_ACCESSED | _PAGE_DIRTY)
59 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \
60 _PAGE_DIRTY)
61
62 /* Set of bits not changed in pte_modify */
63 #define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \
64 _PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY)
65
66 #define _PAGE_CACHE_MASK (_PAGE_PCD | _PAGE_PWT)
67 #define _PAGE_CACHE_WB (0)
68 #define _PAGE_CACHE_WC (_PAGE_PWT)
69 #define _PAGE_CACHE_UC_MINUS (_PAGE_PCD)
70 #define _PAGE_CACHE_UC (_PAGE_PCD | _PAGE_PWT)
71
72 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
73 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
74 _PAGE_ACCESSED | _PAGE_NX)
75
76 #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | \
77 _PAGE_USER | _PAGE_ACCESSED)
78 #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
79 _PAGE_ACCESSED | _PAGE_NX)
80 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
81 _PAGE_ACCESSED)
82 #define PAGE_COPY PAGE_COPY_NOEXEC
83 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
84 _PAGE_ACCESSED | _PAGE_NX)
85 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
86 _PAGE_ACCESSED)
87
88 #define __PAGE_KERNEL_EXEC \
89 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL)
90 #define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX)
91
92 #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
93 #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW)
94 #define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT)
95 #define __PAGE_KERNEL_WC (__PAGE_KERNEL | _PAGE_CACHE_WC)
96 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT)
97 #define __PAGE_KERNEL_UC_MINUS (__PAGE_KERNEL | _PAGE_PCD)
98 #define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER)
99 #define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT)
100 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
101 #define __PAGE_KERNEL_LARGE_NOCACHE (__PAGE_KERNEL | _PAGE_CACHE_UC | _PAGE_PSE)
102 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
103
104 #define __PAGE_KERNEL_IO (__PAGE_KERNEL | _PAGE_IOMAP)
105 #define __PAGE_KERNEL_IO_NOCACHE (__PAGE_KERNEL_NOCACHE | _PAGE_IOMAP)
106 #define __PAGE_KERNEL_IO_UC_MINUS (__PAGE_KERNEL_UC_MINUS | _PAGE_IOMAP)
107 #define __PAGE_KERNEL_IO_WC (__PAGE_KERNEL_WC | _PAGE_IOMAP)
108
109 #define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
110 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
111 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
112 #define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX)
113 #define PAGE_KERNEL_WC __pgprot(__PAGE_KERNEL_WC)
114 #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
115 #define PAGE_KERNEL_UC_MINUS __pgprot(__PAGE_KERNEL_UC_MINUS)
116 #define PAGE_KERNEL_EXEC_NOCACHE __pgprot(__PAGE_KERNEL_EXEC_NOCACHE)
117 #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
118 #define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE)
119 #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
120 #define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL)
121 #define PAGE_KERNEL_VSYSCALL_NOCACHE __pgprot(__PAGE_KERNEL_VSYSCALL_NOCACHE)
122
123 #define PAGE_KERNEL_IO __pgprot(__PAGE_KERNEL_IO)
124 #define PAGE_KERNEL_IO_NOCACHE __pgprot(__PAGE_KERNEL_IO_NOCACHE)
125 #define PAGE_KERNEL_IO_UC_MINUS __pgprot(__PAGE_KERNEL_IO_UC_MINUS)
126 #define PAGE_KERNEL_IO_WC __pgprot(__PAGE_KERNEL_IO_WC)
127
128 /* xwr */
129 #define __P000 PAGE_NONE
130 #define __P001 PAGE_READONLY
131 #define __P010 PAGE_COPY
132 #define __P011 PAGE_COPY
133 #define __P100 PAGE_READONLY_EXEC
134 #define __P101 PAGE_READONLY_EXEC
135 #define __P110 PAGE_COPY_EXEC
136 #define __P111 PAGE_COPY_EXEC
137
138 #define __S000 PAGE_NONE
139 #define __S001 PAGE_READONLY
140 #define __S010 PAGE_SHARED
141 #define __S011 PAGE_SHARED
142 #define __S100 PAGE_READONLY_EXEC
143 #define __S101 PAGE_READONLY_EXEC
144 #define __S110 PAGE_SHARED_EXEC
145 #define __S111 PAGE_SHARED_EXEC
146
147 /*
148 * early identity mapping pte attrib macros.
149 */
150 #ifdef CONFIG_X86_64
151 #define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC
152 #else
153 /*
154 * For PDE_IDENT_ATTR include USER bit. As the PDE and PTE protection
155 * bits are combined, this will alow user to access the high address mapped
156 * VDSO in the presence of CONFIG_COMPAT_VDSO
157 */
158 #define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */
159 #define PDE_IDENT_ATTR 0x067 /* PRESENT+RW+USER+DIRTY+ACCESSED */
160 #define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */
161 #endif
162
163 /*
164 * Macro to mark a page protection value as UC-
165 */
166 #define pgprot_noncached(prot) \
167 ((boot_cpu_data.x86 > 3) \
168 ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \
169 : (prot))
170
171 #ifndef __ASSEMBLY__
172
173 #define pgprot_writecombine pgprot_writecombine
174 extern pgprot_t pgprot_writecombine(pgprot_t prot);
175
176 /*
177 * ZERO_PAGE is a global shared page that is always zero: used
178 * for zero-mapped memory areas etc..
179 */
180 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
181 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
182
183 extern spinlock_t pgd_lock;
184 extern struct list_head pgd_list;
185
186 /*
187 * The following only work if pte_present() is true.
188 * Undefined behaviour if not..
189 */
pte_dirty(pte_t pte)190 static inline int pte_dirty(pte_t pte)
191 {
192 return pte_flags(pte) & _PAGE_DIRTY;
193 }
194
pte_young(pte_t pte)195 static inline int pte_young(pte_t pte)
196 {
197 return pte_flags(pte) & _PAGE_ACCESSED;
198 }
199
pte_write(pte_t pte)200 static inline int pte_write(pte_t pte)
201 {
202 return pte_flags(pte) & _PAGE_RW;
203 }
204
pte_file(pte_t pte)205 static inline int pte_file(pte_t pte)
206 {
207 return pte_flags(pte) & _PAGE_FILE;
208 }
209
pte_huge(pte_t pte)210 static inline int pte_huge(pte_t pte)
211 {
212 return pte_flags(pte) & _PAGE_PSE;
213 }
214
pte_global(pte_t pte)215 static inline int pte_global(pte_t pte)
216 {
217 return pte_flags(pte) & _PAGE_GLOBAL;
218 }
219
pte_exec(pte_t pte)220 static inline int pte_exec(pte_t pte)
221 {
222 return !(pte_flags(pte) & _PAGE_NX);
223 }
224
pte_special(pte_t pte)225 static inline int pte_special(pte_t pte)
226 {
227 return pte_flags(pte) & _PAGE_SPECIAL;
228 }
229
pte_pfn(pte_t pte)230 static inline unsigned long pte_pfn(pte_t pte)
231 {
232 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
233 }
234
235 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
236
pmd_large(pmd_t pte)237 static inline int pmd_large(pmd_t pte)
238 {
239 return (pmd_val(pte) & (_PAGE_PSE | _PAGE_PRESENT)) ==
240 (_PAGE_PSE | _PAGE_PRESENT);
241 }
242
pte_mkclean(pte_t pte)243 static inline pte_t pte_mkclean(pte_t pte)
244 {
245 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
246 }
247
pte_mkold(pte_t pte)248 static inline pte_t pte_mkold(pte_t pte)
249 {
250 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
251 }
252
pte_wrprotect(pte_t pte)253 static inline pte_t pte_wrprotect(pte_t pte)
254 {
255 return __pte(pte_val(pte) & ~_PAGE_RW);
256 }
257
pte_mkexec(pte_t pte)258 static inline pte_t pte_mkexec(pte_t pte)
259 {
260 return __pte(pte_val(pte) & ~_PAGE_NX);
261 }
262
pte_mkdirty(pte_t pte)263 static inline pte_t pte_mkdirty(pte_t pte)
264 {
265 return __pte(pte_val(pte) | _PAGE_DIRTY);
266 }
267
pte_mkyoung(pte_t pte)268 static inline pte_t pte_mkyoung(pte_t pte)
269 {
270 return __pte(pte_val(pte) | _PAGE_ACCESSED);
271 }
272
pte_mkwrite(pte_t pte)273 static inline pte_t pte_mkwrite(pte_t pte)
274 {
275 return __pte(pte_val(pte) | _PAGE_RW);
276 }
277
pte_mkhuge(pte_t pte)278 static inline pte_t pte_mkhuge(pte_t pte)
279 {
280 return __pte(pte_val(pte) | _PAGE_PSE);
281 }
282
pte_clrhuge(pte_t pte)283 static inline pte_t pte_clrhuge(pte_t pte)
284 {
285 return __pte(pte_val(pte) & ~_PAGE_PSE);
286 }
287
pte_mkglobal(pte_t pte)288 static inline pte_t pte_mkglobal(pte_t pte)
289 {
290 return __pte(pte_val(pte) | _PAGE_GLOBAL);
291 }
292
pte_clrglobal(pte_t pte)293 static inline pte_t pte_clrglobal(pte_t pte)
294 {
295 return __pte(pte_val(pte) & ~_PAGE_GLOBAL);
296 }
297
pte_mkspecial(pte_t pte)298 static inline pte_t pte_mkspecial(pte_t pte)
299 {
300 return __pte(pte_val(pte) | _PAGE_SPECIAL);
301 }
302
303 extern pteval_t __supported_pte_mask;
304
305 /*
306 * Mask out unsupported bits in a present pgprot. Non-present pgprots
307 * can use those bits for other purposes, so leave them be.
308 */
massage_pgprot(pgprot_t pgprot)309 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
310 {
311 pgprotval_t protval = pgprot_val(pgprot);
312
313 if (protval & _PAGE_PRESENT)
314 protval &= __supported_pte_mask;
315
316 return protval;
317 }
318
pfn_pte(unsigned long page_nr,pgprot_t pgprot)319 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
320 {
321 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
322 massage_pgprot(pgprot));
323 }
324
pfn_pmd(unsigned long page_nr,pgprot_t pgprot)325 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
326 {
327 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
328 massage_pgprot(pgprot));
329 }
330
pte_modify(pte_t pte,pgprot_t newprot)331 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
332 {
333 pteval_t val = pte_val(pte);
334
335 /*
336 * Chop off the NX bit (if present), and add the NX portion of
337 * the newprot (if present):
338 */
339 val &= _PAGE_CHG_MASK;
340 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
341
342 return __pte(val);
343 }
344
345 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
346 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)347 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
348 {
349 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
350 pgprotval_t addbits = pgprot_val(newprot);
351 return __pgprot(preservebits | addbits);
352 }
353
354 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK)
355
356 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
357
is_new_memtype_allowed(unsigned long flags,unsigned long new_flags)358 static inline int is_new_memtype_allowed(unsigned long flags,
359 unsigned long new_flags)
360 {
361 /*
362 * Certain new memtypes are not allowed with certain
363 * requested memtype:
364 * - request is uncached, return cannot be write-back
365 * - request is write-combine, return cannot be write-back
366 */
367 if ((flags == _PAGE_CACHE_UC_MINUS &&
368 new_flags == _PAGE_CACHE_WB) ||
369 (flags == _PAGE_CACHE_WC &&
370 new_flags == _PAGE_CACHE_WB)) {
371 return 0;
372 }
373
374 return 1;
375 }
376
377 #ifndef __ASSEMBLY__
378 /* Indicate that x86 has its own track and untrack pfn vma functions */
379 #define __HAVE_PFNMAP_TRACKING
380
381 #define __HAVE_PHYS_MEM_ACCESS_PROT
382 struct file;
383 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
384 unsigned long size, pgprot_t vma_prot);
385 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
386 unsigned long size, pgprot_t *vma_prot);
387 #endif
388
389 /* Install a pte for a particular vaddr in kernel space. */
390 void set_pte_vaddr(unsigned long vaddr, pte_t pte);
391
392 #ifdef CONFIG_X86_32
393 extern void native_pagetable_setup_start(pgd_t *base);
394 extern void native_pagetable_setup_done(pgd_t *base);
395 #else
native_pagetable_setup_start(pgd_t * base)396 static inline void native_pagetable_setup_start(pgd_t *base) {}
native_pagetable_setup_done(pgd_t * base)397 static inline void native_pagetable_setup_done(pgd_t *base) {}
398 #endif
399
400 struct seq_file;
401 extern void arch_report_meminfo(struct seq_file *m);
402
403 #ifdef CONFIG_PARAVIRT
404 #include <asm/paravirt.h>
405 #else /* !CONFIG_PARAVIRT */
406 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
407 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
408
409 #define set_pte_present(mm, addr, ptep, pte) \
410 native_set_pte_present(mm, addr, ptep, pte)
411 #define set_pte_atomic(ptep, pte) \
412 native_set_pte_atomic(ptep, pte)
413
414 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
415
416 #ifndef __PAGETABLE_PUD_FOLDED
417 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
418 #define pgd_clear(pgd) native_pgd_clear(pgd)
419 #endif
420
421 #ifndef set_pud
422 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
423 #endif
424
425 #ifndef __PAGETABLE_PMD_FOLDED
426 #define pud_clear(pud) native_pud_clear(pud)
427 #endif
428
429 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
430 #define pmd_clear(pmd) native_pmd_clear(pmd)
431
432 #define pte_update(mm, addr, ptep) do { } while (0)
433 #define pte_update_defer(mm, addr, ptep) do { } while (0)
434
paravirt_pagetable_setup_start(pgd_t * base)435 static inline void __init paravirt_pagetable_setup_start(pgd_t *base)
436 {
437 native_pagetable_setup_start(base);
438 }
439
paravirt_pagetable_setup_done(pgd_t * base)440 static inline void __init paravirt_pagetable_setup_done(pgd_t *base)
441 {
442 native_pagetable_setup_done(base);
443 }
444 #endif /* CONFIG_PARAVIRT */
445
446 #endif /* __ASSEMBLY__ */
447
448 #ifdef CONFIG_X86_32
449 # include "pgtable_32.h"
450 #else
451 # include "pgtable_64.h"
452 #endif
453
454 /*
455 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
456 *
457 * this macro returns the index of the entry in the pgd page which would
458 * control the given virtual address
459 */
460 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
461
462 /*
463 * pgd_offset() returns a (pgd_t *)
464 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
465 */
466 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
467 /*
468 * a shortcut which implies the use of the kernel's pgd, instead
469 * of a process's
470 */
471 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
472
473
474 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
475 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
476
477 #ifndef __ASSEMBLY__
478
479 enum {
480 PG_LEVEL_NONE,
481 PG_LEVEL_4K,
482 PG_LEVEL_2M,
483 PG_LEVEL_1G,
484 PG_LEVEL_NUM
485 };
486
487 #ifdef CONFIG_PROC_FS
488 extern void update_page_count(int level, unsigned long pages);
489 #else
update_page_count(int level,unsigned long pages)490 static inline void update_page_count(int level, unsigned long pages) { }
491 #endif
492
493 /*
494 * Helper function that returns the kernel pagetable entry controlling
495 * the virtual address 'address'. NULL means no pagetable entry present.
496 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
497 * as a pte too.
498 */
499 extern pte_t *lookup_address(unsigned long address, unsigned int *level);
500
501 /* local pte updates need not use xchg for locking */
native_local_ptep_get_and_clear(pte_t * ptep)502 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
503 {
504 pte_t res = *ptep;
505
506 /* Pure native function needs no input for mm, addr */
507 native_pte_clear(NULL, 0, ptep);
508 return res;
509 }
510
native_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)511 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
512 pte_t *ptep , pte_t pte)
513 {
514 native_set_pte(ptep, pte);
515 }
516
517 #ifndef CONFIG_PARAVIRT
518 /*
519 * Rules for using pte_update - it must be called after any PTE update which
520 * has not been done using the set_pte / clear_pte interfaces. It is used by
521 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
522 * updates should either be sets, clears, or set_pte_atomic for P->P
523 * transitions, which means this hook should only be called for user PTEs.
524 * This hook implies a P->P protection or access change has taken place, which
525 * requires a subsequent TLB flush. The notification can optionally be delayed
526 * until the TLB flush event by using the pte_update_defer form of the
527 * interface, but care must be taken to assure that the flush happens while
528 * still holding the same page table lock so that the shadow and primary pages
529 * do not become out of sync on SMP.
530 */
531 #define pte_update(mm, addr, ptep) do { } while (0)
532 #define pte_update_defer(mm, addr, ptep) do { } while (0)
533 #endif
534
535 /*
536 * We only update the dirty/accessed state if we set
537 * the dirty bit by hand in the kernel, since the hardware
538 * will do the accessed bit for us, and we don't want to
539 * race with other CPU's that might be updating the dirty
540 * bit at the same time.
541 */
542 struct vm_area_struct;
543
544 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
545 extern int ptep_set_access_flags(struct vm_area_struct *vma,
546 unsigned long address, pte_t *ptep,
547 pte_t entry, int dirty);
548
549 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
550 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
551 unsigned long addr, pte_t *ptep);
552
553 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
554 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
555 unsigned long address, pte_t *ptep);
556
557 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)558 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
559 pte_t *ptep)
560 {
561 pte_t pte = native_ptep_get_and_clear(ptep);
562 pte_update(mm, addr, ptep);
563 return pte;
564 }
565
566 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)567 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
568 unsigned long addr, pte_t *ptep,
569 int full)
570 {
571 pte_t pte;
572 if (full) {
573 /*
574 * Full address destruction in progress; paravirt does not
575 * care about updates and native needs no locking
576 */
577 pte = native_local_ptep_get_and_clear(ptep);
578 } else {
579 pte = ptep_get_and_clear(mm, addr, ptep);
580 }
581 return pte;
582 }
583
584 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)585 static inline void ptep_set_wrprotect(struct mm_struct *mm,
586 unsigned long addr, pte_t *ptep)
587 {
588 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
589 pte_update(mm, addr, ptep);
590 }
591
592 /*
593 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
594 *
595 * dst - pointer to pgd range anwhere on a pgd page
596 * src - ""
597 * count - the number of pgds to copy.
598 *
599 * dst and src can be on the same page, but the range must not overlap,
600 * and must not cross a page boundary.
601 */
clone_pgd_range(pgd_t * dst,pgd_t * src,int count)602 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
603 {
604 memcpy(dst, src, count * sizeof(pgd_t));
605 }
606
607
608 #include <asm-generic/pgtable.h>
609 #endif /* __ASSEMBLY__ */
610
611 #endif /* _ASM_X86_PGTABLE_H */
612