• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/memcontrol.h>
51 #include <linux/mmu_notifier.h>
52 #include <linux/migrate.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include "internal.h"
57 
58 static struct kmem_cache *anon_vma_cachep;
59 
anon_vma_alloc(void)60 static inline struct anon_vma *anon_vma_alloc(void)
61 {
62 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63 }
64 
anon_vma_free(struct anon_vma * anon_vma)65 static inline void anon_vma_free(struct anon_vma *anon_vma)
66 {
67 	kmem_cache_free(anon_vma_cachep, anon_vma);
68 }
69 
70 /**
71  * anon_vma_prepare - attach an anon_vma to a memory region
72  * @vma: the memory region in question
73  *
74  * This makes sure the memory mapping described by 'vma' has
75  * an 'anon_vma' attached to it, so that we can associate the
76  * anonymous pages mapped into it with that anon_vma.
77  *
78  * The common case will be that we already have one, but if
79  * if not we either need to find an adjacent mapping that we
80  * can re-use the anon_vma from (very common when the only
81  * reason for splitting a vma has been mprotect()), or we
82  * allocate a new one.
83  *
84  * Anon-vma allocations are very subtle, because we may have
85  * optimistically looked up an anon_vma in page_lock_anon_vma()
86  * and that may actually touch the spinlock even in the newly
87  * allocated vma (it depends on RCU to make sure that the
88  * anon_vma isn't actually destroyed).
89  *
90  * As a result, we need to do proper anon_vma locking even
91  * for the new allocation. At the same time, we do not want
92  * to do any locking for the common case of already having
93  * an anon_vma.
94  *
95  * This must be called with the mmap_sem held for reading.
96  */
anon_vma_prepare(struct vm_area_struct * vma)97 int anon_vma_prepare(struct vm_area_struct *vma)
98 {
99 	struct anon_vma *anon_vma = vma->anon_vma;
100 
101 	might_sleep();
102 	if (unlikely(!anon_vma)) {
103 		struct mm_struct *mm = vma->vm_mm;
104 		struct anon_vma *allocated;
105 
106 		anon_vma = find_mergeable_anon_vma(vma);
107 		allocated = NULL;
108 		if (!anon_vma) {
109 			anon_vma = anon_vma_alloc();
110 			if (unlikely(!anon_vma))
111 				return -ENOMEM;
112 			allocated = anon_vma;
113 		}
114 		spin_lock(&anon_vma->lock);
115 
116 		/* page_table_lock to protect against threads */
117 		spin_lock(&mm->page_table_lock);
118 		if (likely(!vma->anon_vma)) {
119 			vma->anon_vma = anon_vma;
120 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
121 			allocated = NULL;
122 		}
123 		spin_unlock(&mm->page_table_lock);
124 
125 		spin_unlock(&anon_vma->lock);
126 		if (unlikely(allocated))
127 			anon_vma_free(allocated);
128 	}
129 	return 0;
130 }
131 
__anon_vma_merge(struct vm_area_struct * vma,struct vm_area_struct * next)132 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
133 {
134 	BUG_ON(vma->anon_vma != next->anon_vma);
135 	list_del(&next->anon_vma_node);
136 }
137 
__anon_vma_link(struct vm_area_struct * vma)138 void __anon_vma_link(struct vm_area_struct *vma)
139 {
140 	struct anon_vma *anon_vma = vma->anon_vma;
141 
142 	if (anon_vma)
143 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
144 }
145 
anon_vma_link(struct vm_area_struct * vma)146 void anon_vma_link(struct vm_area_struct *vma)
147 {
148 	struct anon_vma *anon_vma = vma->anon_vma;
149 
150 	if (anon_vma) {
151 		spin_lock(&anon_vma->lock);
152 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
153 		spin_unlock(&anon_vma->lock);
154 	}
155 }
156 
anon_vma_unlink(struct vm_area_struct * vma)157 void anon_vma_unlink(struct vm_area_struct *vma)
158 {
159 	struct anon_vma *anon_vma = vma->anon_vma;
160 	int empty;
161 
162 	if (!anon_vma)
163 		return;
164 
165 	spin_lock(&anon_vma->lock);
166 	list_del(&vma->anon_vma_node);
167 
168 	/* We must garbage collect the anon_vma if it's empty */
169 	empty = list_empty(&anon_vma->head);
170 	spin_unlock(&anon_vma->lock);
171 
172 	if (empty)
173 		anon_vma_free(anon_vma);
174 }
175 
anon_vma_ctor(void * data)176 static void anon_vma_ctor(void *data)
177 {
178 	struct anon_vma *anon_vma = data;
179 
180 	spin_lock_init(&anon_vma->lock);
181 	INIT_LIST_HEAD(&anon_vma->head);
182 }
183 
anon_vma_init(void)184 void __init anon_vma_init(void)
185 {
186 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
187 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
188 }
189 
190 /*
191  * Getting a lock on a stable anon_vma from a page off the LRU is
192  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193  */
page_lock_anon_vma(struct page * page)194 static struct anon_vma *page_lock_anon_vma(struct page *page)
195 {
196 	struct anon_vma *anon_vma;
197 	unsigned long anon_mapping;
198 
199 	rcu_read_lock();
200 	anon_mapping = (unsigned long) page->mapping;
201 	if (!(anon_mapping & PAGE_MAPPING_ANON))
202 		goto out;
203 	if (!page_mapped(page))
204 		goto out;
205 
206 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 	spin_lock(&anon_vma->lock);
208 	return anon_vma;
209 out:
210 	rcu_read_unlock();
211 	return NULL;
212 }
213 
page_unlock_anon_vma(struct anon_vma * anon_vma)214 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
215 {
216 	spin_unlock(&anon_vma->lock);
217 	rcu_read_unlock();
218 }
219 
220 /*
221  * At what user virtual address is page expected in @vma?
222  * Returns virtual address or -EFAULT if page's index/offset is not
223  * within the range mapped the @vma.
224  */
225 static inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)226 vma_address(struct page *page, struct vm_area_struct *vma)
227 {
228 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 	unsigned long address;
230 
231 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
233 		/* page should be within @vma mapping range */
234 		return -EFAULT;
235 	}
236 	return address;
237 }
238 
239 /*
240  * At what user virtual address is page expected in vma? checking that the
241  * page matches the vma: currently only used on anon pages, by unuse_vma;
242  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)243 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
244 {
245 	if (PageAnon(page)) {
246 		if ((void *)vma->anon_vma !=
247 		    (void *)page->mapping - PAGE_MAPPING_ANON)
248 			return -EFAULT;
249 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
250 		if (!vma->vm_file ||
251 		    vma->vm_file->f_mapping != page->mapping)
252 			return -EFAULT;
253 	} else
254 		return -EFAULT;
255 	return vma_address(page, vma);
256 }
257 
258 /*
259  * Check that @page is mapped at @address into @mm.
260  *
261  * If @sync is false, page_check_address may perform a racy check to avoid
262  * the page table lock when the pte is not present (helpful when reclaiming
263  * highly shared pages).
264  *
265  * On success returns with pte mapped and locked.
266  */
page_check_address(struct page * page,struct mm_struct * mm,unsigned long address,spinlock_t ** ptlp,int sync)267 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
268 			  unsigned long address, spinlock_t **ptlp, int sync)
269 {
270 	pgd_t *pgd;
271 	pud_t *pud;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 	spinlock_t *ptl;
275 
276 	pgd = pgd_offset(mm, address);
277 	if (!pgd_present(*pgd))
278 		return NULL;
279 
280 	pud = pud_offset(pgd, address);
281 	if (!pud_present(*pud))
282 		return NULL;
283 
284 	pmd = pmd_offset(pud, address);
285 	if (!pmd_present(*pmd))
286 		return NULL;
287 
288 	pte = pte_offset_map(pmd, address);
289 	/* Make a quick check before getting the lock */
290 	if (!sync && !pte_present(*pte)) {
291 		pte_unmap(pte);
292 		return NULL;
293 	}
294 
295 	ptl = pte_lockptr(mm, pmd);
296 	spin_lock(ptl);
297 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 		*ptlp = ptl;
299 		return pte;
300 	}
301 	pte_unmap_unlock(pte, ptl);
302 	return NULL;
303 }
304 
305 /**
306  * page_mapped_in_vma - check whether a page is really mapped in a VMA
307  * @page: the page to test
308  * @vma: the VMA to test
309  *
310  * Returns 1 if the page is mapped into the page tables of the VMA, 0
311  * if the page is not mapped into the page tables of this VMA.  Only
312  * valid for normal file or anonymous VMAs.
313  */
page_mapped_in_vma(struct page * page,struct vm_area_struct * vma)314 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315 {
316 	unsigned long address;
317 	pte_t *pte;
318 	spinlock_t *ptl;
319 
320 	address = vma_address(page, vma);
321 	if (address == -EFAULT)		/* out of vma range */
322 		return 0;
323 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 	if (!pte)			/* the page is not in this mm */
325 		return 0;
326 	pte_unmap_unlock(pte, ptl);
327 
328 	return 1;
329 }
330 
331 /*
332  * Subfunctions of page_referenced: page_referenced_one called
333  * repeatedly from either page_referenced_anon or page_referenced_file.
334  */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned int * mapcount)335 static int page_referenced_one(struct page *page,
336 	struct vm_area_struct *vma, unsigned int *mapcount)
337 {
338 	struct mm_struct *mm = vma->vm_mm;
339 	unsigned long address;
340 	pte_t *pte;
341 	spinlock_t *ptl;
342 	int referenced = 0;
343 
344 	address = vma_address(page, vma);
345 	if (address == -EFAULT)
346 		goto out;
347 
348 	pte = page_check_address(page, mm, address, &ptl, 0);
349 	if (!pte)
350 		goto out;
351 
352 	/*
353 	 * Don't want to elevate referenced for mlocked page that gets this far,
354 	 * in order that it progresses to try_to_unmap and is moved to the
355 	 * unevictable list.
356 	 */
357 	if (vma->vm_flags & VM_LOCKED) {
358 		*mapcount = 1;	/* break early from loop */
359 		goto out_unmap;
360 	}
361 
362 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
363 		/*
364 		 * Don't treat a reference through a sequentially read
365 		 * mapping as such.  If the page has been used in
366 		 * another mapping, we will catch it; if this other
367 		 * mapping is already gone, the unmap path will have
368 		 * set PG_referenced or activated the page.
369 		 */
370 		if (likely(!VM_SequentialReadHint(vma)))
371 			referenced++;
372 	}
373 
374 	/* Pretend the page is referenced if the task has the
375 	   swap token and is in the middle of a page fault. */
376 	if (mm != current->mm && has_swap_token(mm) &&
377 			rwsem_is_locked(&mm->mmap_sem))
378 		referenced++;
379 
380 out_unmap:
381 	(*mapcount)--;
382 	pte_unmap_unlock(pte, ptl);
383 out:
384 	return referenced;
385 }
386 
page_referenced_anon(struct page * page,struct mem_cgroup * mem_cont)387 static int page_referenced_anon(struct page *page,
388 				struct mem_cgroup *mem_cont)
389 {
390 	unsigned int mapcount;
391 	struct anon_vma *anon_vma;
392 	struct vm_area_struct *vma;
393 	int referenced = 0;
394 
395 	anon_vma = page_lock_anon_vma(page);
396 	if (!anon_vma)
397 		return referenced;
398 
399 	mapcount = page_mapcount(page);
400 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
401 		/*
402 		 * If we are reclaiming on behalf of a cgroup, skip
403 		 * counting on behalf of references from different
404 		 * cgroups
405 		 */
406 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
407 			continue;
408 		referenced += page_referenced_one(page, vma, &mapcount);
409 		if (!mapcount)
410 			break;
411 	}
412 
413 	page_unlock_anon_vma(anon_vma);
414 	return referenced;
415 }
416 
417 /**
418  * page_referenced_file - referenced check for object-based rmap
419  * @page: the page we're checking references on.
420  * @mem_cont: target memory controller
421  *
422  * For an object-based mapped page, find all the places it is mapped and
423  * check/clear the referenced flag.  This is done by following the page->mapping
424  * pointer, then walking the chain of vmas it holds.  It returns the number
425  * of references it found.
426  *
427  * This function is only called from page_referenced for object-based pages.
428  */
page_referenced_file(struct page * page,struct mem_cgroup * mem_cont)429 static int page_referenced_file(struct page *page,
430 				struct mem_cgroup *mem_cont)
431 {
432 	unsigned int mapcount;
433 	struct address_space *mapping = page->mapping;
434 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
435 	struct vm_area_struct *vma;
436 	struct prio_tree_iter iter;
437 	int referenced = 0;
438 
439 	/*
440 	 * The caller's checks on page->mapping and !PageAnon have made
441 	 * sure that this is a file page: the check for page->mapping
442 	 * excludes the case just before it gets set on an anon page.
443 	 */
444 	BUG_ON(PageAnon(page));
445 
446 	/*
447 	 * The page lock not only makes sure that page->mapping cannot
448 	 * suddenly be NULLified by truncation, it makes sure that the
449 	 * structure at mapping cannot be freed and reused yet,
450 	 * so we can safely take mapping->i_mmap_lock.
451 	 */
452 	BUG_ON(!PageLocked(page));
453 
454 	spin_lock(&mapping->i_mmap_lock);
455 
456 	/*
457 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
458 	 * is more likely to be accurate if we note it after spinning.
459 	 */
460 	mapcount = page_mapcount(page);
461 
462 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
463 		/*
464 		 * If we are reclaiming on behalf of a cgroup, skip
465 		 * counting on behalf of references from different
466 		 * cgroups
467 		 */
468 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
469 			continue;
470 		referenced += page_referenced_one(page, vma, &mapcount);
471 		if (!mapcount)
472 			break;
473 	}
474 
475 	spin_unlock(&mapping->i_mmap_lock);
476 	return referenced;
477 }
478 
479 /**
480  * page_referenced - test if the page was referenced
481  * @page: the page to test
482  * @is_locked: caller holds lock on the page
483  * @mem_cont: target memory controller
484  *
485  * Quick test_and_clear_referenced for all mappings to a page,
486  * returns the number of ptes which referenced the page.
487  */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * mem_cont)488 int page_referenced(struct page *page, int is_locked,
489 			struct mem_cgroup *mem_cont)
490 {
491 	int referenced = 0;
492 
493 	if (TestClearPageReferenced(page))
494 		referenced++;
495 
496 	if (page_mapped(page) && page->mapping) {
497 		if (PageAnon(page))
498 			referenced += page_referenced_anon(page, mem_cont);
499 		else if (is_locked)
500 			referenced += page_referenced_file(page, mem_cont);
501 		else if (!trylock_page(page))
502 			referenced++;
503 		else {
504 			if (page->mapping)
505 				referenced +=
506 					page_referenced_file(page, mem_cont);
507 			unlock_page(page);
508 		}
509 	}
510 
511 	if (page_test_and_clear_young(page))
512 		referenced++;
513 
514 	return referenced;
515 }
516 
page_mkclean_one(struct page * page,struct vm_area_struct * vma)517 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
518 {
519 	struct mm_struct *mm = vma->vm_mm;
520 	unsigned long address;
521 	pte_t *pte;
522 	spinlock_t *ptl;
523 	int ret = 0;
524 
525 	address = vma_address(page, vma);
526 	if (address == -EFAULT)
527 		goto out;
528 
529 	pte = page_check_address(page, mm, address, &ptl, 1);
530 	if (!pte)
531 		goto out;
532 
533 	if (pte_dirty(*pte) || pte_write(*pte)) {
534 		pte_t entry;
535 
536 		flush_cache_page(vma, address, pte_pfn(*pte));
537 		entry = ptep_clear_flush_notify(vma, address, pte);
538 		entry = pte_wrprotect(entry);
539 		entry = pte_mkclean(entry);
540 		set_pte_at(mm, address, pte, entry);
541 		ret = 1;
542 	}
543 
544 	pte_unmap_unlock(pte, ptl);
545 out:
546 	return ret;
547 }
548 
page_mkclean_file(struct address_space * mapping,struct page * page)549 static int page_mkclean_file(struct address_space *mapping, struct page *page)
550 {
551 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
552 	struct vm_area_struct *vma;
553 	struct prio_tree_iter iter;
554 	int ret = 0;
555 
556 	BUG_ON(PageAnon(page));
557 
558 	spin_lock(&mapping->i_mmap_lock);
559 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
560 		if (vma->vm_flags & VM_SHARED)
561 			ret += page_mkclean_one(page, vma);
562 	}
563 	spin_unlock(&mapping->i_mmap_lock);
564 	return ret;
565 }
566 
page_mkclean(struct page * page)567 int page_mkclean(struct page *page)
568 {
569 	int ret = 0;
570 
571 	BUG_ON(!PageLocked(page));
572 
573 	if (page_mapped(page)) {
574 		struct address_space *mapping = page_mapping(page);
575 		if (mapping) {
576 			ret = page_mkclean_file(mapping, page);
577 			if (page_test_dirty(page)) {
578 				page_clear_dirty(page);
579 				ret = 1;
580 			}
581 		}
582 	}
583 
584 	return ret;
585 }
586 EXPORT_SYMBOL_GPL(page_mkclean);
587 
588 /**
589  * __page_set_anon_rmap - setup new anonymous rmap
590  * @page:	the page to add the mapping to
591  * @vma:	the vm area in which the mapping is added
592  * @address:	the user virtual address mapped
593  */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)594 static void __page_set_anon_rmap(struct page *page,
595 	struct vm_area_struct *vma, unsigned long address)
596 {
597 	struct anon_vma *anon_vma = vma->anon_vma;
598 
599 	BUG_ON(!anon_vma);
600 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
601 	page->mapping = (struct address_space *) anon_vma;
602 
603 	page->index = linear_page_index(vma, address);
604 
605 	/*
606 	 * nr_mapped state can be updated without turning off
607 	 * interrupts because it is not modified via interrupt.
608 	 */
609 	__inc_zone_page_state(page, NR_ANON_PAGES);
610 }
611 
612 /**
613  * __page_check_anon_rmap - sanity check anonymous rmap addition
614  * @page:	the page to add the mapping to
615  * @vma:	the vm area in which the mapping is added
616  * @address:	the user virtual address mapped
617  */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)618 static void __page_check_anon_rmap(struct page *page,
619 	struct vm_area_struct *vma, unsigned long address)
620 {
621 #ifdef CONFIG_DEBUG_VM
622 	/*
623 	 * The page's anon-rmap details (mapping and index) are guaranteed to
624 	 * be set up correctly at this point.
625 	 *
626 	 * We have exclusion against page_add_anon_rmap because the caller
627 	 * always holds the page locked, except if called from page_dup_rmap,
628 	 * in which case the page is already known to be setup.
629 	 *
630 	 * We have exclusion against page_add_new_anon_rmap because those pages
631 	 * are initially only visible via the pagetables, and the pte is locked
632 	 * over the call to page_add_new_anon_rmap.
633 	 */
634 	struct anon_vma *anon_vma = vma->anon_vma;
635 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
636 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
637 	BUG_ON(page->index != linear_page_index(vma, address));
638 #endif
639 }
640 
641 /**
642  * page_add_anon_rmap - add pte mapping to an anonymous page
643  * @page:	the page to add the mapping to
644  * @vma:	the vm area in which the mapping is added
645  * @address:	the user virtual address mapped
646  *
647  * The caller needs to hold the pte lock and the page must be locked.
648  */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)649 void page_add_anon_rmap(struct page *page,
650 	struct vm_area_struct *vma, unsigned long address)
651 {
652 	VM_BUG_ON(!PageLocked(page));
653 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
654 	if (atomic_inc_and_test(&page->_mapcount))
655 		__page_set_anon_rmap(page, vma, address);
656 	else
657 		__page_check_anon_rmap(page, vma, address);
658 }
659 
660 /**
661  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
662  * @page:	the page to add the mapping to
663  * @vma:	the vm area in which the mapping is added
664  * @address:	the user virtual address mapped
665  *
666  * Same as page_add_anon_rmap but must only be called on *new* pages.
667  * This means the inc-and-test can be bypassed.
668  * Page does not have to be locked.
669  */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)670 void page_add_new_anon_rmap(struct page *page,
671 	struct vm_area_struct *vma, unsigned long address)
672 {
673 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
674 	SetPageSwapBacked(page);
675 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
676 	__page_set_anon_rmap(page, vma, address);
677 	if (page_evictable(page, vma))
678 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
679 	else
680 		add_page_to_unevictable_list(page);
681 }
682 
683 /**
684  * page_add_file_rmap - add pte mapping to a file page
685  * @page: the page to add the mapping to
686  *
687  * The caller needs to hold the pte lock.
688  */
page_add_file_rmap(struct page * page)689 void page_add_file_rmap(struct page *page)
690 {
691 	if (atomic_inc_and_test(&page->_mapcount))
692 		__inc_zone_page_state(page, NR_FILE_MAPPED);
693 }
694 
695 #ifdef CONFIG_DEBUG_VM
696 /**
697  * page_dup_rmap - duplicate pte mapping to a page
698  * @page:	the page to add the mapping to
699  * @vma:	the vm area being duplicated
700  * @address:	the user virtual address mapped
701  *
702  * For copy_page_range only: minimal extract from page_add_file_rmap /
703  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
704  * quicker.
705  *
706  * The caller needs to hold the pte lock.
707  */
page_dup_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)708 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
709 {
710 	if (PageAnon(page))
711 		__page_check_anon_rmap(page, vma, address);
712 	atomic_inc(&page->_mapcount);
713 }
714 #endif
715 
716 /**
717  * page_remove_rmap - take down pte mapping from a page
718  * @page: page to remove mapping from
719  *
720  * The caller needs to hold the pte lock.
721  */
page_remove_rmap(struct page * page)722 void page_remove_rmap(struct page *page)
723 {
724 	if (atomic_add_negative(-1, &page->_mapcount)) {
725 		/*
726 		 * Now that the last pte has gone, s390 must transfer dirty
727 		 * flag from storage key to struct page.  We can usually skip
728 		 * this if the page is anon, so about to be freed; but perhaps
729 		 * not if it's in swapcache - there might be another pte slot
730 		 * containing the swap entry, but page not yet written to swap.
731 		 */
732 		if ((!PageAnon(page) || PageSwapCache(page)) &&
733 		    page_test_dirty(page)) {
734 			page_clear_dirty(page);
735 			set_page_dirty(page);
736 		}
737 		if (PageAnon(page))
738 			mem_cgroup_uncharge_page(page);
739 		__dec_zone_page_state(page,
740 			PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
741 		/*
742 		 * It would be tidy to reset the PageAnon mapping here,
743 		 * but that might overwrite a racing page_add_anon_rmap
744 		 * which increments mapcount after us but sets mapping
745 		 * before us: so leave the reset to free_hot_cold_page,
746 		 * and remember that it's only reliable while mapped.
747 		 * Leaving it set also helps swapoff to reinstate ptes
748 		 * faster for those pages still in swapcache.
749 		 */
750 	}
751 }
752 
753 /*
754  * Subfunctions of try_to_unmap: try_to_unmap_one called
755  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
756  */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,int migration)757 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
758 				int migration)
759 {
760 	struct mm_struct *mm = vma->vm_mm;
761 	unsigned long address;
762 	pte_t *pte;
763 	pte_t pteval;
764 	spinlock_t *ptl;
765 	int ret = SWAP_AGAIN;
766 
767 	address = vma_address(page, vma);
768 	if (address == -EFAULT)
769 		goto out;
770 
771 	pte = page_check_address(page, mm, address, &ptl, 0);
772 	if (!pte)
773 		goto out;
774 
775 	/*
776 	 * If the page is mlock()d, we cannot swap it out.
777 	 * If it's recently referenced (perhaps page_referenced
778 	 * skipped over this mm) then we should reactivate it.
779 	 */
780 	if (!migration) {
781 		if (vma->vm_flags & VM_LOCKED) {
782 			ret = SWAP_MLOCK;
783 			goto out_unmap;
784 		}
785 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
786 			ret = SWAP_FAIL;
787 			goto out_unmap;
788 		}
789   	}
790 
791 	/* Nuke the page table entry. */
792 	flush_cache_page(vma, address, page_to_pfn(page));
793 	pteval = ptep_clear_flush_notify(vma, address, pte);
794 
795 	/* Move the dirty bit to the physical page now the pte is gone. */
796 	if (pte_dirty(pteval))
797 		set_page_dirty(page);
798 
799 	/* Update high watermark before we lower rss */
800 	update_hiwater_rss(mm);
801 
802 	if (PageAnon(page)) {
803 		swp_entry_t entry = { .val = page_private(page) };
804 
805 		if (PageSwapCache(page)) {
806 			/*
807 			 * Store the swap location in the pte.
808 			 * See handle_pte_fault() ...
809 			 */
810 			swap_duplicate(entry);
811 			if (list_empty(&mm->mmlist)) {
812 				spin_lock(&mmlist_lock);
813 				if (list_empty(&mm->mmlist))
814 					list_add(&mm->mmlist, &init_mm.mmlist);
815 				spin_unlock(&mmlist_lock);
816 			}
817 			dec_mm_counter(mm, anon_rss);
818 		} else if (PAGE_MIGRATION) {
819 			/*
820 			 * Store the pfn of the page in a special migration
821 			 * pte. do_swap_page() will wait until the migration
822 			 * pte is removed and then restart fault handling.
823 			 */
824 			BUG_ON(!migration);
825 			entry = make_migration_entry(page, pte_write(pteval));
826 		}
827 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
828 		BUG_ON(pte_file(*pte));
829 	} else if (PAGE_MIGRATION && migration) {
830 		/* Establish migration entry for a file page */
831 		swp_entry_t entry;
832 		entry = make_migration_entry(page, pte_write(pteval));
833 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
834 	} else
835 		dec_mm_counter(mm, file_rss);
836 
837 
838 	page_remove_rmap(page);
839 	page_cache_release(page);
840 
841 out_unmap:
842 	pte_unmap_unlock(pte, ptl);
843 out:
844 	return ret;
845 }
846 
847 /*
848  * objrmap doesn't work for nonlinear VMAs because the assumption that
849  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
850  * Consequently, given a particular page and its ->index, we cannot locate the
851  * ptes which are mapping that page without an exhaustive linear search.
852  *
853  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
854  * maps the file to which the target page belongs.  The ->vm_private_data field
855  * holds the current cursor into that scan.  Successive searches will circulate
856  * around the vma's virtual address space.
857  *
858  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
859  * more scanning pressure is placed against them as well.   Eventually pages
860  * will become fully unmapped and are eligible for eviction.
861  *
862  * For very sparsely populated VMAs this is a little inefficient - chances are
863  * there there won't be many ptes located within the scan cluster.  In this case
864  * maybe we could scan further - to the end of the pte page, perhaps.
865  *
866  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
867  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
868  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
869  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
870  */
871 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
872 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
873 
try_to_unmap_cluster(unsigned long cursor,unsigned int * mapcount,struct vm_area_struct * vma,struct page * check_page)874 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
875 		struct vm_area_struct *vma, struct page *check_page)
876 {
877 	struct mm_struct *mm = vma->vm_mm;
878 	pgd_t *pgd;
879 	pud_t *pud;
880 	pmd_t *pmd;
881 	pte_t *pte;
882 	pte_t pteval;
883 	spinlock_t *ptl;
884 	struct page *page;
885 	unsigned long address;
886 	unsigned long end;
887 	int ret = SWAP_AGAIN;
888 	int locked_vma = 0;
889 
890 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
891 	end = address + CLUSTER_SIZE;
892 	if (address < vma->vm_start)
893 		address = vma->vm_start;
894 	if (end > vma->vm_end)
895 		end = vma->vm_end;
896 
897 	pgd = pgd_offset(mm, address);
898 	if (!pgd_present(*pgd))
899 		return ret;
900 
901 	pud = pud_offset(pgd, address);
902 	if (!pud_present(*pud))
903 		return ret;
904 
905 	pmd = pmd_offset(pud, address);
906 	if (!pmd_present(*pmd))
907 		return ret;
908 
909 	/*
910 	 * MLOCK_PAGES => feature is configured.
911 	 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
912 	 * keep the sem while scanning the cluster for mlocking pages.
913 	 */
914 	if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
915 		locked_vma = (vma->vm_flags & VM_LOCKED);
916 		if (!locked_vma)
917 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
918 	}
919 
920 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
921 
922 	/* Update high watermark before we lower rss */
923 	update_hiwater_rss(mm);
924 
925 	for (; address < end; pte++, address += PAGE_SIZE) {
926 		if (!pte_present(*pte))
927 			continue;
928 		page = vm_normal_page(vma, address, *pte);
929 		BUG_ON(!page || PageAnon(page));
930 
931 		if (locked_vma) {
932 			mlock_vma_page(page);   /* no-op if already mlocked */
933 			if (page == check_page)
934 				ret = SWAP_MLOCK;
935 			continue;	/* don't unmap */
936 		}
937 
938 		if (ptep_clear_flush_young_notify(vma, address, pte))
939 			continue;
940 
941 		/* Nuke the page table entry. */
942 		flush_cache_page(vma, address, pte_pfn(*pte));
943 		pteval = ptep_clear_flush_notify(vma, address, pte);
944 
945 		/* If nonlinear, store the file page offset in the pte. */
946 		if (page->index != linear_page_index(vma, address))
947 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
948 
949 		/* Move the dirty bit to the physical page now the pte is gone. */
950 		if (pte_dirty(pteval))
951 			set_page_dirty(page);
952 
953 		page_remove_rmap(page);
954 		page_cache_release(page);
955 		dec_mm_counter(mm, file_rss);
956 		(*mapcount)--;
957 	}
958 	pte_unmap_unlock(pte - 1, ptl);
959 	if (locked_vma)
960 		up_read(&vma->vm_mm->mmap_sem);
961 	return ret;
962 }
963 
964 /*
965  * common handling for pages mapped in VM_LOCKED vmas
966  */
try_to_mlock_page(struct page * page,struct vm_area_struct * vma)967 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
968 {
969 	int mlocked = 0;
970 
971 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
972 		if (vma->vm_flags & VM_LOCKED) {
973 			mlock_vma_page(page);
974 			mlocked++;	/* really mlocked the page */
975 		}
976 		up_read(&vma->vm_mm->mmap_sem);
977 	}
978 	return mlocked;
979 }
980 
981 /**
982  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
983  * rmap method
984  * @page: the page to unmap/unlock
985  * @unlock:  request for unlock rather than unmap [unlikely]
986  * @migration:  unmapping for migration - ignored if @unlock
987  *
988  * Find all the mappings of a page using the mapping pointer and the vma chains
989  * contained in the anon_vma struct it points to.
990  *
991  * This function is only called from try_to_unmap/try_to_munlock for
992  * anonymous pages.
993  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
994  * where the page was found will be held for write.  So, we won't recheck
995  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
996  * 'LOCKED.
997  */
try_to_unmap_anon(struct page * page,int unlock,int migration)998 static int try_to_unmap_anon(struct page *page, int unlock, int migration)
999 {
1000 	struct anon_vma *anon_vma;
1001 	struct vm_area_struct *vma;
1002 	unsigned int mlocked = 0;
1003 	int ret = SWAP_AGAIN;
1004 
1005 	if (MLOCK_PAGES && unlikely(unlock))
1006 		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1007 
1008 	anon_vma = page_lock_anon_vma(page);
1009 	if (!anon_vma)
1010 		return ret;
1011 
1012 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1013 		if (MLOCK_PAGES && unlikely(unlock)) {
1014 			if (!((vma->vm_flags & VM_LOCKED) &&
1015 			      page_mapped_in_vma(page, vma)))
1016 				continue;  /* must visit all unlocked vmas */
1017 			ret = SWAP_MLOCK;  /* saw at least one mlocked vma */
1018 		} else {
1019 			ret = try_to_unmap_one(page, vma, migration);
1020 			if (ret == SWAP_FAIL || !page_mapped(page))
1021 				break;
1022 		}
1023 		if (ret == SWAP_MLOCK) {
1024 			mlocked = try_to_mlock_page(page, vma);
1025 			if (mlocked)
1026 				break;	/* stop if actually mlocked page */
1027 		}
1028 	}
1029 
1030 	page_unlock_anon_vma(anon_vma);
1031 
1032 	if (mlocked)
1033 		ret = SWAP_MLOCK;	/* actually mlocked the page */
1034 	else if (ret == SWAP_MLOCK)
1035 		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1036 
1037 	return ret;
1038 }
1039 
1040 /**
1041  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1042  * @page: the page to unmap/unlock
1043  * @unlock:  request for unlock rather than unmap [unlikely]
1044  * @migration:  unmapping for migration - ignored if @unlock
1045  *
1046  * Find all the mappings of a page using the mapping pointer and the vma chains
1047  * contained in the address_space struct it points to.
1048  *
1049  * This function is only called from try_to_unmap/try_to_munlock for
1050  * object-based pages.
1051  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1052  * where the page was found will be held for write.  So, we won't recheck
1053  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1054  * 'LOCKED.
1055  */
try_to_unmap_file(struct page * page,int unlock,int migration)1056 static int try_to_unmap_file(struct page *page, int unlock, int migration)
1057 {
1058 	struct address_space *mapping = page->mapping;
1059 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1060 	struct vm_area_struct *vma;
1061 	struct prio_tree_iter iter;
1062 	int ret = SWAP_AGAIN;
1063 	unsigned long cursor;
1064 	unsigned long max_nl_cursor = 0;
1065 	unsigned long max_nl_size = 0;
1066 	unsigned int mapcount;
1067 	unsigned int mlocked = 0;
1068 
1069 	if (MLOCK_PAGES && unlikely(unlock))
1070 		ret = SWAP_SUCCESS;	/* default for try_to_munlock() */
1071 
1072 	spin_lock(&mapping->i_mmap_lock);
1073 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1074 		if (MLOCK_PAGES && unlikely(unlock)) {
1075 			if (!((vma->vm_flags & VM_LOCKED) &&
1076 						page_mapped_in_vma(page, vma)))
1077 				continue;	/* must visit all vmas */
1078 			ret = SWAP_MLOCK;
1079 		} else {
1080 			ret = try_to_unmap_one(page, vma, migration);
1081 			if (ret == SWAP_FAIL || !page_mapped(page))
1082 				goto out;
1083 		}
1084 		if (ret == SWAP_MLOCK) {
1085 			mlocked = try_to_mlock_page(page, vma);
1086 			if (mlocked)
1087 				break;  /* stop if actually mlocked page */
1088 		}
1089 	}
1090 
1091 	if (mlocked)
1092 		goto out;
1093 
1094 	if (list_empty(&mapping->i_mmap_nonlinear))
1095 		goto out;
1096 
1097 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1098 						shared.vm_set.list) {
1099 		if (MLOCK_PAGES && unlikely(unlock)) {
1100 			if (!(vma->vm_flags & VM_LOCKED))
1101 				continue;	/* must visit all vmas */
1102 			ret = SWAP_MLOCK;	/* leave mlocked == 0 */
1103 			goto out;		/* no need to look further */
1104 		}
1105 		if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1106 			continue;
1107 		cursor = (unsigned long) vma->vm_private_data;
1108 		if (cursor > max_nl_cursor)
1109 			max_nl_cursor = cursor;
1110 		cursor = vma->vm_end - vma->vm_start;
1111 		if (cursor > max_nl_size)
1112 			max_nl_size = cursor;
1113 	}
1114 
1115 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1116 		ret = SWAP_FAIL;
1117 		goto out;
1118 	}
1119 
1120 	/*
1121 	 * We don't try to search for this page in the nonlinear vmas,
1122 	 * and page_referenced wouldn't have found it anyway.  Instead
1123 	 * just walk the nonlinear vmas trying to age and unmap some.
1124 	 * The mapcount of the page we came in with is irrelevant,
1125 	 * but even so use it as a guide to how hard we should try?
1126 	 */
1127 	mapcount = page_mapcount(page);
1128 	if (!mapcount)
1129 		goto out;
1130 	cond_resched_lock(&mapping->i_mmap_lock);
1131 
1132 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1133 	if (max_nl_cursor == 0)
1134 		max_nl_cursor = CLUSTER_SIZE;
1135 
1136 	do {
1137 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1138 						shared.vm_set.list) {
1139 			if (!MLOCK_PAGES && !migration &&
1140 			    (vma->vm_flags & VM_LOCKED))
1141 				continue;
1142 			cursor = (unsigned long) vma->vm_private_data;
1143 			while ( cursor < max_nl_cursor &&
1144 				cursor < vma->vm_end - vma->vm_start) {
1145 				ret = try_to_unmap_cluster(cursor, &mapcount,
1146 								vma, page);
1147 				if (ret == SWAP_MLOCK)
1148 					mlocked = 2;	/* to return below */
1149 				cursor += CLUSTER_SIZE;
1150 				vma->vm_private_data = (void *) cursor;
1151 				if ((int)mapcount <= 0)
1152 					goto out;
1153 			}
1154 			vma->vm_private_data = (void *) max_nl_cursor;
1155 		}
1156 		cond_resched_lock(&mapping->i_mmap_lock);
1157 		max_nl_cursor += CLUSTER_SIZE;
1158 	} while (max_nl_cursor <= max_nl_size);
1159 
1160 	/*
1161 	 * Don't loop forever (perhaps all the remaining pages are
1162 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1163 	 * vmas, now forgetting on which ones it had fallen behind.
1164 	 */
1165 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1166 		vma->vm_private_data = NULL;
1167 out:
1168 	spin_unlock(&mapping->i_mmap_lock);
1169 	if (mlocked)
1170 		ret = SWAP_MLOCK;	/* actually mlocked the page */
1171 	else if (ret == SWAP_MLOCK)
1172 		ret = SWAP_AGAIN;	/* saw VM_LOCKED vma */
1173 	return ret;
1174 }
1175 
1176 /**
1177  * try_to_unmap - try to remove all page table mappings to a page
1178  * @page: the page to get unmapped
1179  * @migration: migration flag
1180  *
1181  * Tries to remove all the page table entries which are mapping this
1182  * page, used in the pageout path.  Caller must hold the page lock.
1183  * Return values are:
1184  *
1185  * SWAP_SUCCESS	- we succeeded in removing all mappings
1186  * SWAP_AGAIN	- we missed a mapping, try again later
1187  * SWAP_FAIL	- the page is unswappable
1188  * SWAP_MLOCK	- page is mlocked.
1189  */
try_to_unmap(struct page * page,int migration)1190 int try_to_unmap(struct page *page, int migration)
1191 {
1192 	int ret;
1193 
1194 	BUG_ON(!PageLocked(page));
1195 
1196 	if (PageAnon(page))
1197 		ret = try_to_unmap_anon(page, 0, migration);
1198 	else
1199 		ret = try_to_unmap_file(page, 0, migration);
1200 	if (ret != SWAP_MLOCK && !page_mapped(page))
1201 		ret = SWAP_SUCCESS;
1202 	return ret;
1203 }
1204 
1205 #ifdef CONFIG_UNEVICTABLE_LRU
1206 /**
1207  * try_to_munlock - try to munlock a page
1208  * @page: the page to be munlocked
1209  *
1210  * Called from munlock code.  Checks all of the VMAs mapping the page
1211  * to make sure nobody else has this page mlocked. The page will be
1212  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1213  *
1214  * Return values are:
1215  *
1216  * SWAP_SUCCESS	- no vma's holding page mlocked.
1217  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1218  * SWAP_MLOCK	- page is now mlocked.
1219  */
try_to_munlock(struct page * page)1220 int try_to_munlock(struct page *page)
1221 {
1222 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1223 
1224 	if (PageAnon(page))
1225 		return try_to_unmap_anon(page, 1, 0);
1226 	else
1227 		return try_to_unmap_file(page, 1, 0);
1228 }
1229 #endif
1230