• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 
20 #include "mmu.h"
21 
22 #include <linux/kvm_host.h>
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28 #include <linux/swap.h>
29 #include <linux/hugetlb.h>
30 #include <linux/compiler.h>
31 
32 #include <asm/page.h>
33 #include <asm/cmpxchg.h>
34 #include <asm/io.h>
35 #include <asm/vmx.h>
36 
37 /*
38  * When setting this variable to true it enables Two-Dimensional-Paging
39  * where the hardware walks 2 page tables:
40  * 1. the guest-virtual to guest-physical
41  * 2. while doing 1. it walks guest-physical to host-physical
42  * If the hardware supports that we don't need to do shadow paging.
43  */
44 bool tdp_enabled = false;
45 
46 #undef MMU_DEBUG
47 
48 #undef AUDIT
49 
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,const char * msg)53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55 
56 #ifdef MMU_DEBUG
57 
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60 
61 #else
62 
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65 
66 #endif
67 
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 0;
70 module_param(dbg, bool, 0644);
71 #endif
72 
73 static int oos_shadow = 1;
74 module_param(oos_shadow, bool, 0644);
75 
76 #ifndef MMU_DEBUG
77 #define ASSERT(x) do { } while (0)
78 #else
79 #define ASSERT(x)							\
80 	if (!(x)) {							\
81 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
82 		       __FILE__, __LINE__, #x);				\
83 	}
84 #endif
85 
86 #define PT_FIRST_AVAIL_BITS_SHIFT 9
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
88 
89 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
90 
91 #define PT64_LEVEL_BITS 9
92 
93 #define PT64_LEVEL_SHIFT(level) \
94 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
95 
96 #define PT64_LEVEL_MASK(level) \
97 		(((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
98 
99 #define PT64_INDEX(address, level)\
100 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
101 
102 
103 #define PT32_LEVEL_BITS 10
104 
105 #define PT32_LEVEL_SHIFT(level) \
106 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
107 
108 #define PT32_LEVEL_MASK(level) \
109 		(((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
110 
111 #define PT32_INDEX(address, level)\
112 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
113 
114 
115 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116 #define PT64_DIR_BASE_ADDR_MASK \
117 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
118 
119 #define PT32_BASE_ADDR_MASK PAGE_MASK
120 #define PT32_DIR_BASE_ADDR_MASK \
121 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
122 
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
124 			| PT64_NX_MASK)
125 
126 #define PFERR_PRESENT_MASK (1U << 0)
127 #define PFERR_WRITE_MASK (1U << 1)
128 #define PFERR_USER_MASK (1U << 2)
129 #define PFERR_FETCH_MASK (1U << 4)
130 
131 #define PT_DIRECTORY_LEVEL 2
132 #define PT_PAGE_TABLE_LEVEL 1
133 
134 #define RMAP_EXT 4
135 
136 #define ACC_EXEC_MASK    1
137 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
138 #define ACC_USER_MASK    PT_USER_MASK
139 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
140 
141 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
142 
143 struct kvm_rmap_desc {
144 	u64 *shadow_ptes[RMAP_EXT];
145 	struct kvm_rmap_desc *more;
146 };
147 
148 struct kvm_shadow_walk {
149 	int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
150 		     u64 addr, u64 *spte, int level);
151 };
152 
153 struct kvm_unsync_walk {
154 	int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
155 };
156 
157 typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
158 
159 static struct kmem_cache *pte_chain_cache;
160 static struct kmem_cache *rmap_desc_cache;
161 static struct kmem_cache *mmu_page_header_cache;
162 
163 static u64 __read_mostly shadow_trap_nonpresent_pte;
164 static u64 __read_mostly shadow_notrap_nonpresent_pte;
165 static u64 __read_mostly shadow_base_present_pte;
166 static u64 __read_mostly shadow_nx_mask;
167 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
168 static u64 __read_mostly shadow_user_mask;
169 static u64 __read_mostly shadow_accessed_mask;
170 static u64 __read_mostly shadow_dirty_mask;
171 static u64 __read_mostly shadow_mt_mask;
172 
kvm_mmu_set_nonpresent_ptes(u64 trap_pte,u64 notrap_pte)173 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
174 {
175 	shadow_trap_nonpresent_pte = trap_pte;
176 	shadow_notrap_nonpresent_pte = notrap_pte;
177 }
178 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
179 
kvm_mmu_set_base_ptes(u64 base_pte)180 void kvm_mmu_set_base_ptes(u64 base_pte)
181 {
182 	shadow_base_present_pte = base_pte;
183 }
184 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
185 
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask,u64 mt_mask)186 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
187 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
188 {
189 	shadow_user_mask = user_mask;
190 	shadow_accessed_mask = accessed_mask;
191 	shadow_dirty_mask = dirty_mask;
192 	shadow_nx_mask = nx_mask;
193 	shadow_x_mask = x_mask;
194 	shadow_mt_mask = mt_mask;
195 }
196 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
197 
is_write_protection(struct kvm_vcpu * vcpu)198 static int is_write_protection(struct kvm_vcpu *vcpu)
199 {
200 	return vcpu->arch.cr0 & X86_CR0_WP;
201 }
202 
is_cpuid_PSE36(void)203 static int is_cpuid_PSE36(void)
204 {
205 	return 1;
206 }
207 
is_nx(struct kvm_vcpu * vcpu)208 static int is_nx(struct kvm_vcpu *vcpu)
209 {
210 	return vcpu->arch.shadow_efer & EFER_NX;
211 }
212 
is_present_pte(unsigned long pte)213 static int is_present_pte(unsigned long pte)
214 {
215 	return pte & PT_PRESENT_MASK;
216 }
217 
is_shadow_present_pte(u64 pte)218 static int is_shadow_present_pte(u64 pte)
219 {
220 	return pte != shadow_trap_nonpresent_pte
221 		&& pte != shadow_notrap_nonpresent_pte;
222 }
223 
is_large_pte(u64 pte)224 static int is_large_pte(u64 pte)
225 {
226 	return pte & PT_PAGE_SIZE_MASK;
227 }
228 
is_writeble_pte(unsigned long pte)229 static int is_writeble_pte(unsigned long pte)
230 {
231 	return pte & PT_WRITABLE_MASK;
232 }
233 
is_dirty_pte(unsigned long pte)234 static int is_dirty_pte(unsigned long pte)
235 {
236 	return pte & shadow_dirty_mask;
237 }
238 
is_rmap_pte(u64 pte)239 static int is_rmap_pte(u64 pte)
240 {
241 	return is_shadow_present_pte(pte);
242 }
243 
spte_to_pfn(u64 pte)244 static pfn_t spte_to_pfn(u64 pte)
245 {
246 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
247 }
248 
pse36_gfn_delta(u32 gpte)249 static gfn_t pse36_gfn_delta(u32 gpte)
250 {
251 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
252 
253 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
254 }
255 
set_shadow_pte(u64 * sptep,u64 spte)256 static void set_shadow_pte(u64 *sptep, u64 spte)
257 {
258 #ifdef CONFIG_X86_64
259 	set_64bit((unsigned long *)sptep, spte);
260 #else
261 	set_64bit((unsigned long long *)sptep, spte);
262 #endif
263 }
264 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)265 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
266 				  struct kmem_cache *base_cache, int min)
267 {
268 	void *obj;
269 
270 	if (cache->nobjs >= min)
271 		return 0;
272 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
273 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
274 		if (!obj)
275 			return -ENOMEM;
276 		cache->objects[cache->nobjs++] = obj;
277 	}
278 	return 0;
279 }
280 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)281 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
282 {
283 	while (mc->nobjs)
284 		kfree(mc->objects[--mc->nobjs]);
285 }
286 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)287 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
288 				       int min)
289 {
290 	struct page *page;
291 
292 	if (cache->nobjs >= min)
293 		return 0;
294 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
295 		page = alloc_page(GFP_KERNEL);
296 		if (!page)
297 			return -ENOMEM;
298 		set_page_private(page, 0);
299 		cache->objects[cache->nobjs++] = page_address(page);
300 	}
301 	return 0;
302 }
303 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)304 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
305 {
306 	while (mc->nobjs)
307 		free_page((unsigned long)mc->objects[--mc->nobjs]);
308 }
309 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)310 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
311 {
312 	int r;
313 
314 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
315 				   pte_chain_cache, 4);
316 	if (r)
317 		goto out;
318 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
319 				   rmap_desc_cache, 4);
320 	if (r)
321 		goto out;
322 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
323 	if (r)
324 		goto out;
325 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
326 				   mmu_page_header_cache, 4);
327 out:
328 	return r;
329 }
330 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)331 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
332 {
333 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
334 	mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
335 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
336 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
337 }
338 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc,size_t size)339 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
340 				    size_t size)
341 {
342 	void *p;
343 
344 	BUG_ON(!mc->nobjs);
345 	p = mc->objects[--mc->nobjs];
346 	memset(p, 0, size);
347 	return p;
348 }
349 
mmu_alloc_pte_chain(struct kvm_vcpu * vcpu)350 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
351 {
352 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
353 				      sizeof(struct kvm_pte_chain));
354 }
355 
mmu_free_pte_chain(struct kvm_pte_chain * pc)356 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
357 {
358 	kfree(pc);
359 }
360 
mmu_alloc_rmap_desc(struct kvm_vcpu * vcpu)361 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
362 {
363 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
364 				      sizeof(struct kvm_rmap_desc));
365 }
366 
mmu_free_rmap_desc(struct kvm_rmap_desc * rd)367 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
368 {
369 	kfree(rd);
370 }
371 
372 /*
373  * Return the pointer to the largepage write count for a given
374  * gfn, handling slots that are not large page aligned.
375  */
slot_largepage_idx(gfn_t gfn,struct kvm_memory_slot * slot)376 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
377 {
378 	unsigned long idx;
379 
380 	idx = (gfn / KVM_PAGES_PER_HPAGE) -
381 	      (slot->base_gfn / KVM_PAGES_PER_HPAGE);
382 	return &slot->lpage_info[idx].write_count;
383 }
384 
account_shadowed(struct kvm * kvm,gfn_t gfn)385 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
386 {
387 	int *write_count;
388 
389 	gfn = unalias_gfn(kvm, gfn);
390 	write_count = slot_largepage_idx(gfn,
391 					 gfn_to_memslot_unaliased(kvm, gfn));
392 	*write_count += 1;
393 }
394 
unaccount_shadowed(struct kvm * kvm,gfn_t gfn)395 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
396 {
397 	int *write_count;
398 
399 	gfn = unalias_gfn(kvm, gfn);
400 	write_count = slot_largepage_idx(gfn,
401 					 gfn_to_memslot_unaliased(kvm, gfn));
402 	*write_count -= 1;
403 	WARN_ON(*write_count < 0);
404 }
405 
has_wrprotected_page(struct kvm * kvm,gfn_t gfn)406 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
407 {
408 	struct kvm_memory_slot *slot;
409 	int *largepage_idx;
410 
411 	gfn = unalias_gfn(kvm, gfn);
412 	slot = gfn_to_memslot_unaliased(kvm, gfn);
413 	if (slot) {
414 		largepage_idx = slot_largepage_idx(gfn, slot);
415 		return *largepage_idx;
416 	}
417 
418 	return 1;
419 }
420 
host_largepage_backed(struct kvm * kvm,gfn_t gfn)421 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
422 {
423 	struct vm_area_struct *vma;
424 	unsigned long addr;
425 	int ret = 0;
426 
427 	addr = gfn_to_hva(kvm, gfn);
428 	if (kvm_is_error_hva(addr))
429 		return ret;
430 
431 	down_read(&current->mm->mmap_sem);
432 	vma = find_vma(current->mm, addr);
433 	if (vma && is_vm_hugetlb_page(vma))
434 		ret = 1;
435 	up_read(&current->mm->mmap_sem);
436 
437 	return ret;
438 }
439 
is_largepage_backed(struct kvm_vcpu * vcpu,gfn_t large_gfn)440 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
441 {
442 	struct kvm_memory_slot *slot;
443 
444 	if (has_wrprotected_page(vcpu->kvm, large_gfn))
445 		return 0;
446 
447 	if (!host_largepage_backed(vcpu->kvm, large_gfn))
448 		return 0;
449 
450 	slot = gfn_to_memslot(vcpu->kvm, large_gfn);
451 	if (slot && slot->dirty_bitmap)
452 		return 0;
453 
454 	return 1;
455 }
456 
457 /*
458  * Take gfn and return the reverse mapping to it.
459  * Note: gfn must be unaliased before this function get called
460  */
461 
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,int lpage)462 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
463 {
464 	struct kvm_memory_slot *slot;
465 	unsigned long idx;
466 
467 	slot = gfn_to_memslot(kvm, gfn);
468 	if (!lpage)
469 		return &slot->rmap[gfn - slot->base_gfn];
470 
471 	idx = (gfn / KVM_PAGES_PER_HPAGE) -
472 	      (slot->base_gfn / KVM_PAGES_PER_HPAGE);
473 
474 	return &slot->lpage_info[idx].rmap_pde;
475 }
476 
477 /*
478  * Reverse mapping data structures:
479  *
480  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
481  * that points to page_address(page).
482  *
483  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
484  * containing more mappings.
485  */
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn,int lpage)486 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
487 {
488 	struct kvm_mmu_page *sp;
489 	struct kvm_rmap_desc *desc;
490 	unsigned long *rmapp;
491 	int i;
492 
493 	if (!is_rmap_pte(*spte))
494 		return;
495 	gfn = unalias_gfn(vcpu->kvm, gfn);
496 	sp = page_header(__pa(spte));
497 	sp->gfns[spte - sp->spt] = gfn;
498 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
499 	if (!*rmapp) {
500 		rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
501 		*rmapp = (unsigned long)spte;
502 	} else if (!(*rmapp & 1)) {
503 		rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
504 		desc = mmu_alloc_rmap_desc(vcpu);
505 		desc->shadow_ptes[0] = (u64 *)*rmapp;
506 		desc->shadow_ptes[1] = spte;
507 		*rmapp = (unsigned long)desc | 1;
508 	} else {
509 		rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
510 		desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
511 		while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
512 			desc = desc->more;
513 		if (desc->shadow_ptes[RMAP_EXT-1]) {
514 			desc->more = mmu_alloc_rmap_desc(vcpu);
515 			desc = desc->more;
516 		}
517 		for (i = 0; desc->shadow_ptes[i]; ++i)
518 			;
519 		desc->shadow_ptes[i] = spte;
520 	}
521 }
522 
rmap_desc_remove_entry(unsigned long * rmapp,struct kvm_rmap_desc * desc,int i,struct kvm_rmap_desc * prev_desc)523 static void rmap_desc_remove_entry(unsigned long *rmapp,
524 				   struct kvm_rmap_desc *desc,
525 				   int i,
526 				   struct kvm_rmap_desc *prev_desc)
527 {
528 	int j;
529 
530 	for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
531 		;
532 	desc->shadow_ptes[i] = desc->shadow_ptes[j];
533 	desc->shadow_ptes[j] = NULL;
534 	if (j != 0)
535 		return;
536 	if (!prev_desc && !desc->more)
537 		*rmapp = (unsigned long)desc->shadow_ptes[0];
538 	else
539 		if (prev_desc)
540 			prev_desc->more = desc->more;
541 		else
542 			*rmapp = (unsigned long)desc->more | 1;
543 	mmu_free_rmap_desc(desc);
544 }
545 
rmap_remove(struct kvm * kvm,u64 * spte)546 static void rmap_remove(struct kvm *kvm, u64 *spte)
547 {
548 	struct kvm_rmap_desc *desc;
549 	struct kvm_rmap_desc *prev_desc;
550 	struct kvm_mmu_page *sp;
551 	pfn_t pfn;
552 	unsigned long *rmapp;
553 	int i;
554 
555 	if (!is_rmap_pte(*spte))
556 		return;
557 	sp = page_header(__pa(spte));
558 	pfn = spte_to_pfn(*spte);
559 	if (*spte & shadow_accessed_mask)
560 		kvm_set_pfn_accessed(pfn);
561 	if (is_writeble_pte(*spte))
562 		kvm_release_pfn_dirty(pfn);
563 	else
564 		kvm_release_pfn_clean(pfn);
565 	rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
566 	if (!*rmapp) {
567 		printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
568 		BUG();
569 	} else if (!(*rmapp & 1)) {
570 		rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
571 		if ((u64 *)*rmapp != spte) {
572 			printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
573 			       spte, *spte);
574 			BUG();
575 		}
576 		*rmapp = 0;
577 	} else {
578 		rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
579 		desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
580 		prev_desc = NULL;
581 		while (desc) {
582 			for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
583 				if (desc->shadow_ptes[i] == spte) {
584 					rmap_desc_remove_entry(rmapp,
585 							       desc, i,
586 							       prev_desc);
587 					return;
588 				}
589 			prev_desc = desc;
590 			desc = desc->more;
591 		}
592 		BUG();
593 	}
594 }
595 
rmap_next(struct kvm * kvm,unsigned long * rmapp,u64 * spte)596 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
597 {
598 	struct kvm_rmap_desc *desc;
599 	struct kvm_rmap_desc *prev_desc;
600 	u64 *prev_spte;
601 	int i;
602 
603 	if (!*rmapp)
604 		return NULL;
605 	else if (!(*rmapp & 1)) {
606 		if (!spte)
607 			return (u64 *)*rmapp;
608 		return NULL;
609 	}
610 	desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
611 	prev_desc = NULL;
612 	prev_spte = NULL;
613 	while (desc) {
614 		for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
615 			if (prev_spte == spte)
616 				return desc->shadow_ptes[i];
617 			prev_spte = desc->shadow_ptes[i];
618 		}
619 		desc = desc->more;
620 	}
621 	return NULL;
622 }
623 
rmap_write_protect(struct kvm * kvm,u64 gfn)624 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
625 {
626 	unsigned long *rmapp;
627 	u64 *spte;
628 	int write_protected = 0;
629 
630 	gfn = unalias_gfn(kvm, gfn);
631 	rmapp = gfn_to_rmap(kvm, gfn, 0);
632 
633 	spte = rmap_next(kvm, rmapp, NULL);
634 	while (spte) {
635 		BUG_ON(!spte);
636 		BUG_ON(!(*spte & PT_PRESENT_MASK));
637 		rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
638 		if (is_writeble_pte(*spte)) {
639 			set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
640 			write_protected = 1;
641 		}
642 		spte = rmap_next(kvm, rmapp, spte);
643 	}
644 	if (write_protected) {
645 		pfn_t pfn;
646 
647 		spte = rmap_next(kvm, rmapp, NULL);
648 		pfn = spte_to_pfn(*spte);
649 		kvm_set_pfn_dirty(pfn);
650 	}
651 
652 	/* check for huge page mappings */
653 	rmapp = gfn_to_rmap(kvm, gfn, 1);
654 	spte = rmap_next(kvm, rmapp, NULL);
655 	while (spte) {
656 		BUG_ON(!spte);
657 		BUG_ON(!(*spte & PT_PRESENT_MASK));
658 		BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
659 		pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
660 		if (is_writeble_pte(*spte)) {
661 			rmap_remove(kvm, spte);
662 			--kvm->stat.lpages;
663 			set_shadow_pte(spte, shadow_trap_nonpresent_pte);
664 			spte = NULL;
665 			write_protected = 1;
666 		}
667 		spte = rmap_next(kvm, rmapp, spte);
668 	}
669 
670 	return write_protected;
671 }
672 
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp)673 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
674 {
675 	u64 *spte;
676 	int need_tlb_flush = 0;
677 
678 	while ((spte = rmap_next(kvm, rmapp, NULL))) {
679 		BUG_ON(!(*spte & PT_PRESENT_MASK));
680 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
681 		rmap_remove(kvm, spte);
682 		set_shadow_pte(spte, shadow_trap_nonpresent_pte);
683 		need_tlb_flush = 1;
684 	}
685 	return need_tlb_flush;
686 }
687 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,int (* handler)(struct kvm * kvm,unsigned long * rmapp))688 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
689 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp))
690 {
691 	int i;
692 	int retval = 0;
693 
694 	/*
695 	 * If mmap_sem isn't taken, we can look the memslots with only
696 	 * the mmu_lock by skipping over the slots with userspace_addr == 0.
697 	 */
698 	for (i = 0; i < kvm->nmemslots; i++) {
699 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
700 		unsigned long start = memslot->userspace_addr;
701 		unsigned long end;
702 
703 		/* mmu_lock protects userspace_addr */
704 		if (!start)
705 			continue;
706 
707 		end = start + (memslot->npages << PAGE_SHIFT);
708 		if (hva >= start && hva < end) {
709 			gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
710 			retval |= handler(kvm, &memslot->rmap[gfn_offset]);
711 			retval |= handler(kvm,
712 					  &memslot->lpage_info[
713 						  gfn_offset /
714 						  KVM_PAGES_PER_HPAGE].rmap_pde);
715 		}
716 	}
717 
718 	return retval;
719 }
720 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)721 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
722 {
723 	return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
724 }
725 
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp)726 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
727 {
728 	u64 *spte;
729 	int young = 0;
730 
731 	/* always return old for EPT */
732 	if (!shadow_accessed_mask)
733 		return 0;
734 
735 	spte = rmap_next(kvm, rmapp, NULL);
736 	while (spte) {
737 		int _young;
738 		u64 _spte = *spte;
739 		BUG_ON(!(_spte & PT_PRESENT_MASK));
740 		_young = _spte & PT_ACCESSED_MASK;
741 		if (_young) {
742 			young = 1;
743 			clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
744 		}
745 		spte = rmap_next(kvm, rmapp, spte);
746 	}
747 	return young;
748 }
749 
kvm_age_hva(struct kvm * kvm,unsigned long hva)750 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
751 {
752 	return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
753 }
754 
755 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)756 static int is_empty_shadow_page(u64 *spt)
757 {
758 	u64 *pos;
759 	u64 *end;
760 
761 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
762 		if (is_shadow_present_pte(*pos)) {
763 			printk(KERN_ERR "%s: %p %llx\n", __func__,
764 			       pos, *pos);
765 			return 0;
766 		}
767 	return 1;
768 }
769 #endif
770 
kvm_mmu_free_page(struct kvm * kvm,struct kvm_mmu_page * sp)771 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
772 {
773 	ASSERT(is_empty_shadow_page(sp->spt));
774 	list_del(&sp->link);
775 	__free_page(virt_to_page(sp->spt));
776 	__free_page(virt_to_page(sp->gfns));
777 	kfree(sp);
778 	++kvm->arch.n_free_mmu_pages;
779 }
780 
kvm_page_table_hashfn(gfn_t gfn)781 static unsigned kvm_page_table_hashfn(gfn_t gfn)
782 {
783 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
784 }
785 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,u64 * parent_pte)786 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
787 					       u64 *parent_pte)
788 {
789 	struct kvm_mmu_page *sp;
790 
791 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
792 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
793 	sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
794 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
795 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
796 	INIT_LIST_HEAD(&sp->oos_link);
797 	ASSERT(is_empty_shadow_page(sp->spt));
798 	bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
799 	sp->multimapped = 0;
800 	sp->global = 1;
801 	sp->parent_pte = parent_pte;
802 	--vcpu->kvm->arch.n_free_mmu_pages;
803 	return sp;
804 }
805 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)806 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
807 				    struct kvm_mmu_page *sp, u64 *parent_pte)
808 {
809 	struct kvm_pte_chain *pte_chain;
810 	struct hlist_node *node;
811 	int i;
812 
813 	if (!parent_pte)
814 		return;
815 	if (!sp->multimapped) {
816 		u64 *old = sp->parent_pte;
817 
818 		if (!old) {
819 			sp->parent_pte = parent_pte;
820 			return;
821 		}
822 		sp->multimapped = 1;
823 		pte_chain = mmu_alloc_pte_chain(vcpu);
824 		INIT_HLIST_HEAD(&sp->parent_ptes);
825 		hlist_add_head(&pte_chain->link, &sp->parent_ptes);
826 		pte_chain->parent_ptes[0] = old;
827 	}
828 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
829 		if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
830 			continue;
831 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
832 			if (!pte_chain->parent_ptes[i]) {
833 				pte_chain->parent_ptes[i] = parent_pte;
834 				return;
835 			}
836 	}
837 	pte_chain = mmu_alloc_pte_chain(vcpu);
838 	BUG_ON(!pte_chain);
839 	hlist_add_head(&pte_chain->link, &sp->parent_ptes);
840 	pte_chain->parent_ptes[0] = parent_pte;
841 }
842 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)843 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
844 				       u64 *parent_pte)
845 {
846 	struct kvm_pte_chain *pte_chain;
847 	struct hlist_node *node;
848 	int i;
849 
850 	if (!sp->multimapped) {
851 		BUG_ON(sp->parent_pte != parent_pte);
852 		sp->parent_pte = NULL;
853 		return;
854 	}
855 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
856 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
857 			if (!pte_chain->parent_ptes[i])
858 				break;
859 			if (pte_chain->parent_ptes[i] != parent_pte)
860 				continue;
861 			while (i + 1 < NR_PTE_CHAIN_ENTRIES
862 				&& pte_chain->parent_ptes[i + 1]) {
863 				pte_chain->parent_ptes[i]
864 					= pte_chain->parent_ptes[i + 1];
865 				++i;
866 			}
867 			pte_chain->parent_ptes[i] = NULL;
868 			if (i == 0) {
869 				hlist_del(&pte_chain->link);
870 				mmu_free_pte_chain(pte_chain);
871 				if (hlist_empty(&sp->parent_ptes)) {
872 					sp->multimapped = 0;
873 					sp->parent_pte = NULL;
874 				}
875 			}
876 			return;
877 		}
878 	BUG();
879 }
880 
881 
mmu_parent_walk(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,mmu_parent_walk_fn fn)882 static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
883 			    mmu_parent_walk_fn fn)
884 {
885 	struct kvm_pte_chain *pte_chain;
886 	struct hlist_node *node;
887 	struct kvm_mmu_page *parent_sp;
888 	int i;
889 
890 	if (!sp->multimapped && sp->parent_pte) {
891 		parent_sp = page_header(__pa(sp->parent_pte));
892 		fn(vcpu, parent_sp);
893 		mmu_parent_walk(vcpu, parent_sp, fn);
894 		return;
895 	}
896 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
897 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
898 			if (!pte_chain->parent_ptes[i])
899 				break;
900 			parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
901 			fn(vcpu, parent_sp);
902 			mmu_parent_walk(vcpu, parent_sp, fn);
903 		}
904 }
905 
kvm_mmu_update_unsync_bitmap(u64 * spte)906 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
907 {
908 	unsigned int index;
909 	struct kvm_mmu_page *sp = page_header(__pa(spte));
910 
911 	index = spte - sp->spt;
912 	if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
913 		sp->unsync_children++;
914 	WARN_ON(!sp->unsync_children);
915 }
916 
kvm_mmu_update_parents_unsync(struct kvm_mmu_page * sp)917 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
918 {
919 	struct kvm_pte_chain *pte_chain;
920 	struct hlist_node *node;
921 	int i;
922 
923 	if (!sp->parent_pte)
924 		return;
925 
926 	if (!sp->multimapped) {
927 		kvm_mmu_update_unsync_bitmap(sp->parent_pte);
928 		return;
929 	}
930 
931 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
932 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
933 			if (!pte_chain->parent_ptes[i])
934 				break;
935 			kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
936 		}
937 }
938 
unsync_walk_fn(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)939 static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
940 {
941 	kvm_mmu_update_parents_unsync(sp);
942 	return 1;
943 }
944 
kvm_mmu_mark_parents_unsync(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)945 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
946 					struct kvm_mmu_page *sp)
947 {
948 	mmu_parent_walk(vcpu, sp, unsync_walk_fn);
949 	kvm_mmu_update_parents_unsync(sp);
950 }
951 
nonpaging_prefetch_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)952 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
953 				    struct kvm_mmu_page *sp)
954 {
955 	int i;
956 
957 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
958 		sp->spt[i] = shadow_trap_nonpresent_pte;
959 }
960 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)961 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
962 			       struct kvm_mmu_page *sp)
963 {
964 	return 1;
965 }
966 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)967 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
968 {
969 }
970 
971 #define KVM_PAGE_ARRAY_NR 16
972 
973 struct kvm_mmu_pages {
974 	struct mmu_page_and_offset {
975 		struct kvm_mmu_page *sp;
976 		unsigned int idx;
977 	} page[KVM_PAGE_ARRAY_NR];
978 	unsigned int nr;
979 };
980 
981 #define for_each_unsync_children(bitmap, idx)		\
982 	for (idx = find_first_bit(bitmap, 512);		\
983 	     idx < 512;					\
984 	     idx = find_next_bit(bitmap, 512, idx+1))
985 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)986 int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
987 		   int idx)
988 {
989 	int i;
990 
991 	if (sp->unsync)
992 		for (i=0; i < pvec->nr; i++)
993 			if (pvec->page[i].sp == sp)
994 				return 0;
995 
996 	pvec->page[pvec->nr].sp = sp;
997 	pvec->page[pvec->nr].idx = idx;
998 	pvec->nr++;
999 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1000 }
1001 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1002 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1003 			   struct kvm_mmu_pages *pvec)
1004 {
1005 	int i, ret, nr_unsync_leaf = 0;
1006 
1007 	for_each_unsync_children(sp->unsync_child_bitmap, i) {
1008 		u64 ent = sp->spt[i];
1009 
1010 		if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
1011 			struct kvm_mmu_page *child;
1012 			child = page_header(ent & PT64_BASE_ADDR_MASK);
1013 
1014 			if (child->unsync_children) {
1015 				if (mmu_pages_add(pvec, child, i))
1016 					return -ENOSPC;
1017 
1018 				ret = __mmu_unsync_walk(child, pvec);
1019 				if (!ret)
1020 					__clear_bit(i, sp->unsync_child_bitmap);
1021 				else if (ret > 0)
1022 					nr_unsync_leaf += ret;
1023 				else
1024 					return ret;
1025 			}
1026 
1027 			if (child->unsync) {
1028 				nr_unsync_leaf++;
1029 				if (mmu_pages_add(pvec, child, i))
1030 					return -ENOSPC;
1031 			}
1032 		}
1033 	}
1034 
1035 	if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1036 		sp->unsync_children = 0;
1037 
1038 	return nr_unsync_leaf;
1039 }
1040 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1041 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1042 			   struct kvm_mmu_pages *pvec)
1043 {
1044 	if (!sp->unsync_children)
1045 		return 0;
1046 
1047 	mmu_pages_add(pvec, sp, 0);
1048 	return __mmu_unsync_walk(sp, pvec);
1049 }
1050 
kvm_mmu_lookup_page(struct kvm * kvm,gfn_t gfn)1051 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1052 {
1053 	unsigned index;
1054 	struct hlist_head *bucket;
1055 	struct kvm_mmu_page *sp;
1056 	struct hlist_node *node;
1057 
1058 	pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1059 	index = kvm_page_table_hashfn(gfn);
1060 	bucket = &kvm->arch.mmu_page_hash[index];
1061 	hlist_for_each_entry(sp, node, bucket, hash_link)
1062 		if (sp->gfn == gfn && !sp->role.metaphysical
1063 		    && !sp->role.invalid) {
1064 			pgprintk("%s: found role %x\n",
1065 				 __func__, sp->role.word);
1066 			return sp;
1067 		}
1068 	return NULL;
1069 }
1070 
kvm_unlink_unsync_global(struct kvm * kvm,struct kvm_mmu_page * sp)1071 static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
1072 {
1073 	list_del(&sp->oos_link);
1074 	--kvm->stat.mmu_unsync_global;
1075 }
1076 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1077 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1078 {
1079 	WARN_ON(!sp->unsync);
1080 	sp->unsync = 0;
1081 	if (sp->global)
1082 		kvm_unlink_unsync_global(kvm, sp);
1083 	--kvm->stat.mmu_unsync;
1084 }
1085 
1086 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1087 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1088 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1089 {
1090 	if (sp->role.glevels != vcpu->arch.mmu.root_level) {
1091 		kvm_mmu_zap_page(vcpu->kvm, sp);
1092 		return 1;
1093 	}
1094 
1095 	if (rmap_write_protect(vcpu->kvm, sp->gfn))
1096 		kvm_flush_remote_tlbs(vcpu->kvm);
1097 	kvm_unlink_unsync_page(vcpu->kvm, sp);
1098 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1099 		kvm_mmu_zap_page(vcpu->kvm, sp);
1100 		return 1;
1101 	}
1102 
1103 	kvm_mmu_flush_tlb(vcpu);
1104 	return 0;
1105 }
1106 
1107 struct mmu_page_path {
1108 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1109 	unsigned int idx[PT64_ROOT_LEVEL-1];
1110 };
1111 
1112 #define for_each_sp(pvec, sp, parents, i)			\
1113 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1114 			sp = pvec.page[i].sp;			\
1115 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1116 			i = mmu_pages_next(&pvec, &parents, i))
1117 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1118 int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
1119 		   int i)
1120 {
1121 	int n;
1122 
1123 	for (n = i+1; n < pvec->nr; n++) {
1124 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1125 
1126 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1127 			parents->idx[0] = pvec->page[n].idx;
1128 			return n;
1129 		}
1130 
1131 		parents->parent[sp->role.level-2] = sp;
1132 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1133 	}
1134 
1135 	return n;
1136 }
1137 
mmu_pages_clear_parents(struct mmu_page_path * parents)1138 void mmu_pages_clear_parents(struct mmu_page_path *parents)
1139 {
1140 	struct kvm_mmu_page *sp;
1141 	unsigned int level = 0;
1142 
1143 	do {
1144 		unsigned int idx = parents->idx[level];
1145 
1146 		sp = parents->parent[level];
1147 		if (!sp)
1148 			return;
1149 
1150 		--sp->unsync_children;
1151 		WARN_ON((int)sp->unsync_children < 0);
1152 		__clear_bit(idx, sp->unsync_child_bitmap);
1153 		level++;
1154 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1155 }
1156 
kvm_mmu_pages_init(struct kvm_mmu_page * parent,struct mmu_page_path * parents,struct kvm_mmu_pages * pvec)1157 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1158 			       struct mmu_page_path *parents,
1159 			       struct kvm_mmu_pages *pvec)
1160 {
1161 	parents->parent[parent->role.level-1] = NULL;
1162 	pvec->nr = 0;
1163 }
1164 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1165 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1166 			      struct kvm_mmu_page *parent)
1167 {
1168 	int i;
1169 	struct kvm_mmu_page *sp;
1170 	struct mmu_page_path parents;
1171 	struct kvm_mmu_pages pages;
1172 
1173 	kvm_mmu_pages_init(parent, &parents, &pages);
1174 	while (mmu_unsync_walk(parent, &pages)) {
1175 		int protected = 0;
1176 
1177 		for_each_sp(pages, sp, parents, i)
1178 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1179 
1180 		if (protected)
1181 			kvm_flush_remote_tlbs(vcpu->kvm);
1182 
1183 		for_each_sp(pages, sp, parents, i) {
1184 			kvm_sync_page(vcpu, sp);
1185 			mmu_pages_clear_parents(&parents);
1186 		}
1187 		cond_resched_lock(&vcpu->kvm->mmu_lock);
1188 		kvm_mmu_pages_init(parent, &parents, &pages);
1189 	}
1190 }
1191 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int metaphysical,unsigned access,u64 * parent_pte)1192 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1193 					     gfn_t gfn,
1194 					     gva_t gaddr,
1195 					     unsigned level,
1196 					     int metaphysical,
1197 					     unsigned access,
1198 					     u64 *parent_pte)
1199 {
1200 	union kvm_mmu_page_role role;
1201 	unsigned index;
1202 	unsigned quadrant;
1203 	struct hlist_head *bucket;
1204 	struct kvm_mmu_page *sp;
1205 	struct hlist_node *node, *tmp;
1206 
1207 	role.word = 0;
1208 	role.glevels = vcpu->arch.mmu.root_level;
1209 	role.level = level;
1210 	role.metaphysical = metaphysical;
1211 	role.access = access;
1212 	if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1213 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1214 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1215 		role.quadrant = quadrant;
1216 	}
1217 	pgprintk("%s: looking gfn %lx role %x\n", __func__,
1218 		 gfn, role.word);
1219 	index = kvm_page_table_hashfn(gfn);
1220 	bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1221 	hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1222 		if (sp->gfn == gfn) {
1223 			if (sp->unsync)
1224 				if (kvm_sync_page(vcpu, sp))
1225 					continue;
1226 
1227 			if (sp->role.word != role.word)
1228 				continue;
1229 
1230 			mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1231 			if (sp->unsync_children) {
1232 				set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1233 				kvm_mmu_mark_parents_unsync(vcpu, sp);
1234 			}
1235 			pgprintk("%s: found\n", __func__);
1236 			return sp;
1237 		}
1238 	++vcpu->kvm->stat.mmu_cache_miss;
1239 	sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1240 	if (!sp)
1241 		return sp;
1242 	pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
1243 	sp->gfn = gfn;
1244 	sp->role = role;
1245 	hlist_add_head(&sp->hash_link, bucket);
1246 	if (!metaphysical) {
1247 		if (rmap_write_protect(vcpu->kvm, gfn))
1248 			kvm_flush_remote_tlbs(vcpu->kvm);
1249 		account_shadowed(vcpu->kvm, gfn);
1250 	}
1251 	if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1252 		vcpu->arch.mmu.prefetch_page(vcpu, sp);
1253 	else
1254 		nonpaging_prefetch_page(vcpu, sp);
1255 	return sp;
1256 }
1257 
walk_shadow(struct kvm_shadow_walk * walker,struct kvm_vcpu * vcpu,u64 addr)1258 static int walk_shadow(struct kvm_shadow_walk *walker,
1259 		       struct kvm_vcpu *vcpu, u64 addr)
1260 {
1261 	hpa_t shadow_addr;
1262 	int level;
1263 	int r;
1264 	u64 *sptep;
1265 	unsigned index;
1266 
1267 	shadow_addr = vcpu->arch.mmu.root_hpa;
1268 	level = vcpu->arch.mmu.shadow_root_level;
1269 	if (level == PT32E_ROOT_LEVEL) {
1270 		shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1271 		shadow_addr &= PT64_BASE_ADDR_MASK;
1272 		if (!shadow_addr)
1273 			return 1;
1274 		--level;
1275 	}
1276 
1277 	while (level >= PT_PAGE_TABLE_LEVEL) {
1278 		index = SHADOW_PT_INDEX(addr, level);
1279 		sptep = ((u64 *)__va(shadow_addr)) + index;
1280 		r = walker->entry(walker, vcpu, addr, sptep, level);
1281 		if (r)
1282 			return r;
1283 		shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
1284 		--level;
1285 	}
1286 	return 0;
1287 }
1288 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)1289 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1290 					 struct kvm_mmu_page *sp)
1291 {
1292 	unsigned i;
1293 	u64 *pt;
1294 	u64 ent;
1295 
1296 	pt = sp->spt;
1297 
1298 	if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1299 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1300 			if (is_shadow_present_pte(pt[i]))
1301 				rmap_remove(kvm, &pt[i]);
1302 			pt[i] = shadow_trap_nonpresent_pte;
1303 		}
1304 		return;
1305 	}
1306 
1307 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1308 		ent = pt[i];
1309 
1310 		if (is_shadow_present_pte(ent)) {
1311 			if (!is_large_pte(ent)) {
1312 				ent &= PT64_BASE_ADDR_MASK;
1313 				mmu_page_remove_parent_pte(page_header(ent),
1314 							   &pt[i]);
1315 			} else {
1316 				--kvm->stat.lpages;
1317 				rmap_remove(kvm, &pt[i]);
1318 			}
1319 		}
1320 		pt[i] = shadow_trap_nonpresent_pte;
1321 	}
1322 }
1323 
kvm_mmu_put_page(struct kvm_mmu_page * sp,u64 * parent_pte)1324 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1325 {
1326 	mmu_page_remove_parent_pte(sp, parent_pte);
1327 }
1328 
kvm_mmu_reset_last_pte_updated(struct kvm * kvm)1329 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1330 {
1331 	int i;
1332 
1333 	for (i = 0; i < KVM_MAX_VCPUS; ++i)
1334 		if (kvm->vcpus[i])
1335 			kvm->vcpus[i]->arch.last_pte_updated = NULL;
1336 }
1337 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)1338 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1339 {
1340 	u64 *parent_pte;
1341 
1342 	while (sp->multimapped || sp->parent_pte) {
1343 		if (!sp->multimapped)
1344 			parent_pte = sp->parent_pte;
1345 		else {
1346 			struct kvm_pte_chain *chain;
1347 
1348 			chain = container_of(sp->parent_ptes.first,
1349 					     struct kvm_pte_chain, link);
1350 			parent_pte = chain->parent_ptes[0];
1351 		}
1352 		BUG_ON(!parent_pte);
1353 		kvm_mmu_put_page(sp, parent_pte);
1354 		set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
1355 	}
1356 }
1357 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent)1358 static int mmu_zap_unsync_children(struct kvm *kvm,
1359 				   struct kvm_mmu_page *parent)
1360 {
1361 	int i, zapped = 0;
1362 	struct mmu_page_path parents;
1363 	struct kvm_mmu_pages pages;
1364 
1365 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1366 		return 0;
1367 
1368 	kvm_mmu_pages_init(parent, &parents, &pages);
1369 	while (mmu_unsync_walk(parent, &pages)) {
1370 		struct kvm_mmu_page *sp;
1371 
1372 		for_each_sp(pages, sp, parents, i) {
1373 			kvm_mmu_zap_page(kvm, sp);
1374 			mmu_pages_clear_parents(&parents);
1375 		}
1376 		zapped += pages.nr;
1377 		kvm_mmu_pages_init(parent, &parents, &pages);
1378 	}
1379 
1380 	return zapped;
1381 }
1382 
kvm_mmu_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp)1383 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1384 {
1385 	int ret;
1386 	++kvm->stat.mmu_shadow_zapped;
1387 	ret = mmu_zap_unsync_children(kvm, sp);
1388 	kvm_mmu_page_unlink_children(kvm, sp);
1389 	kvm_mmu_unlink_parents(kvm, sp);
1390 	kvm_flush_remote_tlbs(kvm);
1391 	if (!sp->role.invalid && !sp->role.metaphysical)
1392 		unaccount_shadowed(kvm, sp->gfn);
1393 	if (sp->unsync)
1394 		kvm_unlink_unsync_page(kvm, sp);
1395 	if (!sp->root_count) {
1396 		hlist_del(&sp->hash_link);
1397 		kvm_mmu_free_page(kvm, sp);
1398 	} else {
1399 		sp->role.invalid = 1;
1400 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
1401 		kvm_reload_remote_mmus(kvm);
1402 	}
1403 	kvm_mmu_reset_last_pte_updated(kvm);
1404 	return ret;
1405 }
1406 
1407 /*
1408  * Changing the number of mmu pages allocated to the vm
1409  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1410  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int kvm_nr_mmu_pages)1411 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1412 {
1413 	/*
1414 	 * If we set the number of mmu pages to be smaller be than the
1415 	 * number of actived pages , we must to free some mmu pages before we
1416 	 * change the value
1417 	 */
1418 
1419 	if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
1420 	    kvm_nr_mmu_pages) {
1421 		int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
1422 				       - kvm->arch.n_free_mmu_pages;
1423 
1424 		while (n_used_mmu_pages > kvm_nr_mmu_pages) {
1425 			struct kvm_mmu_page *page;
1426 
1427 			page = container_of(kvm->arch.active_mmu_pages.prev,
1428 					    struct kvm_mmu_page, link);
1429 			kvm_mmu_zap_page(kvm, page);
1430 			n_used_mmu_pages--;
1431 		}
1432 		kvm->arch.n_free_mmu_pages = 0;
1433 	}
1434 	else
1435 		kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1436 					 - kvm->arch.n_alloc_mmu_pages;
1437 
1438 	kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1439 }
1440 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)1441 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1442 {
1443 	unsigned index;
1444 	struct hlist_head *bucket;
1445 	struct kvm_mmu_page *sp;
1446 	struct hlist_node *node, *n;
1447 	int r;
1448 
1449 	pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1450 	r = 0;
1451 	index = kvm_page_table_hashfn(gfn);
1452 	bucket = &kvm->arch.mmu_page_hash[index];
1453 	hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1454 		if (sp->gfn == gfn && !sp->role.metaphysical) {
1455 			pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1456 				 sp->role.word);
1457 			r = 1;
1458 			if (kvm_mmu_zap_page(kvm, sp))
1459 				n = bucket->first;
1460 		}
1461 	return r;
1462 }
1463 
mmu_unshadow(struct kvm * kvm,gfn_t gfn)1464 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1465 {
1466 	struct kvm_mmu_page *sp;
1467 
1468 	while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1469 		pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1470 		kvm_mmu_zap_page(kvm, sp);
1471 	}
1472 }
1473 
page_header_update_slot(struct kvm * kvm,void * pte,gfn_t gfn)1474 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1475 {
1476 	int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1477 	struct kvm_mmu_page *sp = page_header(__pa(pte));
1478 
1479 	__set_bit(slot, sp->slot_bitmap);
1480 }
1481 
mmu_convert_notrap(struct kvm_mmu_page * sp)1482 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1483 {
1484 	int i;
1485 	u64 *pt = sp->spt;
1486 
1487 	if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1488 		return;
1489 
1490 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1491 		if (pt[i] == shadow_notrap_nonpresent_pte)
1492 			set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
1493 	}
1494 }
1495 
gva_to_page(struct kvm_vcpu * vcpu,gva_t gva)1496 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1497 {
1498 	struct page *page;
1499 
1500 	gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1501 
1502 	if (gpa == UNMAPPED_GVA)
1503 		return NULL;
1504 
1505 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1506 
1507 	return page;
1508 }
1509 
1510 /*
1511  * The function is based on mtrr_type_lookup() in
1512  * arch/x86/kernel/cpu/mtrr/generic.c
1513  */
get_mtrr_type(struct mtrr_state_type * mtrr_state,u64 start,u64 end)1514 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1515 			 u64 start, u64 end)
1516 {
1517 	int i;
1518 	u64 base, mask;
1519 	u8 prev_match, curr_match;
1520 	int num_var_ranges = KVM_NR_VAR_MTRR;
1521 
1522 	if (!mtrr_state->enabled)
1523 		return 0xFF;
1524 
1525 	/* Make end inclusive end, instead of exclusive */
1526 	end--;
1527 
1528 	/* Look in fixed ranges. Just return the type as per start */
1529 	if (mtrr_state->have_fixed && (start < 0x100000)) {
1530 		int idx;
1531 
1532 		if (start < 0x80000) {
1533 			idx = 0;
1534 			idx += (start >> 16);
1535 			return mtrr_state->fixed_ranges[idx];
1536 		} else if (start < 0xC0000) {
1537 			idx = 1 * 8;
1538 			idx += ((start - 0x80000) >> 14);
1539 			return mtrr_state->fixed_ranges[idx];
1540 		} else if (start < 0x1000000) {
1541 			idx = 3 * 8;
1542 			idx += ((start - 0xC0000) >> 12);
1543 			return mtrr_state->fixed_ranges[idx];
1544 		}
1545 	}
1546 
1547 	/*
1548 	 * Look in variable ranges
1549 	 * Look of multiple ranges matching this address and pick type
1550 	 * as per MTRR precedence
1551 	 */
1552 	if (!(mtrr_state->enabled & 2))
1553 		return mtrr_state->def_type;
1554 
1555 	prev_match = 0xFF;
1556 	for (i = 0; i < num_var_ranges; ++i) {
1557 		unsigned short start_state, end_state;
1558 
1559 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1560 			continue;
1561 
1562 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1563 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1564 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1565 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1566 
1567 		start_state = ((start & mask) == (base & mask));
1568 		end_state = ((end & mask) == (base & mask));
1569 		if (start_state != end_state)
1570 			return 0xFE;
1571 
1572 		if ((start & mask) != (base & mask))
1573 			continue;
1574 
1575 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1576 		if (prev_match == 0xFF) {
1577 			prev_match = curr_match;
1578 			continue;
1579 		}
1580 
1581 		if (prev_match == MTRR_TYPE_UNCACHABLE ||
1582 		    curr_match == MTRR_TYPE_UNCACHABLE)
1583 			return MTRR_TYPE_UNCACHABLE;
1584 
1585 		if ((prev_match == MTRR_TYPE_WRBACK &&
1586 		     curr_match == MTRR_TYPE_WRTHROUGH) ||
1587 		    (prev_match == MTRR_TYPE_WRTHROUGH &&
1588 		     curr_match == MTRR_TYPE_WRBACK)) {
1589 			prev_match = MTRR_TYPE_WRTHROUGH;
1590 			curr_match = MTRR_TYPE_WRTHROUGH;
1591 		}
1592 
1593 		if (prev_match != curr_match)
1594 			return MTRR_TYPE_UNCACHABLE;
1595 	}
1596 
1597 	if (prev_match != 0xFF)
1598 		return prev_match;
1599 
1600 	return mtrr_state->def_type;
1601 }
1602 
get_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)1603 static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 {
1605 	u8 mtrr;
1606 
1607 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1608 			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
1609 	if (mtrr == 0xfe || mtrr == 0xff)
1610 		mtrr = MTRR_TYPE_WRBACK;
1611 	return mtrr;
1612 }
1613 
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1614 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1615 {
1616 	unsigned index;
1617 	struct hlist_head *bucket;
1618 	struct kvm_mmu_page *s;
1619 	struct hlist_node *node, *n;
1620 
1621 	index = kvm_page_table_hashfn(sp->gfn);
1622 	bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1623 	/* don't unsync if pagetable is shadowed with multiple roles */
1624 	hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1625 		if (s->gfn != sp->gfn || s->role.metaphysical)
1626 			continue;
1627 		if (s->role.word != sp->role.word)
1628 			return 1;
1629 	}
1630 	++vcpu->kvm->stat.mmu_unsync;
1631 	sp->unsync = 1;
1632 
1633 	if (sp->global) {
1634 		list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
1635 		++vcpu->kvm->stat.mmu_unsync_global;
1636 	} else
1637 		kvm_mmu_mark_parents_unsync(vcpu, sp);
1638 
1639 	mmu_convert_notrap(sp);
1640 	return 0;
1641 }
1642 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)1643 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1644 				  bool can_unsync)
1645 {
1646 	struct kvm_mmu_page *shadow;
1647 
1648 	shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1649 	if (shadow) {
1650 		if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1651 			return 1;
1652 		if (shadow->unsync)
1653 			return 0;
1654 		if (can_unsync && oos_shadow)
1655 			return kvm_unsync_page(vcpu, shadow);
1656 		return 1;
1657 	}
1658 	return 0;
1659 }
1660 
set_spte(struct kvm_vcpu * vcpu,u64 * shadow_pte,unsigned pte_access,int user_fault,int write_fault,int dirty,int largepage,int global,gfn_t gfn,pfn_t pfn,bool speculative,bool can_unsync)1661 static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1662 		    unsigned pte_access, int user_fault,
1663 		    int write_fault, int dirty, int largepage,
1664 		    int global, gfn_t gfn, pfn_t pfn, bool speculative,
1665 		    bool can_unsync)
1666 {
1667 	u64 spte;
1668 	int ret = 0;
1669 	u64 mt_mask = shadow_mt_mask;
1670 	struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
1671 
1672 	if (!(vcpu->arch.cr4 & X86_CR4_PGE))
1673 		global = 0;
1674 	if (!global && sp->global) {
1675 		sp->global = 0;
1676 		if (sp->unsync) {
1677 			kvm_unlink_unsync_global(vcpu->kvm, sp);
1678 			kvm_mmu_mark_parents_unsync(vcpu, sp);
1679 		}
1680 	}
1681 
1682 	/*
1683 	 * We don't set the accessed bit, since we sometimes want to see
1684 	 * whether the guest actually used the pte (in order to detect
1685 	 * demand paging).
1686 	 */
1687 	spte = shadow_base_present_pte | shadow_dirty_mask;
1688 	if (!speculative)
1689 		spte |= shadow_accessed_mask;
1690 	if (!dirty)
1691 		pte_access &= ~ACC_WRITE_MASK;
1692 	if (pte_access & ACC_EXEC_MASK)
1693 		spte |= shadow_x_mask;
1694 	else
1695 		spte |= shadow_nx_mask;
1696 	if (pte_access & ACC_USER_MASK)
1697 		spte |= shadow_user_mask;
1698 	if (largepage)
1699 		spte |= PT_PAGE_SIZE_MASK;
1700 	if (mt_mask) {
1701 		if (!kvm_is_mmio_pfn(pfn)) {
1702 			mt_mask = get_memory_type(vcpu, gfn) <<
1703 				kvm_x86_ops->get_mt_mask_shift();
1704 			mt_mask |= VMX_EPT_IGMT_BIT;
1705 		} else
1706 			mt_mask = MTRR_TYPE_UNCACHABLE <<
1707 				kvm_x86_ops->get_mt_mask_shift();
1708 		spte |= mt_mask;
1709 	}
1710 
1711 	spte |= (u64)pfn << PAGE_SHIFT;
1712 
1713 	if ((pte_access & ACC_WRITE_MASK)
1714 	    || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1715 
1716 		if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
1717 			ret = 1;
1718 			spte = shadow_trap_nonpresent_pte;
1719 			goto set_pte;
1720 		}
1721 
1722 		spte |= PT_WRITABLE_MASK;
1723 
1724 		/*
1725 		 * Optimization: for pte sync, if spte was writable the hash
1726 		 * lookup is unnecessary (and expensive). Write protection
1727 		 * is responsibility of mmu_get_page / kvm_sync_page.
1728 		 * Same reasoning can be applied to dirty page accounting.
1729 		 */
1730 		if (!can_unsync && is_writeble_pte(*shadow_pte))
1731 			goto set_pte;
1732 
1733 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1734 			pgprintk("%s: found shadow page for %lx, marking ro\n",
1735 				 __func__, gfn);
1736 			ret = 1;
1737 			pte_access &= ~ACC_WRITE_MASK;
1738 			if (is_writeble_pte(spte))
1739 				spte &= ~PT_WRITABLE_MASK;
1740 		}
1741 	}
1742 
1743 	if (pte_access & ACC_WRITE_MASK)
1744 		mark_page_dirty(vcpu->kvm, gfn);
1745 
1746 set_pte:
1747 	set_shadow_pte(shadow_pte, spte);
1748 	return ret;
1749 }
1750 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * shadow_pte,unsigned pt_access,unsigned pte_access,int user_fault,int write_fault,int dirty,int * ptwrite,int largepage,int global,gfn_t gfn,pfn_t pfn,bool speculative)1751 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1752 			 unsigned pt_access, unsigned pte_access,
1753 			 int user_fault, int write_fault, int dirty,
1754 			 int *ptwrite, int largepage, int global,
1755 			 gfn_t gfn, pfn_t pfn, bool speculative)
1756 {
1757 	int was_rmapped = 0;
1758 	int was_writeble = is_writeble_pte(*shadow_pte);
1759 
1760 	pgprintk("%s: spte %llx access %x write_fault %d"
1761 		 " user_fault %d gfn %lx\n",
1762 		 __func__, *shadow_pte, pt_access,
1763 		 write_fault, user_fault, gfn);
1764 
1765 	if (is_rmap_pte(*shadow_pte)) {
1766 		/*
1767 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1768 		 * the parent of the now unreachable PTE.
1769 		 */
1770 		if (largepage && !is_large_pte(*shadow_pte)) {
1771 			struct kvm_mmu_page *child;
1772 			u64 pte = *shadow_pte;
1773 
1774 			child = page_header(pte & PT64_BASE_ADDR_MASK);
1775 			mmu_page_remove_parent_pte(child, shadow_pte);
1776 		} else if (pfn != spte_to_pfn(*shadow_pte)) {
1777 			pgprintk("hfn old %lx new %lx\n",
1778 				 spte_to_pfn(*shadow_pte), pfn);
1779 			rmap_remove(vcpu->kvm, shadow_pte);
1780 		} else {
1781 			if (largepage)
1782 				was_rmapped = is_large_pte(*shadow_pte);
1783 			else
1784 				was_rmapped = 1;
1785 		}
1786 	}
1787 	if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
1788 		      dirty, largepage, global, gfn, pfn, speculative, true)) {
1789 		if (write_fault)
1790 			*ptwrite = 1;
1791 		kvm_x86_ops->tlb_flush(vcpu);
1792 	}
1793 
1794 	pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
1795 	pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1796 		 is_large_pte(*shadow_pte)? "2MB" : "4kB",
1797 		 is_present_pte(*shadow_pte)?"RW":"R", gfn,
1798 		 *shadow_pte, shadow_pte);
1799 	if (!was_rmapped && is_large_pte(*shadow_pte))
1800 		++vcpu->kvm->stat.lpages;
1801 
1802 	page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1803 	if (!was_rmapped) {
1804 		rmap_add(vcpu, shadow_pte, gfn, largepage);
1805 		if (!is_rmap_pte(*shadow_pte))
1806 			kvm_release_pfn_clean(pfn);
1807 	} else {
1808 		if (was_writeble)
1809 			kvm_release_pfn_dirty(pfn);
1810 		else
1811 			kvm_release_pfn_clean(pfn);
1812 	}
1813 	if (speculative) {
1814 		vcpu->arch.last_pte_updated = shadow_pte;
1815 		vcpu->arch.last_pte_gfn = gfn;
1816 	}
1817 }
1818 
nonpaging_new_cr3(struct kvm_vcpu * vcpu)1819 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1820 {
1821 }
1822 
1823 struct direct_shadow_walk {
1824 	struct kvm_shadow_walk walker;
1825 	pfn_t pfn;
1826 	int write;
1827 	int largepage;
1828 	int pt_write;
1829 };
1830 
direct_map_entry(struct kvm_shadow_walk * _walk,struct kvm_vcpu * vcpu,u64 addr,u64 * sptep,int level)1831 static int direct_map_entry(struct kvm_shadow_walk *_walk,
1832 			    struct kvm_vcpu *vcpu,
1833 			    u64 addr, u64 *sptep, int level)
1834 {
1835 	struct direct_shadow_walk *walk =
1836 		container_of(_walk, struct direct_shadow_walk, walker);
1837 	struct kvm_mmu_page *sp;
1838 	gfn_t pseudo_gfn;
1839 	gfn_t gfn = addr >> PAGE_SHIFT;
1840 
1841 	if (level == PT_PAGE_TABLE_LEVEL
1842 	    || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
1843 		mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
1844 			     0, walk->write, 1, &walk->pt_write,
1845 			     walk->largepage, 0, gfn, walk->pfn, false);
1846 		++vcpu->stat.pf_fixed;
1847 		return 1;
1848 	}
1849 
1850 	if (*sptep == shadow_trap_nonpresent_pte) {
1851 		pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1852 		sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
1853 				      1, ACC_ALL, sptep);
1854 		if (!sp) {
1855 			pgprintk("nonpaging_map: ENOMEM\n");
1856 			kvm_release_pfn_clean(walk->pfn);
1857 			return -ENOMEM;
1858 		}
1859 
1860 		set_shadow_pte(sptep,
1861 			       __pa(sp->spt)
1862 			       | PT_PRESENT_MASK | PT_WRITABLE_MASK
1863 			       | shadow_user_mask | shadow_x_mask);
1864 	}
1865 	return 0;
1866 }
1867 
__direct_map(struct kvm_vcpu * vcpu,gpa_t v,int write,int largepage,gfn_t gfn,pfn_t pfn)1868 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1869 			int largepage, gfn_t gfn, pfn_t pfn)
1870 {
1871 	int r;
1872 	struct direct_shadow_walk walker = {
1873 		.walker = { .entry = direct_map_entry, },
1874 		.pfn = pfn,
1875 		.largepage = largepage,
1876 		.write = write,
1877 		.pt_write = 0,
1878 	};
1879 
1880 	r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
1881 	if (r < 0)
1882 		return r;
1883 	return walker.pt_write;
1884 }
1885 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,int write,gfn_t gfn)1886 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1887 {
1888 	int r;
1889 	int largepage = 0;
1890 	pfn_t pfn;
1891 	unsigned long mmu_seq;
1892 
1893 	if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1894 		gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1895 		largepage = 1;
1896 	}
1897 
1898 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1899 	smp_rmb();
1900 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
1901 
1902 	/* mmio */
1903 	if (is_error_pfn(pfn)) {
1904 		kvm_release_pfn_clean(pfn);
1905 		return 1;
1906 	}
1907 
1908 	spin_lock(&vcpu->kvm->mmu_lock);
1909 	if (mmu_notifier_retry(vcpu, mmu_seq))
1910 		goto out_unlock;
1911 	kvm_mmu_free_some_pages(vcpu);
1912 	r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1913 	spin_unlock(&vcpu->kvm->mmu_lock);
1914 
1915 
1916 	return r;
1917 
1918 out_unlock:
1919 	spin_unlock(&vcpu->kvm->mmu_lock);
1920 	kvm_release_pfn_clean(pfn);
1921 	return 0;
1922 }
1923 
1924 
mmu_free_roots(struct kvm_vcpu * vcpu)1925 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1926 {
1927 	int i;
1928 	struct kvm_mmu_page *sp;
1929 
1930 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1931 		return;
1932 	spin_lock(&vcpu->kvm->mmu_lock);
1933 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1934 		hpa_t root = vcpu->arch.mmu.root_hpa;
1935 
1936 		sp = page_header(root);
1937 		--sp->root_count;
1938 		if (!sp->root_count && sp->role.invalid)
1939 			kvm_mmu_zap_page(vcpu->kvm, sp);
1940 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1941 		spin_unlock(&vcpu->kvm->mmu_lock);
1942 		return;
1943 	}
1944 	for (i = 0; i < 4; ++i) {
1945 		hpa_t root = vcpu->arch.mmu.pae_root[i];
1946 
1947 		if (root) {
1948 			root &= PT64_BASE_ADDR_MASK;
1949 			sp = page_header(root);
1950 			--sp->root_count;
1951 			if (!sp->root_count && sp->role.invalid)
1952 				kvm_mmu_zap_page(vcpu->kvm, sp);
1953 		}
1954 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1955 	}
1956 	spin_unlock(&vcpu->kvm->mmu_lock);
1957 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1958 }
1959 
mmu_alloc_roots(struct kvm_vcpu * vcpu)1960 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1961 {
1962 	int i;
1963 	gfn_t root_gfn;
1964 	struct kvm_mmu_page *sp;
1965 	int metaphysical = 0;
1966 
1967 	root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1968 
1969 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1970 		hpa_t root = vcpu->arch.mmu.root_hpa;
1971 
1972 		ASSERT(!VALID_PAGE(root));
1973 		if (tdp_enabled)
1974 			metaphysical = 1;
1975 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1976 				      PT64_ROOT_LEVEL, metaphysical,
1977 				      ACC_ALL, NULL);
1978 		root = __pa(sp->spt);
1979 		++sp->root_count;
1980 		vcpu->arch.mmu.root_hpa = root;
1981 		return;
1982 	}
1983 	metaphysical = !is_paging(vcpu);
1984 	if (tdp_enabled)
1985 		metaphysical = 1;
1986 	for (i = 0; i < 4; ++i) {
1987 		hpa_t root = vcpu->arch.mmu.pae_root[i];
1988 
1989 		ASSERT(!VALID_PAGE(root));
1990 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1991 			if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1992 				vcpu->arch.mmu.pae_root[i] = 0;
1993 				continue;
1994 			}
1995 			root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1996 		} else if (vcpu->arch.mmu.root_level == 0)
1997 			root_gfn = 0;
1998 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1999 				      PT32_ROOT_LEVEL, metaphysical,
2000 				      ACC_ALL, NULL);
2001 		root = __pa(sp->spt);
2002 		++sp->root_count;
2003 		vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2004 	}
2005 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2006 }
2007 
mmu_sync_roots(struct kvm_vcpu * vcpu)2008 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2009 {
2010 	int i;
2011 	struct kvm_mmu_page *sp;
2012 
2013 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2014 		return;
2015 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2016 		hpa_t root = vcpu->arch.mmu.root_hpa;
2017 		sp = page_header(root);
2018 		mmu_sync_children(vcpu, sp);
2019 		return;
2020 	}
2021 	for (i = 0; i < 4; ++i) {
2022 		hpa_t root = vcpu->arch.mmu.pae_root[i];
2023 
2024 		if (root) {
2025 			root &= PT64_BASE_ADDR_MASK;
2026 			sp = page_header(root);
2027 			mmu_sync_children(vcpu, sp);
2028 		}
2029 	}
2030 }
2031 
mmu_sync_global(struct kvm_vcpu * vcpu)2032 static void mmu_sync_global(struct kvm_vcpu *vcpu)
2033 {
2034 	struct kvm *kvm = vcpu->kvm;
2035 	struct kvm_mmu_page *sp, *n;
2036 
2037 	list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
2038 		kvm_sync_page(vcpu, sp);
2039 }
2040 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)2041 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2042 {
2043 	spin_lock(&vcpu->kvm->mmu_lock);
2044 	mmu_sync_roots(vcpu);
2045 	spin_unlock(&vcpu->kvm->mmu_lock);
2046 }
2047 
kvm_mmu_sync_global(struct kvm_vcpu * vcpu)2048 void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
2049 {
2050 	spin_lock(&vcpu->kvm->mmu_lock);
2051 	mmu_sync_global(vcpu);
2052 	spin_unlock(&vcpu->kvm->mmu_lock);
2053 }
2054 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr)2055 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
2056 {
2057 	return vaddr;
2058 }
2059 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code)2060 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2061 				u32 error_code)
2062 {
2063 	gfn_t gfn;
2064 	int r;
2065 
2066 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2067 	r = mmu_topup_memory_caches(vcpu);
2068 	if (r)
2069 		return r;
2070 
2071 	ASSERT(vcpu);
2072 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2073 
2074 	gfn = gva >> PAGE_SHIFT;
2075 
2076 	return nonpaging_map(vcpu, gva & PAGE_MASK,
2077 			     error_code & PFERR_WRITE_MASK, gfn);
2078 }
2079 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code)2080 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2081 				u32 error_code)
2082 {
2083 	pfn_t pfn;
2084 	int r;
2085 	int largepage = 0;
2086 	gfn_t gfn = gpa >> PAGE_SHIFT;
2087 	unsigned long mmu_seq;
2088 
2089 	ASSERT(vcpu);
2090 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2091 
2092 	r = mmu_topup_memory_caches(vcpu);
2093 	if (r)
2094 		return r;
2095 
2096 	if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
2097 		gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2098 		largepage = 1;
2099 	}
2100 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2101 	smp_rmb();
2102 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2103 	if (is_error_pfn(pfn)) {
2104 		kvm_release_pfn_clean(pfn);
2105 		return 1;
2106 	}
2107 	spin_lock(&vcpu->kvm->mmu_lock);
2108 	if (mmu_notifier_retry(vcpu, mmu_seq))
2109 		goto out_unlock;
2110 	kvm_mmu_free_some_pages(vcpu);
2111 	r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2112 			 largepage, gfn, pfn);
2113 	spin_unlock(&vcpu->kvm->mmu_lock);
2114 
2115 	return r;
2116 
2117 out_unlock:
2118 	spin_unlock(&vcpu->kvm->mmu_lock);
2119 	kvm_release_pfn_clean(pfn);
2120 	return 0;
2121 }
2122 
nonpaging_free(struct kvm_vcpu * vcpu)2123 static void nonpaging_free(struct kvm_vcpu *vcpu)
2124 {
2125 	mmu_free_roots(vcpu);
2126 }
2127 
nonpaging_init_context(struct kvm_vcpu * vcpu)2128 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2129 {
2130 	struct kvm_mmu *context = &vcpu->arch.mmu;
2131 
2132 	context->new_cr3 = nonpaging_new_cr3;
2133 	context->page_fault = nonpaging_page_fault;
2134 	context->gva_to_gpa = nonpaging_gva_to_gpa;
2135 	context->free = nonpaging_free;
2136 	context->prefetch_page = nonpaging_prefetch_page;
2137 	context->sync_page = nonpaging_sync_page;
2138 	context->invlpg = nonpaging_invlpg;
2139 	context->root_level = 0;
2140 	context->shadow_root_level = PT32E_ROOT_LEVEL;
2141 	context->root_hpa = INVALID_PAGE;
2142 	return 0;
2143 }
2144 
kvm_mmu_flush_tlb(struct kvm_vcpu * vcpu)2145 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2146 {
2147 	++vcpu->stat.tlb_flush;
2148 	kvm_x86_ops->tlb_flush(vcpu);
2149 }
2150 
paging_new_cr3(struct kvm_vcpu * vcpu)2151 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2152 {
2153 	pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2154 	mmu_free_roots(vcpu);
2155 }
2156 
inject_page_fault(struct kvm_vcpu * vcpu,u64 addr,u32 err_code)2157 static void inject_page_fault(struct kvm_vcpu *vcpu,
2158 			      u64 addr,
2159 			      u32 err_code)
2160 {
2161 	kvm_inject_page_fault(vcpu, addr, err_code);
2162 }
2163 
paging_free(struct kvm_vcpu * vcpu)2164 static void paging_free(struct kvm_vcpu *vcpu)
2165 {
2166 	nonpaging_free(vcpu);
2167 }
2168 
2169 #define PTTYPE 64
2170 #include "paging_tmpl.h"
2171 #undef PTTYPE
2172 
2173 #define PTTYPE 32
2174 #include "paging_tmpl.h"
2175 #undef PTTYPE
2176 
paging64_init_context_common(struct kvm_vcpu * vcpu,int level)2177 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2178 {
2179 	struct kvm_mmu *context = &vcpu->arch.mmu;
2180 
2181 	ASSERT(is_pae(vcpu));
2182 	context->new_cr3 = paging_new_cr3;
2183 	context->page_fault = paging64_page_fault;
2184 	context->gva_to_gpa = paging64_gva_to_gpa;
2185 	context->prefetch_page = paging64_prefetch_page;
2186 	context->sync_page = paging64_sync_page;
2187 	context->invlpg = paging64_invlpg;
2188 	context->free = paging_free;
2189 	context->root_level = level;
2190 	context->shadow_root_level = level;
2191 	context->root_hpa = INVALID_PAGE;
2192 	return 0;
2193 }
2194 
paging64_init_context(struct kvm_vcpu * vcpu)2195 static int paging64_init_context(struct kvm_vcpu *vcpu)
2196 {
2197 	return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2198 }
2199 
paging32_init_context(struct kvm_vcpu * vcpu)2200 static int paging32_init_context(struct kvm_vcpu *vcpu)
2201 {
2202 	struct kvm_mmu *context = &vcpu->arch.mmu;
2203 
2204 	context->new_cr3 = paging_new_cr3;
2205 	context->page_fault = paging32_page_fault;
2206 	context->gva_to_gpa = paging32_gva_to_gpa;
2207 	context->free = paging_free;
2208 	context->prefetch_page = paging32_prefetch_page;
2209 	context->sync_page = paging32_sync_page;
2210 	context->invlpg = paging32_invlpg;
2211 	context->root_level = PT32_ROOT_LEVEL;
2212 	context->shadow_root_level = PT32E_ROOT_LEVEL;
2213 	context->root_hpa = INVALID_PAGE;
2214 	return 0;
2215 }
2216 
paging32E_init_context(struct kvm_vcpu * vcpu)2217 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2218 {
2219 	return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2220 }
2221 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)2222 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2223 {
2224 	struct kvm_mmu *context = &vcpu->arch.mmu;
2225 
2226 	context->new_cr3 = nonpaging_new_cr3;
2227 	context->page_fault = tdp_page_fault;
2228 	context->free = nonpaging_free;
2229 	context->prefetch_page = nonpaging_prefetch_page;
2230 	context->sync_page = nonpaging_sync_page;
2231 	context->invlpg = nonpaging_invlpg;
2232 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2233 	context->root_hpa = INVALID_PAGE;
2234 
2235 	if (!is_paging(vcpu)) {
2236 		context->gva_to_gpa = nonpaging_gva_to_gpa;
2237 		context->root_level = 0;
2238 	} else if (is_long_mode(vcpu)) {
2239 		context->gva_to_gpa = paging64_gva_to_gpa;
2240 		context->root_level = PT64_ROOT_LEVEL;
2241 	} else if (is_pae(vcpu)) {
2242 		context->gva_to_gpa = paging64_gva_to_gpa;
2243 		context->root_level = PT32E_ROOT_LEVEL;
2244 	} else {
2245 		context->gva_to_gpa = paging32_gva_to_gpa;
2246 		context->root_level = PT32_ROOT_LEVEL;
2247 	}
2248 
2249 	return 0;
2250 }
2251 
init_kvm_softmmu(struct kvm_vcpu * vcpu)2252 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2253 {
2254 	ASSERT(vcpu);
2255 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2256 
2257 	if (!is_paging(vcpu))
2258 		return nonpaging_init_context(vcpu);
2259 	else if (is_long_mode(vcpu))
2260 		return paging64_init_context(vcpu);
2261 	else if (is_pae(vcpu))
2262 		return paging32E_init_context(vcpu);
2263 	else
2264 		return paging32_init_context(vcpu);
2265 }
2266 
init_kvm_mmu(struct kvm_vcpu * vcpu)2267 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2268 {
2269 	vcpu->arch.update_pte.pfn = bad_pfn;
2270 
2271 	if (tdp_enabled)
2272 		return init_kvm_tdp_mmu(vcpu);
2273 	else
2274 		return init_kvm_softmmu(vcpu);
2275 }
2276 
destroy_kvm_mmu(struct kvm_vcpu * vcpu)2277 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2278 {
2279 	ASSERT(vcpu);
2280 	if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2281 		vcpu->arch.mmu.free(vcpu);
2282 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2283 	}
2284 }
2285 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)2286 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2287 {
2288 	destroy_kvm_mmu(vcpu);
2289 	return init_kvm_mmu(vcpu);
2290 }
2291 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2292 
kvm_mmu_load(struct kvm_vcpu * vcpu)2293 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2294 {
2295 	int r;
2296 
2297 	r = mmu_topup_memory_caches(vcpu);
2298 	if (r)
2299 		goto out;
2300 	spin_lock(&vcpu->kvm->mmu_lock);
2301 	kvm_mmu_free_some_pages(vcpu);
2302 	mmu_alloc_roots(vcpu);
2303 	mmu_sync_roots(vcpu);
2304 	spin_unlock(&vcpu->kvm->mmu_lock);
2305 	kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2306 	kvm_mmu_flush_tlb(vcpu);
2307 out:
2308 	return r;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2311 
kvm_mmu_unload(struct kvm_vcpu * vcpu)2312 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2313 {
2314 	mmu_free_roots(vcpu);
2315 }
2316 
mmu_pte_write_zap_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte)2317 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2318 				  struct kvm_mmu_page *sp,
2319 				  u64 *spte)
2320 {
2321 	u64 pte;
2322 	struct kvm_mmu_page *child;
2323 
2324 	pte = *spte;
2325 	if (is_shadow_present_pte(pte)) {
2326 		if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
2327 		    is_large_pte(pte))
2328 			rmap_remove(vcpu->kvm, spte);
2329 		else {
2330 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2331 			mmu_page_remove_parent_pte(child, spte);
2332 		}
2333 	}
2334 	set_shadow_pte(spte, shadow_trap_nonpresent_pte);
2335 	if (is_large_pte(pte))
2336 		--vcpu->kvm->stat.lpages;
2337 }
2338 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)2339 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2340 				  struct kvm_mmu_page *sp,
2341 				  u64 *spte,
2342 				  const void *new)
2343 {
2344 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2345 		if (!vcpu->arch.update_pte.largepage ||
2346 		    sp->role.glevels == PT32_ROOT_LEVEL) {
2347 			++vcpu->kvm->stat.mmu_pde_zapped;
2348 			return;
2349 		}
2350         }
2351 
2352 	++vcpu->kvm->stat.mmu_pte_updated;
2353 	if (sp->role.glevels == PT32_ROOT_LEVEL)
2354 		paging32_update_pte(vcpu, sp, spte, new);
2355 	else
2356 		paging64_update_pte(vcpu, sp, spte, new);
2357 }
2358 
need_remote_flush(u64 old,u64 new)2359 static bool need_remote_flush(u64 old, u64 new)
2360 {
2361 	if (!is_shadow_present_pte(old))
2362 		return false;
2363 	if (!is_shadow_present_pte(new))
2364 		return true;
2365 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
2366 		return true;
2367 	old ^= PT64_NX_MASK;
2368 	new ^= PT64_NX_MASK;
2369 	return (old & ~new & PT64_PERM_MASK) != 0;
2370 }
2371 
mmu_pte_write_flush_tlb(struct kvm_vcpu * vcpu,u64 old,u64 new)2372 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2373 {
2374 	if (need_remote_flush(old, new))
2375 		kvm_flush_remote_tlbs(vcpu->kvm);
2376 	else
2377 		kvm_mmu_flush_tlb(vcpu);
2378 }
2379 
last_updated_pte_accessed(struct kvm_vcpu * vcpu)2380 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2381 {
2382 	u64 *spte = vcpu->arch.last_pte_updated;
2383 
2384 	return !!(spte && (*spte & shadow_accessed_mask));
2385 }
2386 
mmu_guess_page_from_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)2387 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2388 					  const u8 *new, int bytes)
2389 {
2390 	gfn_t gfn;
2391 	int r;
2392 	u64 gpte = 0;
2393 	pfn_t pfn;
2394 
2395 	vcpu->arch.update_pte.largepage = 0;
2396 
2397 	if (bytes != 4 && bytes != 8)
2398 		return;
2399 
2400 	/*
2401 	 * Assume that the pte write on a page table of the same type
2402 	 * as the current vcpu paging mode.  This is nearly always true
2403 	 * (might be false while changing modes).  Note it is verified later
2404 	 * by update_pte().
2405 	 */
2406 	if (is_pae(vcpu)) {
2407 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2408 		if ((bytes == 4) && (gpa % 4 == 0)) {
2409 			r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
2410 			if (r)
2411 				return;
2412 			memcpy((void *)&gpte + (gpa % 8), new, 4);
2413 		} else if ((bytes == 8) && (gpa % 8 == 0)) {
2414 			memcpy((void *)&gpte, new, 8);
2415 		}
2416 	} else {
2417 		if ((bytes == 4) && (gpa % 4 == 0))
2418 			memcpy((void *)&gpte, new, 4);
2419 	}
2420 	if (!is_present_pte(gpte))
2421 		return;
2422 	gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2423 
2424 	if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
2425 		gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2426 		vcpu->arch.update_pte.largepage = 1;
2427 	}
2428 	vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2429 	smp_rmb();
2430 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2431 
2432 	if (is_error_pfn(pfn)) {
2433 		kvm_release_pfn_clean(pfn);
2434 		return;
2435 	}
2436 	vcpu->arch.update_pte.gfn = gfn;
2437 	vcpu->arch.update_pte.pfn = pfn;
2438 }
2439 
kvm_mmu_access_page(struct kvm_vcpu * vcpu,gfn_t gfn)2440 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2441 {
2442 	u64 *spte = vcpu->arch.last_pte_updated;
2443 
2444 	if (spte
2445 	    && vcpu->arch.last_pte_gfn == gfn
2446 	    && shadow_accessed_mask
2447 	    && !(*spte & shadow_accessed_mask)
2448 	    && is_shadow_present_pte(*spte))
2449 		set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2450 }
2451 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,bool guest_initiated)2452 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2453 		       const u8 *new, int bytes,
2454 		       bool guest_initiated)
2455 {
2456 	gfn_t gfn = gpa >> PAGE_SHIFT;
2457 	struct kvm_mmu_page *sp;
2458 	struct hlist_node *node, *n;
2459 	struct hlist_head *bucket;
2460 	unsigned index;
2461 	u64 entry, gentry;
2462 	u64 *spte;
2463 	unsigned offset = offset_in_page(gpa);
2464 	unsigned pte_size;
2465 	unsigned page_offset;
2466 	unsigned misaligned;
2467 	unsigned quadrant;
2468 	int level;
2469 	int flooded = 0;
2470 	int npte;
2471 	int r;
2472 
2473 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2474 	mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
2475 	spin_lock(&vcpu->kvm->mmu_lock);
2476 	kvm_mmu_access_page(vcpu, gfn);
2477 	kvm_mmu_free_some_pages(vcpu);
2478 	++vcpu->kvm->stat.mmu_pte_write;
2479 	kvm_mmu_audit(vcpu, "pre pte write");
2480 	if (guest_initiated) {
2481 		if (gfn == vcpu->arch.last_pt_write_gfn
2482 		    && !last_updated_pte_accessed(vcpu)) {
2483 			++vcpu->arch.last_pt_write_count;
2484 			if (vcpu->arch.last_pt_write_count >= 3)
2485 				flooded = 1;
2486 		} else {
2487 			vcpu->arch.last_pt_write_gfn = gfn;
2488 			vcpu->arch.last_pt_write_count = 1;
2489 			vcpu->arch.last_pte_updated = NULL;
2490 		}
2491 	}
2492 	index = kvm_page_table_hashfn(gfn);
2493 	bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2494 	hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2495 		if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
2496 			continue;
2497 		pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
2498 		misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2499 		misaligned |= bytes < 4;
2500 		if (misaligned || flooded) {
2501 			/*
2502 			 * Misaligned accesses are too much trouble to fix
2503 			 * up; also, they usually indicate a page is not used
2504 			 * as a page table.
2505 			 *
2506 			 * If we're seeing too many writes to a page,
2507 			 * it may no longer be a page table, or we may be
2508 			 * forking, in which case it is better to unmap the
2509 			 * page.
2510 			 */
2511 			pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2512 				 gpa, bytes, sp->role.word);
2513 			if (kvm_mmu_zap_page(vcpu->kvm, sp))
2514 				n = bucket->first;
2515 			++vcpu->kvm->stat.mmu_flooded;
2516 			continue;
2517 		}
2518 		page_offset = offset;
2519 		level = sp->role.level;
2520 		npte = 1;
2521 		if (sp->role.glevels == PT32_ROOT_LEVEL) {
2522 			page_offset <<= 1;	/* 32->64 */
2523 			/*
2524 			 * A 32-bit pde maps 4MB while the shadow pdes map
2525 			 * only 2MB.  So we need to double the offset again
2526 			 * and zap two pdes instead of one.
2527 			 */
2528 			if (level == PT32_ROOT_LEVEL) {
2529 				page_offset &= ~7; /* kill rounding error */
2530 				page_offset <<= 1;
2531 				npte = 2;
2532 			}
2533 			quadrant = page_offset >> PAGE_SHIFT;
2534 			page_offset &= ~PAGE_MASK;
2535 			if (quadrant != sp->role.quadrant)
2536 				continue;
2537 		}
2538 		spte = &sp->spt[page_offset / sizeof(*spte)];
2539 		if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
2540 			gentry = 0;
2541 			r = kvm_read_guest_atomic(vcpu->kvm,
2542 						  gpa & ~(u64)(pte_size - 1),
2543 						  &gentry, pte_size);
2544 			new = (const void *)&gentry;
2545 			if (r < 0)
2546 				new = NULL;
2547 		}
2548 		while (npte--) {
2549 			entry = *spte;
2550 			mmu_pte_write_zap_pte(vcpu, sp, spte);
2551 			if (new)
2552 				mmu_pte_write_new_pte(vcpu, sp, spte, new);
2553 			mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2554 			++spte;
2555 		}
2556 	}
2557 	kvm_mmu_audit(vcpu, "post pte write");
2558 	spin_unlock(&vcpu->kvm->mmu_lock);
2559 	if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2560 		kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2561 		vcpu->arch.update_pte.pfn = bad_pfn;
2562 	}
2563 }
2564 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)2565 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2566 {
2567 	gpa_t gpa;
2568 	int r;
2569 
2570 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
2571 
2572 	spin_lock(&vcpu->kvm->mmu_lock);
2573 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2574 	spin_unlock(&vcpu->kvm->mmu_lock);
2575 	return r;
2576 }
2577 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2578 
__kvm_mmu_free_some_pages(struct kvm_vcpu * vcpu)2579 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2580 {
2581 	while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
2582 		struct kvm_mmu_page *sp;
2583 
2584 		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2585 				  struct kvm_mmu_page, link);
2586 		kvm_mmu_zap_page(vcpu->kvm, sp);
2587 		++vcpu->kvm->stat.mmu_recycled;
2588 	}
2589 }
2590 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code)2591 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2592 {
2593 	int r;
2594 	enum emulation_result er;
2595 
2596 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2597 	if (r < 0)
2598 		goto out;
2599 
2600 	if (!r) {
2601 		r = 1;
2602 		goto out;
2603 	}
2604 
2605 	r = mmu_topup_memory_caches(vcpu);
2606 	if (r)
2607 		goto out;
2608 
2609 	er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
2610 
2611 	switch (er) {
2612 	case EMULATE_DONE:
2613 		return 1;
2614 	case EMULATE_DO_MMIO:
2615 		++vcpu->stat.mmio_exits;
2616 		return 0;
2617 	case EMULATE_FAIL:
2618 		kvm_report_emulation_failure(vcpu, "pagetable");
2619 		return 1;
2620 	default:
2621 		BUG();
2622 	}
2623 out:
2624 	return r;
2625 }
2626 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2627 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)2628 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2629 {
2630 	vcpu->arch.mmu.invlpg(vcpu, gva);
2631 	kvm_mmu_flush_tlb(vcpu);
2632 	++vcpu->stat.invlpg;
2633 }
2634 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2635 
kvm_enable_tdp(void)2636 void kvm_enable_tdp(void)
2637 {
2638 	tdp_enabled = true;
2639 }
2640 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2641 
kvm_disable_tdp(void)2642 void kvm_disable_tdp(void)
2643 {
2644 	tdp_enabled = false;
2645 }
2646 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2647 
free_mmu_pages(struct kvm_vcpu * vcpu)2648 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2649 {
2650 	struct kvm_mmu_page *sp;
2651 
2652 	while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2653 		sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
2654 				  struct kvm_mmu_page, link);
2655 		kvm_mmu_zap_page(vcpu->kvm, sp);
2656 		cond_resched();
2657 	}
2658 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
2659 }
2660 
alloc_mmu_pages(struct kvm_vcpu * vcpu)2661 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2662 {
2663 	struct page *page;
2664 	int i;
2665 
2666 	ASSERT(vcpu);
2667 
2668 	if (vcpu->kvm->arch.n_requested_mmu_pages)
2669 		vcpu->kvm->arch.n_free_mmu_pages =
2670 					vcpu->kvm->arch.n_requested_mmu_pages;
2671 	else
2672 		vcpu->kvm->arch.n_free_mmu_pages =
2673 					vcpu->kvm->arch.n_alloc_mmu_pages;
2674 	/*
2675 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2676 	 * Therefore we need to allocate shadow page tables in the first
2677 	 * 4GB of memory, which happens to fit the DMA32 zone.
2678 	 */
2679 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2680 	if (!page)
2681 		goto error_1;
2682 	vcpu->arch.mmu.pae_root = page_address(page);
2683 	for (i = 0; i < 4; ++i)
2684 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2685 
2686 	return 0;
2687 
2688 error_1:
2689 	free_mmu_pages(vcpu);
2690 	return -ENOMEM;
2691 }
2692 
kvm_mmu_create(struct kvm_vcpu * vcpu)2693 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2694 {
2695 	ASSERT(vcpu);
2696 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2697 
2698 	return alloc_mmu_pages(vcpu);
2699 }
2700 
kvm_mmu_setup(struct kvm_vcpu * vcpu)2701 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2702 {
2703 	ASSERT(vcpu);
2704 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2705 
2706 	return init_kvm_mmu(vcpu);
2707 }
2708 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)2709 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2710 {
2711 	ASSERT(vcpu);
2712 
2713 	destroy_kvm_mmu(vcpu);
2714 	free_mmu_pages(vcpu);
2715 	mmu_free_memory_caches(vcpu);
2716 }
2717 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,int slot)2718 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2719 {
2720 	struct kvm_mmu_page *sp;
2721 
2722 	spin_lock(&kvm->mmu_lock);
2723 	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2724 		int i;
2725 		u64 *pt;
2726 
2727 		if (!test_bit(slot, sp->slot_bitmap))
2728 			continue;
2729 
2730 		pt = sp->spt;
2731 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2732 			/* avoid RMW */
2733 			if (pt[i] & PT_WRITABLE_MASK)
2734 				pt[i] &= ~PT_WRITABLE_MASK;
2735 	}
2736 	kvm_flush_remote_tlbs(kvm);
2737 	spin_unlock(&kvm->mmu_lock);
2738 }
2739 
kvm_mmu_zap_all(struct kvm * kvm)2740 void kvm_mmu_zap_all(struct kvm *kvm)
2741 {
2742 	struct kvm_mmu_page *sp, *node;
2743 
2744 	spin_lock(&kvm->mmu_lock);
2745 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2746 		if (kvm_mmu_zap_page(kvm, sp))
2747 			node = container_of(kvm->arch.active_mmu_pages.next,
2748 					    struct kvm_mmu_page, link);
2749 	spin_unlock(&kvm->mmu_lock);
2750 
2751 	kvm_flush_remote_tlbs(kvm);
2752 }
2753 
kvm_mmu_remove_one_alloc_mmu_page(struct kvm * kvm)2754 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2755 {
2756 	struct kvm_mmu_page *page;
2757 
2758 	page = container_of(kvm->arch.active_mmu_pages.prev,
2759 			    struct kvm_mmu_page, link);
2760 	kvm_mmu_zap_page(kvm, page);
2761 }
2762 
mmu_shrink(int nr_to_scan,gfp_t gfp_mask)2763 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2764 {
2765 	struct kvm *kvm;
2766 	struct kvm *kvm_freed = NULL;
2767 	int cache_count = 0;
2768 
2769 	spin_lock(&kvm_lock);
2770 
2771 	list_for_each_entry(kvm, &vm_list, vm_list) {
2772 		int npages;
2773 
2774 		if (!down_read_trylock(&kvm->slots_lock))
2775 			continue;
2776 		spin_lock(&kvm->mmu_lock);
2777 		npages = kvm->arch.n_alloc_mmu_pages -
2778 			 kvm->arch.n_free_mmu_pages;
2779 		cache_count += npages;
2780 		if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2781 			kvm_mmu_remove_one_alloc_mmu_page(kvm);
2782 			cache_count--;
2783 			kvm_freed = kvm;
2784 		}
2785 		nr_to_scan--;
2786 
2787 		spin_unlock(&kvm->mmu_lock);
2788 		up_read(&kvm->slots_lock);
2789 	}
2790 	if (kvm_freed)
2791 		list_move_tail(&kvm_freed->vm_list, &vm_list);
2792 
2793 	spin_unlock(&kvm_lock);
2794 
2795 	return cache_count;
2796 }
2797 
2798 static struct shrinker mmu_shrinker = {
2799 	.shrink = mmu_shrink,
2800 	.seeks = DEFAULT_SEEKS * 10,
2801 };
2802 
mmu_destroy_caches(void)2803 static void mmu_destroy_caches(void)
2804 {
2805 	if (pte_chain_cache)
2806 		kmem_cache_destroy(pte_chain_cache);
2807 	if (rmap_desc_cache)
2808 		kmem_cache_destroy(rmap_desc_cache);
2809 	if (mmu_page_header_cache)
2810 		kmem_cache_destroy(mmu_page_header_cache);
2811 }
2812 
kvm_mmu_module_exit(void)2813 void kvm_mmu_module_exit(void)
2814 {
2815 	mmu_destroy_caches();
2816 	unregister_shrinker(&mmu_shrinker);
2817 }
2818 
kvm_mmu_module_init(void)2819 int kvm_mmu_module_init(void)
2820 {
2821 	pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2822 					    sizeof(struct kvm_pte_chain),
2823 					    0, 0, NULL);
2824 	if (!pte_chain_cache)
2825 		goto nomem;
2826 	rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2827 					    sizeof(struct kvm_rmap_desc),
2828 					    0, 0, NULL);
2829 	if (!rmap_desc_cache)
2830 		goto nomem;
2831 
2832 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2833 						  sizeof(struct kvm_mmu_page),
2834 						  0, 0, NULL);
2835 	if (!mmu_page_header_cache)
2836 		goto nomem;
2837 
2838 	register_shrinker(&mmu_shrinker);
2839 
2840 	return 0;
2841 
2842 nomem:
2843 	mmu_destroy_caches();
2844 	return -ENOMEM;
2845 }
2846 
2847 /*
2848  * Caculate mmu pages needed for kvm.
2849  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)2850 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2851 {
2852 	int i;
2853 	unsigned int nr_mmu_pages;
2854 	unsigned int  nr_pages = 0;
2855 
2856 	for (i = 0; i < kvm->nmemslots; i++)
2857 		nr_pages += kvm->memslots[i].npages;
2858 
2859 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2860 	nr_mmu_pages = max(nr_mmu_pages,
2861 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2862 
2863 	return nr_mmu_pages;
2864 }
2865 
pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer * buffer,unsigned len)2866 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2867 				unsigned len)
2868 {
2869 	if (len > buffer->len)
2870 		return NULL;
2871 	return buffer->ptr;
2872 }
2873 
pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer * buffer,unsigned len)2874 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2875 				unsigned len)
2876 {
2877 	void *ret;
2878 
2879 	ret = pv_mmu_peek_buffer(buffer, len);
2880 	if (!ret)
2881 		return ret;
2882 	buffer->ptr += len;
2883 	buffer->len -= len;
2884 	buffer->processed += len;
2885 	return ret;
2886 }
2887 
kvm_pv_mmu_write(struct kvm_vcpu * vcpu,gpa_t addr,gpa_t value)2888 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2889 			     gpa_t addr, gpa_t value)
2890 {
2891 	int bytes = 8;
2892 	int r;
2893 
2894 	if (!is_long_mode(vcpu) && !is_pae(vcpu))
2895 		bytes = 4;
2896 
2897 	r = mmu_topup_memory_caches(vcpu);
2898 	if (r)
2899 		return r;
2900 
2901 	if (!emulator_write_phys(vcpu, addr, &value, bytes))
2902 		return -EFAULT;
2903 
2904 	return 1;
2905 }
2906 
kvm_pv_mmu_flush_tlb(struct kvm_vcpu * vcpu)2907 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2908 {
2909 	kvm_x86_ops->tlb_flush(vcpu);
2910 	set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
2911 	return 1;
2912 }
2913 
kvm_pv_mmu_release_pt(struct kvm_vcpu * vcpu,gpa_t addr)2914 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2915 {
2916 	spin_lock(&vcpu->kvm->mmu_lock);
2917 	mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2918 	spin_unlock(&vcpu->kvm->mmu_lock);
2919 	return 1;
2920 }
2921 
kvm_pv_mmu_op_one(struct kvm_vcpu * vcpu,struct kvm_pv_mmu_op_buffer * buffer)2922 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2923 			     struct kvm_pv_mmu_op_buffer *buffer)
2924 {
2925 	struct kvm_mmu_op_header *header;
2926 
2927 	header = pv_mmu_peek_buffer(buffer, sizeof *header);
2928 	if (!header)
2929 		return 0;
2930 	switch (header->op) {
2931 	case KVM_MMU_OP_WRITE_PTE: {
2932 		struct kvm_mmu_op_write_pte *wpte;
2933 
2934 		wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2935 		if (!wpte)
2936 			return 0;
2937 		return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2938 					wpte->pte_val);
2939 	}
2940 	case KVM_MMU_OP_FLUSH_TLB: {
2941 		struct kvm_mmu_op_flush_tlb *ftlb;
2942 
2943 		ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2944 		if (!ftlb)
2945 			return 0;
2946 		return kvm_pv_mmu_flush_tlb(vcpu);
2947 	}
2948 	case KVM_MMU_OP_RELEASE_PT: {
2949 		struct kvm_mmu_op_release_pt *rpt;
2950 
2951 		rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2952 		if (!rpt)
2953 			return 0;
2954 		return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2955 	}
2956 	default: return 0;
2957 	}
2958 }
2959 
kvm_pv_mmu_op(struct kvm_vcpu * vcpu,unsigned long bytes,gpa_t addr,unsigned long * ret)2960 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2961 		  gpa_t addr, unsigned long *ret)
2962 {
2963 	int r;
2964 	struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2965 
2966 	buffer->ptr = buffer->buf;
2967 	buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
2968 	buffer->processed = 0;
2969 
2970 	r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2971 	if (r)
2972 		goto out;
2973 
2974 	while (buffer->len) {
2975 		r = kvm_pv_mmu_op_one(vcpu, buffer);
2976 		if (r < 0)
2977 			goto out;
2978 		if (r == 0)
2979 			break;
2980 	}
2981 
2982 	r = 1;
2983 out:
2984 	*ret = buffer->processed;
2985 	return r;
2986 }
2987 
2988 #ifdef AUDIT
2989 
2990 static const char *audit_msg;
2991 
canonicalize(gva_t gva)2992 static gva_t canonicalize(gva_t gva)
2993 {
2994 #ifdef CONFIG_X86_64
2995 	gva = (long long)(gva << 16) >> 16;
2996 #endif
2997 	return gva;
2998 }
2999 
audit_mappings_page(struct kvm_vcpu * vcpu,u64 page_pte,gva_t va,int level)3000 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3001 				gva_t va, int level)
3002 {
3003 	u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3004 	int i;
3005 	gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3006 
3007 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3008 		u64 ent = pt[i];
3009 
3010 		if (ent == shadow_trap_nonpresent_pte)
3011 			continue;
3012 
3013 		va = canonicalize(va);
3014 		if (level > 1) {
3015 			if (ent == shadow_notrap_nonpresent_pte)
3016 				printk(KERN_ERR "audit: (%s) nontrapping pte"
3017 				       " in nonleaf level: levels %d gva %lx"
3018 				       " level %d pte %llx\n", audit_msg,
3019 				       vcpu->arch.mmu.root_level, va, level, ent);
3020 
3021 			audit_mappings_page(vcpu, ent, va, level - 1);
3022 		} else {
3023 			gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
3024 			hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
3025 
3026 			if (is_shadow_present_pte(ent)
3027 			    && (ent & PT64_BASE_ADDR_MASK) != hpa)
3028 				printk(KERN_ERR "xx audit error: (%s) levels %d"
3029 				       " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3030 				       audit_msg, vcpu->arch.mmu.root_level,
3031 				       va, gpa, hpa, ent,
3032 				       is_shadow_present_pte(ent));
3033 			else if (ent == shadow_notrap_nonpresent_pte
3034 				 && !is_error_hpa(hpa))
3035 				printk(KERN_ERR "audit: (%s) notrap shadow,"
3036 				       " valid guest gva %lx\n", audit_msg, va);
3037 			kvm_release_pfn_clean(pfn);
3038 
3039 		}
3040 	}
3041 }
3042 
audit_mappings(struct kvm_vcpu * vcpu)3043 static void audit_mappings(struct kvm_vcpu *vcpu)
3044 {
3045 	unsigned i;
3046 
3047 	if (vcpu->arch.mmu.root_level == 4)
3048 		audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3049 	else
3050 		for (i = 0; i < 4; ++i)
3051 			if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3052 				audit_mappings_page(vcpu,
3053 						    vcpu->arch.mmu.pae_root[i],
3054 						    i << 30,
3055 						    2);
3056 }
3057 
count_rmaps(struct kvm_vcpu * vcpu)3058 static int count_rmaps(struct kvm_vcpu *vcpu)
3059 {
3060 	int nmaps = 0;
3061 	int i, j, k;
3062 
3063 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3064 		struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
3065 		struct kvm_rmap_desc *d;
3066 
3067 		for (j = 0; j < m->npages; ++j) {
3068 			unsigned long *rmapp = &m->rmap[j];
3069 
3070 			if (!*rmapp)
3071 				continue;
3072 			if (!(*rmapp & 1)) {
3073 				++nmaps;
3074 				continue;
3075 			}
3076 			d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3077 			while (d) {
3078 				for (k = 0; k < RMAP_EXT; ++k)
3079 					if (d->shadow_ptes[k])
3080 						++nmaps;
3081 					else
3082 						break;
3083 				d = d->more;
3084 			}
3085 		}
3086 	}
3087 	return nmaps;
3088 }
3089 
count_writable_mappings(struct kvm_vcpu * vcpu)3090 static int count_writable_mappings(struct kvm_vcpu *vcpu)
3091 {
3092 	int nmaps = 0;
3093 	struct kvm_mmu_page *sp;
3094 	int i;
3095 
3096 	list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3097 		u64 *pt = sp->spt;
3098 
3099 		if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3100 			continue;
3101 
3102 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3103 			u64 ent = pt[i];
3104 
3105 			if (!(ent & PT_PRESENT_MASK))
3106 				continue;
3107 			if (!(ent & PT_WRITABLE_MASK))
3108 				continue;
3109 			++nmaps;
3110 		}
3111 	}
3112 	return nmaps;
3113 }
3114 
audit_rmap(struct kvm_vcpu * vcpu)3115 static void audit_rmap(struct kvm_vcpu *vcpu)
3116 {
3117 	int n_rmap = count_rmaps(vcpu);
3118 	int n_actual = count_writable_mappings(vcpu);
3119 
3120 	if (n_rmap != n_actual)
3121 		printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
3122 		       __func__, audit_msg, n_rmap, n_actual);
3123 }
3124 
audit_write_protection(struct kvm_vcpu * vcpu)3125 static void audit_write_protection(struct kvm_vcpu *vcpu)
3126 {
3127 	struct kvm_mmu_page *sp;
3128 	struct kvm_memory_slot *slot;
3129 	unsigned long *rmapp;
3130 	gfn_t gfn;
3131 
3132 	list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3133 		if (sp->role.metaphysical)
3134 			continue;
3135 
3136 		gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3137 		slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3138 		rmapp = &slot->rmap[gfn - slot->base_gfn];
3139 		if (*rmapp)
3140 			printk(KERN_ERR "%s: (%s) shadow page has writable"
3141 			       " mappings: gfn %lx role %x\n",
3142 			       __func__, audit_msg, sp->gfn,
3143 			       sp->role.word);
3144 	}
3145 }
3146 
kvm_mmu_audit(struct kvm_vcpu * vcpu,const char * msg)3147 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3148 {
3149 	int olddbg = dbg;
3150 
3151 	dbg = 0;
3152 	audit_msg = msg;
3153 	audit_rmap(vcpu);
3154 	audit_write_protection(vcpu);
3155 	audit_mappings(vcpu);
3156 	dbg = olddbg;
3157 }
3158 
3159 #endif
3160