• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/mm.h>
2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
4 #include <asm/tlb.h>
5 #include <asm/fixmap.h>
6 
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)7 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
8 {
9 	return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
10 }
11 
pte_alloc_one(struct mm_struct * mm,unsigned long address)12 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
13 {
14 	struct page *pte;
15 
16 #ifdef CONFIG_HIGHPTE
17 	pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
18 #else
19 	pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
20 #endif
21 	if (pte)
22 		pgtable_page_ctor(pte);
23 	return pte;
24 }
25 
__pte_free_tlb(struct mmu_gather * tlb,struct page * pte)26 void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
27 {
28 	pgtable_page_dtor(pte);
29 	paravirt_release_pte(page_to_pfn(pte));
30 	tlb_remove_page(tlb, pte);
31 }
32 
33 #if PAGETABLE_LEVELS > 2
__pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)34 void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
35 {
36 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
37 	tlb_remove_page(tlb, virt_to_page(pmd));
38 }
39 
40 #if PAGETABLE_LEVELS > 3
__pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)41 void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
42 {
43 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
44 	tlb_remove_page(tlb, virt_to_page(pud));
45 }
46 #endif	/* PAGETABLE_LEVELS > 3 */
47 #endif	/* PAGETABLE_LEVELS > 2 */
48 
pgd_list_add(pgd_t * pgd)49 static inline void pgd_list_add(pgd_t *pgd)
50 {
51 	struct page *page = virt_to_page(pgd);
52 
53 	list_add(&page->lru, &pgd_list);
54 }
55 
pgd_list_del(pgd_t * pgd)56 static inline void pgd_list_del(pgd_t *pgd)
57 {
58 	struct page *page = virt_to_page(pgd);
59 
60 	list_del(&page->lru);
61 }
62 
63 #define UNSHARED_PTRS_PER_PGD				\
64 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
65 
pgd_ctor(pgd_t * pgd)66 static void pgd_ctor(pgd_t *pgd)
67 {
68 	/* If the pgd points to a shared pagetable level (either the
69 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
70 	   references from swapper_pg_dir. */
71 	if (PAGETABLE_LEVELS == 2 ||
72 	    (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
73 	    PAGETABLE_LEVELS == 4) {
74 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
75 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
76 				KERNEL_PGD_PTRS);
77 		paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
78 					 __pa(swapper_pg_dir) >> PAGE_SHIFT,
79 					 KERNEL_PGD_BOUNDARY,
80 					 KERNEL_PGD_PTRS);
81 	}
82 
83 	/* list required to sync kernel mapping updates */
84 	if (!SHARED_KERNEL_PMD)
85 		pgd_list_add(pgd);
86 }
87 
pgd_dtor(pgd_t * pgd)88 static void pgd_dtor(pgd_t *pgd)
89 {
90 	unsigned long flags; /* can be called from interrupt context */
91 
92 	if (SHARED_KERNEL_PMD)
93 		return;
94 
95 	spin_lock_irqsave(&pgd_lock, flags);
96 	pgd_list_del(pgd);
97 	spin_unlock_irqrestore(&pgd_lock, flags);
98 }
99 
100 /*
101  * List of all pgd's needed for non-PAE so it can invalidate entries
102  * in both cached and uncached pgd's; not needed for PAE since the
103  * kernel pmd is shared. If PAE were not to share the pmd a similar
104  * tactic would be needed. This is essentially codepath-based locking
105  * against pageattr.c; it is the unique case in which a valid change
106  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
107  * vmalloc faults work because attached pagetables are never freed.
108  * -- wli
109  */
110 
111 #ifdef CONFIG_X86_PAE
112 /*
113  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
114  * updating the top-level pagetable entries to guarantee the
115  * processor notices the update.  Since this is expensive, and
116  * all 4 top-level entries are used almost immediately in a
117  * new process's life, we just pre-populate them here.
118  *
119  * Also, if we're in a paravirt environment where the kernel pmd is
120  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
121  * and initialize the kernel pmds here.
122  */
123 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
124 
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)125 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
126 {
127 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
128 
129 	/* Note: almost everything apart from _PAGE_PRESENT is
130 	   reserved at the pmd (PDPT) level. */
131 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
132 
133 	/*
134 	 * According to Intel App note "TLBs, Paging-Structure Caches,
135 	 * and Their Invalidation", April 2007, document 317080-001,
136 	 * section 8.1: in PAE mode we explicitly have to flush the
137 	 * TLB via cr3 if the top-level pgd is changed...
138 	 */
139 	if (mm == current->active_mm)
140 		write_cr3(read_cr3());
141 }
142 #else  /* !CONFIG_X86_PAE */
143 
144 /* No need to prepopulate any pagetable entries in non-PAE modes. */
145 #define PREALLOCATED_PMDS	0
146 
147 #endif	/* CONFIG_X86_PAE */
148 
free_pmds(pmd_t * pmds[])149 static void free_pmds(pmd_t *pmds[])
150 {
151 	int i;
152 
153 	for(i = 0; i < PREALLOCATED_PMDS; i++)
154 		if (pmds[i])
155 			free_page((unsigned long)pmds[i]);
156 }
157 
preallocate_pmds(pmd_t * pmds[])158 static int preallocate_pmds(pmd_t *pmds[])
159 {
160 	int i;
161 	bool failed = false;
162 
163 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
164 		pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
165 		if (pmd == NULL)
166 			failed = true;
167 		pmds[i] = pmd;
168 	}
169 
170 	if (failed) {
171 		free_pmds(pmds);
172 		return -ENOMEM;
173 	}
174 
175 	return 0;
176 }
177 
178 /*
179  * Mop up any pmd pages which may still be attached to the pgd.
180  * Normally they will be freed by munmap/exit_mmap, but any pmd we
181  * preallocate which never got a corresponding vma will need to be
182  * freed manually.
183  */
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)184 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
185 {
186 	int i;
187 
188 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
189 		pgd_t pgd = pgdp[i];
190 
191 		if (pgd_val(pgd) != 0) {
192 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
193 
194 			pgdp[i] = native_make_pgd(0);
195 
196 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
197 			pmd_free(mm, pmd);
198 		}
199 	}
200 }
201 
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])202 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
203 {
204 	pud_t *pud;
205 	unsigned long addr;
206 	int i;
207 
208 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
209 		return;
210 
211 	pud = pud_offset(pgd, 0);
212 
213  	for (addr = i = 0; i < PREALLOCATED_PMDS;
214 	     i++, pud++, addr += PUD_SIZE) {
215 		pmd_t *pmd = pmds[i];
216 
217 		if (i >= KERNEL_PGD_BOUNDARY)
218 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
219 			       sizeof(pmd_t) * PTRS_PER_PMD);
220 
221 		pud_populate(mm, pud, pmd);
222 	}
223 }
224 
pgd_alloc(struct mm_struct * mm)225 pgd_t *pgd_alloc(struct mm_struct *mm)
226 {
227 	pgd_t *pgd;
228 	pmd_t *pmds[PREALLOCATED_PMDS];
229 	unsigned long flags;
230 
231 	pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
232 
233 	if (pgd == NULL)
234 		goto out;
235 
236 	mm->pgd = pgd;
237 
238 	if (preallocate_pmds(pmds) != 0)
239 		goto out_free_pgd;
240 
241 	if (paravirt_pgd_alloc(mm) != 0)
242 		goto out_free_pmds;
243 
244 	/*
245 	 * Make sure that pre-populating the pmds is atomic with
246 	 * respect to anything walking the pgd_list, so that they
247 	 * never see a partially populated pgd.
248 	 */
249 	spin_lock_irqsave(&pgd_lock, flags);
250 
251 	pgd_ctor(pgd);
252 	pgd_prepopulate_pmd(mm, pgd, pmds);
253 
254 	spin_unlock_irqrestore(&pgd_lock, flags);
255 
256 	return pgd;
257 
258 out_free_pmds:
259 	free_pmds(pmds);
260 out_free_pgd:
261 	free_page((unsigned long)pgd);
262 out:
263 	return NULL;
264 }
265 
pgd_free(struct mm_struct * mm,pgd_t * pgd)266 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
267 {
268 	pgd_mop_up_pmds(mm, pgd);
269 	pgd_dtor(pgd);
270 	paravirt_pgd_free(mm, pgd);
271 	free_page((unsigned long)pgd);
272 }
273 
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)274 int ptep_set_access_flags(struct vm_area_struct *vma,
275 			  unsigned long address, pte_t *ptep,
276 			  pte_t entry, int dirty)
277 {
278 	int changed = !pte_same(*ptep, entry);
279 
280 	if (changed && dirty) {
281 		*ptep = entry;
282 		pte_update_defer(vma->vm_mm, address, ptep);
283 		flush_tlb_page(vma, address);
284 	}
285 
286 	return changed;
287 }
288 
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)289 int ptep_test_and_clear_young(struct vm_area_struct *vma,
290 			      unsigned long addr, pte_t *ptep)
291 {
292 	int ret = 0;
293 
294 	if (pte_young(*ptep))
295 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
296 					 (unsigned long *) &ptep->pte);
297 
298 	if (ret)
299 		pte_update(vma->vm_mm, addr, ptep);
300 
301 	return ret;
302 }
303 
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)304 int ptep_clear_flush_young(struct vm_area_struct *vma,
305 			   unsigned long address, pte_t *ptep)
306 {
307 	int young;
308 
309 	young = ptep_test_and_clear_young(vma, address, ptep);
310 	if (young)
311 		flush_tlb_page(vma, address);
312 
313 	return young;
314 }
315 
316 int fixmaps_set;
317 
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)318 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
319 {
320 	unsigned long address = __fix_to_virt(idx);
321 
322 	if (idx >= __end_of_fixed_addresses) {
323 		BUG();
324 		return;
325 	}
326 	set_pte_vaddr(address, pte);
327 	fixmaps_set++;
328 }
329 
native_set_fixmap(enum fixed_addresses idx,unsigned long phys,pgprot_t flags)330 void native_set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
331 {
332 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
333 }
334