1 /*
2 * arch/blackfin/kernel/setup.c
3 *
4 * Copyright 2004-2006 Analog Devices Inc.
5 *
6 * Enter bugs at http://blackfin.uclinux.org/
7 *
8 * Licensed under the GPL-2 or later.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/tty.h>
19 #include <linux/pfn.h>
20
21 #include <linux/ext2_fs.h>
22 #include <linux/cramfs_fs.h>
23 #include <linux/romfs_fs.h>
24
25 #include <asm/cplb.h>
26 #include <asm/cacheflush.h>
27 #include <asm/blackfin.h>
28 #include <asm/cplbinit.h>
29 #include <asm/div64.h>
30 #include <asm/cpu.h>
31 #include <asm/fixed_code.h>
32 #include <asm/early_printk.h>
33
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
36
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45 EXPORT_SYMBOL(reserved_mem_dcache_on);
46
47 #ifdef CONFIG_MTD_UCLINUX
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM 1
62 #define BFIN_MEMMAP_RESERVED 2
63 static struct bfin_memmap {
64 int nr_map;
65 struct bfin_memmap_entry {
66 unsigned long long addr; /* start of memory segment */
67 unsigned long long size;
68 unsigned long type;
69 } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74 struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
83
84 static int early_init_clkin_hz(char *buf);
85
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
generate_cplb_tables(void)87 void __init generate_cplb_tables(void)
88 {
89 unsigned int cpu;
90
91 generate_cplb_tables_all();
92 /* Generate per-CPU I&D CPLB tables */
93 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
94 generate_cplb_tables_cpu(cpu);
95 }
96 #endif
97
bfin_setup_caches(unsigned int cpu)98 void __cpuinit bfin_setup_caches(unsigned int cpu)
99 {
100 #ifdef CONFIG_BFIN_ICACHE
101 bfin_icache_init(icplb_tbl[cpu]);
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105 bfin_dcache_init(dcplb_tbl[cpu]);
106 #endif
107
108 /*
109 * In cache coherence emulation mode, we need to have the
110 * D-cache enabled before running any atomic operation which
111 * might invove cache invalidation (i.e. spinlock, rwlock).
112 * So printk's are deferred until then.
113 */
114 #ifdef CONFIG_BFIN_ICACHE
115 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
116 #endif
117 #ifdef CONFIG_BFIN_DCACHE
118 printk(KERN_INFO "Data Cache Enabled for CPU%u"
119 # if defined CONFIG_BFIN_WB
120 " (write-back)"
121 # elif defined CONFIG_BFIN_WT
122 " (write-through)"
123 # endif
124 "\n", cpu);
125 #endif
126 }
127
bfin_setup_cpudata(unsigned int cpu)128 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
129 {
130 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
131
132 cpudata->idle = current;
133 cpudata->loops_per_jiffy = loops_per_jiffy;
134 cpudata->imemctl = bfin_read_IMEM_CONTROL();
135 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
136 }
137
bfin_cache_init(void)138 void __init bfin_cache_init(void)
139 {
140 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
141 generate_cplb_tables();
142 #endif
143 bfin_setup_caches(0);
144 }
145
bfin_relocate_l1_mem(void)146 void __init bfin_relocate_l1_mem(void)
147 {
148 unsigned long l1_code_length;
149 unsigned long l1_data_a_length;
150 unsigned long l1_data_b_length;
151 unsigned long l2_length;
152
153 blackfin_dma_early_init();
154
155 l1_code_length = _etext_l1 - _stext_l1;
156 if (l1_code_length > L1_CODE_LENGTH)
157 panic("L1 Instruction SRAM Overflow\n");
158 /* cannot complain as printk is not available as yet.
159 * But we can continue booting and complain later!
160 */
161
162 /* Copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
163 dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
164
165 l1_data_a_length = _sbss_l1 - _sdata_l1;
166 if (l1_data_a_length > L1_DATA_A_LENGTH)
167 panic("L1 Data SRAM Bank A Overflow\n");
168
169 /* Copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
170 dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
171
172 l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
173 if (l1_data_b_length > L1_DATA_B_LENGTH)
174 panic("L1 Data SRAM Bank B Overflow\n");
175
176 /* Copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
177 dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
178 l1_data_a_length, l1_data_b_length);
179
180 if (L2_LENGTH != 0) {
181 l2_length = _sbss_l2 - _stext_l2;
182 if (l2_length > L2_LENGTH)
183 panic("L2 SRAM Overflow\n");
184
185 /* Copy _stext_l2 to _edata_l2 to L2 SRAM */
186 dma_memcpy(_stext_l2, _l2_lma_start, l2_length);
187 }
188 }
189
190 /* add_memory_region to memmap */
add_memory_region(unsigned long long start,unsigned long long size,int type)191 static void __init add_memory_region(unsigned long long start,
192 unsigned long long size, int type)
193 {
194 int i;
195
196 i = bfin_memmap.nr_map;
197
198 if (i == BFIN_MEMMAP_MAX) {
199 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
200 return;
201 }
202
203 bfin_memmap.map[i].addr = start;
204 bfin_memmap.map[i].size = size;
205 bfin_memmap.map[i].type = type;
206 bfin_memmap.nr_map++;
207 }
208
209 /*
210 * Sanitize the boot memmap, removing overlaps.
211 */
sanitize_memmap(struct bfin_memmap_entry * map,int * pnr_map)212 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
213 {
214 struct change_member *change_tmp;
215 unsigned long current_type, last_type;
216 unsigned long long last_addr;
217 int chgidx, still_changing;
218 int overlap_entries;
219 int new_entry;
220 int old_nr, new_nr, chg_nr;
221 int i;
222
223 /*
224 Visually we're performing the following (1,2,3,4 = memory types)
225
226 Sample memory map (w/overlaps):
227 ____22__________________
228 ______________________4_
229 ____1111________________
230 _44_____________________
231 11111111________________
232 ____________________33__
233 ___________44___________
234 __________33333_________
235 ______________22________
236 ___________________2222_
237 _________111111111______
238 _____________________11_
239 _________________4______
240
241 Sanitized equivalent (no overlap):
242 1_______________________
243 _44_____________________
244 ___1____________________
245 ____22__________________
246 ______11________________
247 _________1______________
248 __________3_____________
249 ___________44___________
250 _____________33_________
251 _______________2________
252 ________________1_______
253 _________________4______
254 ___________________2____
255 ____________________33__
256 ______________________4_
257 */
258 /* if there's only one memory region, don't bother */
259 if (*pnr_map < 2)
260 return -1;
261
262 old_nr = *pnr_map;
263
264 /* bail out if we find any unreasonable addresses in memmap */
265 for (i = 0; i < old_nr; i++)
266 if (map[i].addr + map[i].size < map[i].addr)
267 return -1;
268
269 /* create pointers for initial change-point information (for sorting) */
270 for (i = 0; i < 2*old_nr; i++)
271 change_point[i] = &change_point_list[i];
272
273 /* record all known change-points (starting and ending addresses),
274 omitting those that are for empty memory regions */
275 chgidx = 0;
276 for (i = 0; i < old_nr; i++) {
277 if (map[i].size != 0) {
278 change_point[chgidx]->addr = map[i].addr;
279 change_point[chgidx++]->pentry = &map[i];
280 change_point[chgidx]->addr = map[i].addr + map[i].size;
281 change_point[chgidx++]->pentry = &map[i];
282 }
283 }
284 chg_nr = chgidx; /* true number of change-points */
285
286 /* sort change-point list by memory addresses (low -> high) */
287 still_changing = 1;
288 while (still_changing) {
289 still_changing = 0;
290 for (i = 1; i < chg_nr; i++) {
291 /* if <current_addr> > <last_addr>, swap */
292 /* or, if current=<start_addr> & last=<end_addr>, swap */
293 if ((change_point[i]->addr < change_point[i-1]->addr) ||
294 ((change_point[i]->addr == change_point[i-1]->addr) &&
295 (change_point[i]->addr == change_point[i]->pentry->addr) &&
296 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
297 ) {
298 change_tmp = change_point[i];
299 change_point[i] = change_point[i-1];
300 change_point[i-1] = change_tmp;
301 still_changing = 1;
302 }
303 }
304 }
305
306 /* create a new memmap, removing overlaps */
307 overlap_entries = 0; /* number of entries in the overlap table */
308 new_entry = 0; /* index for creating new memmap entries */
309 last_type = 0; /* start with undefined memory type */
310 last_addr = 0; /* start with 0 as last starting address */
311 /* loop through change-points, determining affect on the new memmap */
312 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
313 /* keep track of all overlapping memmap entries */
314 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
315 /* add map entry to overlap list (> 1 entry implies an overlap) */
316 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
317 } else {
318 /* remove entry from list (order independent, so swap with last) */
319 for (i = 0; i < overlap_entries; i++) {
320 if (overlap_list[i] == change_point[chgidx]->pentry)
321 overlap_list[i] = overlap_list[overlap_entries-1];
322 }
323 overlap_entries--;
324 }
325 /* if there are overlapping entries, decide which "type" to use */
326 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
327 current_type = 0;
328 for (i = 0; i < overlap_entries; i++)
329 if (overlap_list[i]->type > current_type)
330 current_type = overlap_list[i]->type;
331 /* continue building up new memmap based on this information */
332 if (current_type != last_type) {
333 if (last_type != 0) {
334 new_map[new_entry].size =
335 change_point[chgidx]->addr - last_addr;
336 /* move forward only if the new size was non-zero */
337 if (new_map[new_entry].size != 0)
338 if (++new_entry >= BFIN_MEMMAP_MAX)
339 break; /* no more space left for new entries */
340 }
341 if (current_type != 0) {
342 new_map[new_entry].addr = change_point[chgidx]->addr;
343 new_map[new_entry].type = current_type;
344 last_addr = change_point[chgidx]->addr;
345 }
346 last_type = current_type;
347 }
348 }
349 new_nr = new_entry; /* retain count for new entries */
350
351 /* copy new mapping into original location */
352 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
353 *pnr_map = new_nr;
354
355 return 0;
356 }
357
print_memory_map(char * who)358 static void __init print_memory_map(char *who)
359 {
360 int i;
361
362 for (i = 0; i < bfin_memmap.nr_map; i++) {
363 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
364 bfin_memmap.map[i].addr,
365 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
366 switch (bfin_memmap.map[i].type) {
367 case BFIN_MEMMAP_RAM:
368 printk("(usable)\n");
369 break;
370 case BFIN_MEMMAP_RESERVED:
371 printk("(reserved)\n");
372 break;
373 default: printk("type %lu\n", bfin_memmap.map[i].type);
374 break;
375 }
376 }
377 }
378
parse_memmap(char * arg)379 static __init int parse_memmap(char *arg)
380 {
381 unsigned long long start_at, mem_size;
382
383 if (!arg)
384 return -EINVAL;
385
386 mem_size = memparse(arg, &arg);
387 if (*arg == '@') {
388 start_at = memparse(arg+1, &arg);
389 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
390 } else if (*arg == '$') {
391 start_at = memparse(arg+1, &arg);
392 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
393 }
394
395 return 0;
396 }
397
398 /*
399 * Initial parsing of the command line. Currently, we support:
400 * - Controlling the linux memory size: mem=xxx[KMG]
401 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
402 * $ -> reserved memory is dcacheable
403 * # -> reserved memory is icacheable
404 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
405 * @ from <start> to <start>+<mem>, type RAM
406 * $ from <start> to <start>+<mem>, type RESERVED
407 */
parse_cmdline_early(char * cmdline_p)408 static __init void parse_cmdline_early(char *cmdline_p)
409 {
410 char c = ' ', *to = cmdline_p;
411 unsigned int memsize;
412 for (;;) {
413 if (c == ' ') {
414 if (!memcmp(to, "mem=", 4)) {
415 to += 4;
416 memsize = memparse(to, &to);
417 if (memsize)
418 _ramend = memsize;
419
420 } else if (!memcmp(to, "max_mem=", 8)) {
421 to += 8;
422 memsize = memparse(to, &to);
423 if (memsize) {
424 physical_mem_end = memsize;
425 if (*to != ' ') {
426 if (*to == '$'
427 || *(to + 1) == '$')
428 reserved_mem_dcache_on = 1;
429 if (*to == '#'
430 || *(to + 1) == '#')
431 reserved_mem_icache_on = 1;
432 }
433 }
434 } else if (!memcmp(to, "clkin_hz=", 9)) {
435 to += 9;
436 early_init_clkin_hz(to);
437 } else if (!memcmp(to, "earlyprintk=", 12)) {
438 to += 12;
439 setup_early_printk(to);
440 } else if (!memcmp(to, "memmap=", 7)) {
441 to += 7;
442 parse_memmap(to);
443 }
444 }
445 c = *(to++);
446 if (!c)
447 break;
448 }
449 }
450
451 /*
452 * Setup memory defaults from user config.
453 * The physical memory layout looks like:
454 *
455 * [_rambase, _ramstart]: kernel image
456 * [memory_start, memory_end]: dynamic memory managed by kernel
457 * [memory_end, _ramend]: reserved memory
458 * [memory_mtd_start(memory_end),
459 * memory_mtd_start + mtd_size]: rootfs (if any)
460 * [_ramend - DMA_UNCACHED_REGION,
461 * _ramend]: uncached DMA region
462 * [_ramend, physical_mem_end]: memory not managed by kernel
463 */
memory_setup(void)464 static __init void memory_setup(void)
465 {
466 #ifdef CONFIG_MTD_UCLINUX
467 unsigned long mtd_phys = 0;
468 #endif
469
470 _rambase = (unsigned long)_stext;
471 _ramstart = (unsigned long)_end;
472
473 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
474 console_init();
475 panic("DMA region exceeds memory limit: %lu.\n",
476 _ramend - _ramstart);
477 }
478 memory_end = _ramend - DMA_UNCACHED_REGION;
479
480 #ifdef CONFIG_MPU
481 /* Round up to multiple of 4MB */
482 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
483 #else
484 memory_start = PAGE_ALIGN(_ramstart);
485 #endif
486
487 #if defined(CONFIG_MTD_UCLINUX)
488 /* generic memory mapped MTD driver */
489 memory_mtd_end = memory_end;
490
491 mtd_phys = _ramstart;
492 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
493
494 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
495 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
496 mtd_size =
497 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
498 # endif
499
500 # if defined(CONFIG_CRAMFS)
501 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
502 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
503 # endif
504
505 # if defined(CONFIG_ROMFS_FS)
506 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
507 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
508 mtd_size =
509 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
510 # if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
511 /* Due to a Hardware Anomaly we need to limit the size of usable
512 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
513 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
514 */
515 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
516 if (memory_end >= 56 * 1024 * 1024)
517 memory_end = 56 * 1024 * 1024;
518 # else
519 if (memory_end >= 60 * 1024 * 1024)
520 memory_end = 60 * 1024 * 1024;
521 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
522 # endif /* ANOMALY_05000263 */
523 # endif /* CONFIG_ROMFS_FS */
524
525 memory_end -= mtd_size;
526
527 if (mtd_size == 0) {
528 console_init();
529 panic("Don't boot kernel without rootfs attached.\n");
530 }
531
532 /* Relocate MTD image to the top of memory after the uncached memory area */
533 dma_memcpy((char *)memory_end, _end, mtd_size);
534
535 memory_mtd_start = memory_end;
536 _ebss = memory_mtd_start; /* define _ebss for compatible */
537 #endif /* CONFIG_MTD_UCLINUX */
538
539 #if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
540 /* Due to a Hardware Anomaly we need to limit the size of usable
541 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
542 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
543 */
544 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
545 if (memory_end >= 56 * 1024 * 1024)
546 memory_end = 56 * 1024 * 1024;
547 #else
548 if (memory_end >= 60 * 1024 * 1024)
549 memory_end = 60 * 1024 * 1024;
550 #endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
551 printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
552 #endif /* ANOMALY_05000263 */
553
554 #ifdef CONFIG_MPU
555 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
556 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
557 #endif
558
559 #if !defined(CONFIG_MTD_UCLINUX)
560 /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
561 memory_end -= SIZE_4K;
562 #endif
563
564 init_mm.start_code = (unsigned long)_stext;
565 init_mm.end_code = (unsigned long)_etext;
566 init_mm.end_data = (unsigned long)_edata;
567 init_mm.brk = (unsigned long)0;
568
569 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
570 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
571
572 printk(KERN_INFO "Memory map:\n"
573 KERN_INFO " fixedcode = 0x%p-0x%p\n"
574 KERN_INFO " text = 0x%p-0x%p\n"
575 KERN_INFO " rodata = 0x%p-0x%p\n"
576 KERN_INFO " bss = 0x%p-0x%p\n"
577 KERN_INFO " data = 0x%p-0x%p\n"
578 KERN_INFO " stack = 0x%p-0x%p\n"
579 KERN_INFO " init = 0x%p-0x%p\n"
580 KERN_INFO " available = 0x%p-0x%p\n"
581 #ifdef CONFIG_MTD_UCLINUX
582 KERN_INFO " rootfs = 0x%p-0x%p\n"
583 #endif
584 #if DMA_UNCACHED_REGION > 0
585 KERN_INFO " DMA Zone = 0x%p-0x%p\n"
586 #endif
587 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
588 _stext, _etext,
589 __start_rodata, __end_rodata,
590 __bss_start, __bss_stop,
591 _sdata, _edata,
592 (void *)&init_thread_union,
593 (void *)((int)(&init_thread_union) + 0x2000),
594 __init_begin, __init_end,
595 (void *)_ramstart, (void *)memory_end
596 #ifdef CONFIG_MTD_UCLINUX
597 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
598 #endif
599 #if DMA_UNCACHED_REGION > 0
600 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
601 #endif
602 );
603 }
604
605 /*
606 * Find the lowest, highest page frame number we have available
607 */
find_min_max_pfn(void)608 void __init find_min_max_pfn(void)
609 {
610 int i;
611
612 max_pfn = 0;
613 min_low_pfn = memory_end;
614
615 for (i = 0; i < bfin_memmap.nr_map; i++) {
616 unsigned long start, end;
617 /* RAM? */
618 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
619 continue;
620 start = PFN_UP(bfin_memmap.map[i].addr);
621 end = PFN_DOWN(bfin_memmap.map[i].addr +
622 bfin_memmap.map[i].size);
623 if (start >= end)
624 continue;
625 if (end > max_pfn)
626 max_pfn = end;
627 if (start < min_low_pfn)
628 min_low_pfn = start;
629 }
630 }
631
setup_bootmem_allocator(void)632 static __init void setup_bootmem_allocator(void)
633 {
634 int bootmap_size;
635 int i;
636 unsigned long start_pfn, end_pfn;
637 unsigned long curr_pfn, last_pfn, size;
638
639 /* mark memory between memory_start and memory_end usable */
640 add_memory_region(memory_start,
641 memory_end - memory_start, BFIN_MEMMAP_RAM);
642 /* sanity check for overlap */
643 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
644 print_memory_map("boot memmap");
645
646 /* intialize globals in linux/bootmem.h */
647 find_min_max_pfn();
648 /* pfn of the last usable page frame */
649 if (max_pfn > memory_end >> PAGE_SHIFT)
650 max_pfn = memory_end >> PAGE_SHIFT;
651 /* pfn of last page frame directly mapped by kernel */
652 max_low_pfn = max_pfn;
653 /* pfn of the first usable page frame after kernel image*/
654 if (min_low_pfn < memory_start >> PAGE_SHIFT)
655 min_low_pfn = memory_start >> PAGE_SHIFT;
656
657 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
658 end_pfn = memory_end >> PAGE_SHIFT;
659
660 /*
661 * give all the memory to the bootmap allocator, tell it to put the
662 * boot mem_map at the start of memory.
663 */
664 bootmap_size = init_bootmem_node(NODE_DATA(0),
665 memory_start >> PAGE_SHIFT, /* map goes here */
666 start_pfn, end_pfn);
667
668 /* register the memmap regions with the bootmem allocator */
669 for (i = 0; i < bfin_memmap.nr_map; i++) {
670 /*
671 * Reserve usable memory
672 */
673 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
674 continue;
675 /*
676 * We are rounding up the start address of usable memory:
677 */
678 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
679 if (curr_pfn >= end_pfn)
680 continue;
681 /*
682 * ... and at the end of the usable range downwards:
683 */
684 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
685 bfin_memmap.map[i].size);
686
687 if (last_pfn > end_pfn)
688 last_pfn = end_pfn;
689
690 /*
691 * .. finally, did all the rounding and playing
692 * around just make the area go away?
693 */
694 if (last_pfn <= curr_pfn)
695 continue;
696
697 size = last_pfn - curr_pfn;
698 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
699 }
700
701 /* reserve memory before memory_start, including bootmap */
702 reserve_bootmem(PAGE_OFFSET,
703 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
704 BOOTMEM_DEFAULT);
705 }
706
707 #define EBSZ_TO_MEG(ebsz) \
708 ({ \
709 int meg = 0; \
710 switch (ebsz & 0xf) { \
711 case 0x1: meg = 16; break; \
712 case 0x3: meg = 32; break; \
713 case 0x5: meg = 64; break; \
714 case 0x7: meg = 128; break; \
715 case 0x9: meg = 256; break; \
716 case 0xb: meg = 512; break; \
717 } \
718 meg; \
719 })
get_mem_size(void)720 static inline int __init get_mem_size(void)
721 {
722 #if defined(EBIU_SDBCTL)
723 # if defined(BF561_FAMILY)
724 int ret = 0;
725 u32 sdbctl = bfin_read_EBIU_SDBCTL();
726 ret += EBSZ_TO_MEG(sdbctl >> 0);
727 ret += EBSZ_TO_MEG(sdbctl >> 8);
728 ret += EBSZ_TO_MEG(sdbctl >> 16);
729 ret += EBSZ_TO_MEG(sdbctl >> 24);
730 return ret;
731 # else
732 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
733 # endif
734 #elif defined(EBIU_DDRCTL1)
735 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
736 int ret = 0;
737 switch (ddrctl & 0xc0000) {
738 case DEVSZ_64: ret = 64 / 8;
739 case DEVSZ_128: ret = 128 / 8;
740 case DEVSZ_256: ret = 256 / 8;
741 case DEVSZ_512: ret = 512 / 8;
742 }
743 switch (ddrctl & 0x30000) {
744 case DEVWD_4: ret *= 2;
745 case DEVWD_8: ret *= 2;
746 case DEVWD_16: break;
747 }
748 if ((ddrctl & 0xc000) == 0x4000)
749 ret *= 2;
750 return ret;
751 #endif
752 BUG();
753 }
754
setup_arch(char ** cmdline_p)755 void __init setup_arch(char **cmdline_p)
756 {
757 unsigned long sclk, cclk;
758
759 #ifdef CONFIG_DUMMY_CONSOLE
760 conswitchp = &dummy_con;
761 #endif
762
763 #if defined(CONFIG_CMDLINE_BOOL)
764 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
765 command_line[sizeof(command_line) - 1] = 0;
766 #endif
767
768 /* Keep a copy of command line */
769 *cmdline_p = &command_line[0];
770 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
771 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
772
773 /* setup memory defaults from the user config */
774 physical_mem_end = 0;
775 _ramend = get_mem_size() * 1024 * 1024;
776
777 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
778
779 parse_cmdline_early(&command_line[0]);
780
781 if (physical_mem_end == 0)
782 physical_mem_end = _ramend;
783
784 memory_setup();
785
786 /* Initialize Async memory banks */
787 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
788 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
789 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
790 #ifdef CONFIG_EBIU_MBSCTLVAL
791 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
792 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
793 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
794 #endif
795
796 cclk = get_cclk();
797 sclk = get_sclk();
798
799 #if !defined(CONFIG_BFIN_KERNEL_CLOCK)
800 if (ANOMALY_05000273 && cclk == sclk)
801 panic("ANOMALY 05000273, SCLK can not be same as CCLK");
802 #endif
803
804 #ifdef BF561_FAMILY
805 if (ANOMALY_05000266) {
806 bfin_read_IMDMA_D0_IRQ_STATUS();
807 bfin_read_IMDMA_D1_IRQ_STATUS();
808 }
809 #endif
810 printk(KERN_INFO "Hardware Trace ");
811 if (bfin_read_TBUFCTL() & 0x1)
812 printk("Active ");
813 else
814 printk("Off ");
815 if (bfin_read_TBUFCTL() & 0x2)
816 printk("and Enabled\n");
817 else
818 printk("and Disabled\n");
819
820 #if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
821 /* we need to initialize the Flashrom device here since we might
822 * do things with flash early on in the boot
823 */
824 flash_probe();
825 #endif
826
827 printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
828
829 /* Newer parts mirror SWRST bits in SYSCR */
830 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
831 defined(CONFIG_BF538) || defined(CONFIG_BF539)
832 _bfin_swrst = bfin_read_SWRST();
833 #else
834 _bfin_swrst = bfin_read_SYSCR();
835 #endif
836
837 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
838 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
839 #endif
840 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
841 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
842 #endif
843
844 #ifdef CONFIG_SMP
845 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
846 #else
847 if (_bfin_swrst & RESET_DOUBLE) {
848 #endif
849 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
850 #ifdef CONFIG_DEBUG_DOUBLEFAULT
851 /* We assume the crashing kernel, and the current symbol table match */
852 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
853 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
854 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
855 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
856 #endif
857 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
858 init_retx);
859 } else if (_bfin_swrst & RESET_WDOG)
860 printk(KERN_INFO "Recovering from Watchdog event\n");
861 else if (_bfin_swrst & RESET_SOFTWARE)
862 printk(KERN_NOTICE "Reset caused by Software reset\n");
863
864 printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
865 if (bfin_compiled_revid() == 0xffff)
866 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
867 else if (bfin_compiled_revid() == -1)
868 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
869 else
870 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
871
872 if (unlikely(CPUID != bfin_cpuid()))
873 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
874 CPU, bfin_cpuid(), bfin_revid());
875 else {
876 if (bfin_revid() != bfin_compiled_revid()) {
877 if (bfin_compiled_revid() == -1)
878 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
879 bfin_revid());
880 else if (bfin_compiled_revid() != 0xffff) {
881 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
882 bfin_compiled_revid(), bfin_revid());
883 if (bfin_compiled_revid() > bfin_revid())
884 panic("Error: you are missing anomaly workarounds for this rev\n");
885 }
886 }
887 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
888 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
889 CPU, bfin_revid());
890 }
891
892 /* We can't run on BF548-0.1 due to ANOMALY 05000448 */
893 if (bfin_cpuid() == 0x27de && bfin_revid() == 1)
894 panic("You can't run on this processor due to 05000448\n");
895
896 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
897
898 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
899 cclk / 1000000, sclk / 1000000);
900
901 if (ANOMALY_05000273 && (cclk >> 1) <= sclk)
902 printk("\n\n\nANOMALY_05000273: CCLK must be >= 2*SCLK !!!\n\n\n");
903
904 setup_bootmem_allocator();
905
906 paging_init();
907
908 /* Copy atomic sequences to their fixed location, and sanity check that
909 these locations are the ones that we advertise to userspace. */
910 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
911 FIXED_CODE_END - FIXED_CODE_START);
912 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
913 != SIGRETURN_STUB - FIXED_CODE_START);
914 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
915 != ATOMIC_XCHG32 - FIXED_CODE_START);
916 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
917 != ATOMIC_CAS32 - FIXED_CODE_START);
918 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
919 != ATOMIC_ADD32 - FIXED_CODE_START);
920 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
921 != ATOMIC_SUB32 - FIXED_CODE_START);
922 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
923 != ATOMIC_IOR32 - FIXED_CODE_START);
924 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
925 != ATOMIC_AND32 - FIXED_CODE_START);
926 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
927 != ATOMIC_XOR32 - FIXED_CODE_START);
928 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
929 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
930
931 #ifdef CONFIG_SMP
932 platform_init_cpus();
933 #endif
934 init_exception_vectors();
935 bfin_cache_init(); /* Initialize caches for the boot CPU */
936 }
937
938 static int __init topology_init(void)
939 {
940 unsigned int cpu;
941 /* Record CPU-private information for the boot processor. */
942 bfin_setup_cpudata(0);
943
944 for_each_possible_cpu(cpu) {
945 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
946 }
947
948 return 0;
949 }
950
951 subsys_initcall(topology_init);
952
953 /* Get the input clock frequency */
954 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
955 static u_long get_clkin_hz(void)
956 {
957 return cached_clkin_hz;
958 }
959 static int __init early_init_clkin_hz(char *buf)
960 {
961 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
962 #ifdef BFIN_KERNEL_CLOCK
963 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
964 panic("cannot change clkin_hz when reprogramming clocks");
965 #endif
966 return 1;
967 }
968 early_param("clkin_hz=", early_init_clkin_hz);
969
970 /* Get the voltage input multiplier */
971 static u_long get_vco(void)
972 {
973 static u_long cached_vco;
974 u_long msel, pll_ctl;
975
976 /* The assumption here is that VCO never changes at runtime.
977 * If, someday, we support that, then we'll have to change this.
978 */
979 if (cached_vco)
980 return cached_vco;
981
982 pll_ctl = bfin_read_PLL_CTL();
983 msel = (pll_ctl >> 9) & 0x3F;
984 if (0 == msel)
985 msel = 64;
986
987 cached_vco = get_clkin_hz();
988 cached_vco >>= (1 & pll_ctl); /* DF bit */
989 cached_vco *= msel;
990 return cached_vco;
991 }
992
993 /* Get the Core clock */
994 u_long get_cclk(void)
995 {
996 static u_long cached_cclk_pll_div, cached_cclk;
997 u_long csel, ssel;
998
999 if (bfin_read_PLL_STAT() & 0x1)
1000 return get_clkin_hz();
1001
1002 ssel = bfin_read_PLL_DIV();
1003 if (ssel == cached_cclk_pll_div)
1004 return cached_cclk;
1005 else
1006 cached_cclk_pll_div = ssel;
1007
1008 csel = ((ssel >> 4) & 0x03);
1009 ssel &= 0xf;
1010 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1011 cached_cclk = get_vco() / ssel;
1012 else
1013 cached_cclk = get_vco() >> csel;
1014 return cached_cclk;
1015 }
1016 EXPORT_SYMBOL(get_cclk);
1017
1018 /* Get the System clock */
1019 u_long get_sclk(void)
1020 {
1021 static u_long cached_sclk;
1022 u_long ssel;
1023
1024 /* The assumption here is that SCLK never changes at runtime.
1025 * If, someday, we support that, then we'll have to change this.
1026 */
1027 if (cached_sclk)
1028 return cached_sclk;
1029
1030 if (bfin_read_PLL_STAT() & 0x1)
1031 return get_clkin_hz();
1032
1033 ssel = bfin_read_PLL_DIV() & 0xf;
1034 if (0 == ssel) {
1035 printk(KERN_WARNING "Invalid System Clock\n");
1036 ssel = 1;
1037 }
1038
1039 cached_sclk = get_vco() / ssel;
1040 return cached_sclk;
1041 }
1042 EXPORT_SYMBOL(get_sclk);
1043
1044 unsigned long sclk_to_usecs(unsigned long sclk)
1045 {
1046 u64 tmp = USEC_PER_SEC * (u64)sclk;
1047 do_div(tmp, get_sclk());
1048 return tmp;
1049 }
1050 EXPORT_SYMBOL(sclk_to_usecs);
1051
1052 unsigned long usecs_to_sclk(unsigned long usecs)
1053 {
1054 u64 tmp = get_sclk() * (u64)usecs;
1055 do_div(tmp, USEC_PER_SEC);
1056 return tmp;
1057 }
1058 EXPORT_SYMBOL(usecs_to_sclk);
1059
1060 /*
1061 * Get CPU information for use by the procfs.
1062 */
1063 static int show_cpuinfo(struct seq_file *m, void *v)
1064 {
1065 char *cpu, *mmu, *fpu, *vendor, *cache;
1066 uint32_t revid;
1067 int cpu_num = *(unsigned int *)v;
1068 u_long sclk, cclk;
1069 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1070 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1071
1072 cpu = CPU;
1073 mmu = "none";
1074 fpu = "none";
1075 revid = bfin_revid();
1076
1077 sclk = get_sclk();
1078 cclk = get_cclk();
1079
1080 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1081 case 0xca:
1082 vendor = "Analog Devices";
1083 break;
1084 default:
1085 vendor = "unknown";
1086 break;
1087 }
1088
1089 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1090
1091 if (CPUID == bfin_cpuid())
1092 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1093 else
1094 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1095 CPUID, bfin_cpuid());
1096
1097 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1098 "stepping\t: %d\n",
1099 cpu, cclk/1000000, sclk/1000000,
1100 #ifdef CONFIG_MPU
1101 "mpu on",
1102 #else
1103 "mpu off",
1104 #endif
1105 revid);
1106
1107 seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1108 cclk/1000000, cclk%1000000,
1109 sclk/1000000, sclk%1000000);
1110 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1111 "Calibration\t: %lu loops\n",
1112 (cpudata->loops_per_jiffy * HZ) / 500000,
1113 ((cpudata->loops_per_jiffy * HZ) / 5000) % 100,
1114 (cpudata->loops_per_jiffy * HZ));
1115
1116 /* Check Cache configutation */
1117 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1118 case ACACHE_BSRAM:
1119 cache = "dbank-A/B\t: cache/sram";
1120 dcache_size = 16;
1121 dsup_banks = 1;
1122 break;
1123 case ACACHE_BCACHE:
1124 cache = "dbank-A/B\t: cache/cache";
1125 dcache_size = 32;
1126 dsup_banks = 2;
1127 break;
1128 case ASRAM_BSRAM:
1129 cache = "dbank-A/B\t: sram/sram";
1130 dcache_size = 0;
1131 dsup_banks = 0;
1132 break;
1133 default:
1134 cache = "unknown";
1135 dcache_size = 0;
1136 dsup_banks = 0;
1137 break;
1138 }
1139
1140 /* Is it turned on? */
1141 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1142 dcache_size = 0;
1143
1144 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1145 icache_size = 0;
1146
1147 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1148 "%d KB(L1 dcache%s) %d KB(L2 cache)\n",
1149 icache_size, dcache_size,
1150 #if defined CONFIG_BFIN_WB
1151 "-wb"
1152 #elif defined CONFIG_BFIN_WT
1153 "-wt"
1154 #endif
1155 "", 0);
1156
1157 seq_printf(m, "%s\n", cache);
1158
1159 if (icache_size)
1160 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1161 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1162 else
1163 seq_printf(m, "icache setup\t: off\n");
1164
1165 seq_printf(m,
1166 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1167 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1168 BFIN_DLINES);
1169 #ifdef __ARCH_SYNC_CORE_DCACHE
1170 seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1171 #endif
1172 #ifdef CONFIG_BFIN_ICACHE_LOCK
1173 switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1174 case WAY0_L:
1175 seq_printf(m, "Way0 Locked-Down\n");
1176 break;
1177 case WAY1_L:
1178 seq_printf(m, "Way1 Locked-Down\n");
1179 break;
1180 case WAY01_L:
1181 seq_printf(m, "Way0,Way1 Locked-Down\n");
1182 break;
1183 case WAY2_L:
1184 seq_printf(m, "Way2 Locked-Down\n");
1185 break;
1186 case WAY02_L:
1187 seq_printf(m, "Way0,Way2 Locked-Down\n");
1188 break;
1189 case WAY12_L:
1190 seq_printf(m, "Way1,Way2 Locked-Down\n");
1191 break;
1192 case WAY012_L:
1193 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1194 break;
1195 case WAY3_L:
1196 seq_printf(m, "Way3 Locked-Down\n");
1197 break;
1198 case WAY03_L:
1199 seq_printf(m, "Way0,Way3 Locked-Down\n");
1200 break;
1201 case WAY13_L:
1202 seq_printf(m, "Way1,Way3 Locked-Down\n");
1203 break;
1204 case WAY013_L:
1205 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1206 break;
1207 case WAY32_L:
1208 seq_printf(m, "Way3,Way2 Locked-Down\n");
1209 break;
1210 case WAY320_L:
1211 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1212 break;
1213 case WAY321_L:
1214 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1215 break;
1216 case WAYALL_L:
1217 seq_printf(m, "All Ways are locked\n");
1218 break;
1219 default:
1220 seq_printf(m, "No Ways are locked\n");
1221 }
1222 #endif
1223
1224 if (cpu_num != num_possible_cpus() - 1)
1225 return 0;
1226
1227 if (L2_LENGTH)
1228 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1229 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1230 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1231 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1232 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1233 ((int)memory_end - (int)_stext) >> 10,
1234 _stext,
1235 (void *)memory_end);
1236 seq_printf(m, "\n");
1237
1238 return 0;
1239 }
1240
1241 static void *c_start(struct seq_file *m, loff_t *pos)
1242 {
1243 if (*pos == 0)
1244 *pos = first_cpu(cpu_online_map);
1245 if (*pos >= num_online_cpus())
1246 return NULL;
1247
1248 return pos;
1249 }
1250
1251 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1252 {
1253 *pos = next_cpu(*pos, cpu_online_map);
1254
1255 return c_start(m, pos);
1256 }
1257
1258 static void c_stop(struct seq_file *m, void *v)
1259 {
1260 }
1261
1262 const struct seq_operations cpuinfo_op = {
1263 .start = c_start,
1264 .next = c_next,
1265 .stop = c_stop,
1266 .show = show_cpuinfo,
1267 };
1268
1269 void __init cmdline_init(const char *r0)
1270 {
1271 if (r0)
1272 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1273 }
1274