1 /*
2 * originally based on the dummy device.
3 *
4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5 * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6 *
7 * bonding.c: an Ethernet Bonding driver
8 *
9 * This is useful to talk to a Cisco EtherChannel compatible equipment:
10 * Cisco 5500
11 * Sun Trunking (Solaris)
12 * Alteon AceDirector Trunks
13 * Linux Bonding
14 * and probably many L2 switches ...
15 *
16 * How it works:
17 * ifconfig bond0 ipaddress netmask up
18 * will setup a network device, with an ip address. No mac address
19 * will be assigned at this time. The hw mac address will come from
20 * the first slave bonded to the channel. All slaves will then use
21 * this hw mac address.
22 *
23 * ifconfig bond0 down
24 * will release all slaves, marking them as down.
25 *
26 * ifenslave bond0 eth0
27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either
28 * a: be used as initial mac address
29 * b: if a hw mac address already is there, eth0's hw mac address
30 * will then be set from bond0.
31 *
32 */
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ptrace.h>
40 #include <linux/ioport.h>
41 #include <linux/in.h>
42 #include <net/ip.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/slab.h>
47 #include <linux/string.h>
48 #include <linux/init.h>
49 #include <linux/timer.h>
50 #include <linux/socket.h>
51 #include <linux/ctype.h>
52 #include <linux/inet.h>
53 #include <linux/bitops.h>
54 #include <asm/system.h>
55 #include <asm/io.h>
56 #include <asm/dma.h>
57 #include <asm/uaccess.h>
58 #include <linux/errno.h>
59 #include <linux/netdevice.h>
60 #include <linux/inetdevice.h>
61 #include <linux/igmp.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <net/sock.h>
65 #include <linux/rtnetlink.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/smp.h>
69 #include <linux/if_ether.h>
70 #include <net/arp.h>
71 #include <linux/mii.h>
72 #include <linux/ethtool.h>
73 #include <linux/if_vlan.h>
74 #include <linux/if_bonding.h>
75 #include <linux/jiffies.h>
76 #include <net/route.h>
77 #include <net/net_namespace.h>
78 #include "bonding.h"
79 #include "bond_3ad.h"
80 #include "bond_alb.h"
81
82 /*---------------------------- Module parameters ----------------------------*/
83
84 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
85 #define BOND_LINK_MON_INTERV 0
86 #define BOND_LINK_ARP_INTERV 0
87
88 static int max_bonds = BOND_DEFAULT_MAX_BONDS;
89 static int num_grat_arp = 1;
90 static int num_unsol_na = 1;
91 static int miimon = BOND_LINK_MON_INTERV;
92 static int updelay = 0;
93 static int downdelay = 0;
94 static int use_carrier = 1;
95 static char *mode = NULL;
96 static char *primary = NULL;
97 static char *lacp_rate = NULL;
98 static char *ad_select = NULL;
99 static char *xmit_hash_policy = NULL;
100 static int arp_interval = BOND_LINK_ARP_INTERV;
101 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
102 static char *arp_validate = NULL;
103 static char *fail_over_mac = NULL;
104 struct bond_params bonding_defaults;
105
106 module_param(max_bonds, int, 0);
107 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
108 module_param(num_grat_arp, int, 0644);
109 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event");
110 module_param(num_unsol_na, int, 0644);
111 MODULE_PARM_DESC(num_unsol_na, "Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event");
112 module_param(miimon, int, 0);
113 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
114 module_param(updelay, int, 0);
115 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
116 module_param(downdelay, int, 0);
117 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
118 "in milliseconds");
119 module_param(use_carrier, int, 0);
120 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
121 "0 for off, 1 for on (default)");
122 module_param(mode, charp, 0);
123 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
124 "1 for active-backup, 2 for balance-xor, "
125 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
126 "6 for balance-alb");
127 module_param(primary, charp, 0);
128 MODULE_PARM_DESC(primary, "Primary network device to use");
129 module_param(lacp_rate, charp, 0);
130 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
131 "(slow/fast)");
132 module_param(ad_select, charp, 0);
133 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2)");
134 module_param(xmit_hash_policy, charp, 0);
135 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
136 ", 1 for layer 3+4");
137 module_param(arp_interval, int, 0);
138 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
139 module_param_array(arp_ip_target, charp, NULL, 0);
140 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
141 module_param(arp_validate, charp, 0);
142 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
143 module_param(fail_over_mac, charp, 0);
144 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow");
145
146 /*----------------------------- Global variables ----------------------------*/
147
148 static const char * const version =
149 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
150
151 LIST_HEAD(bond_dev_list);
152
153 #ifdef CONFIG_PROC_FS
154 static struct proc_dir_entry *bond_proc_dir = NULL;
155 #endif
156
157 static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
158 static int arp_ip_count = 0;
159 static int bond_mode = BOND_MODE_ROUNDROBIN;
160 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
161 static int lacp_fast = 0;
162
163
164 const struct bond_parm_tbl bond_lacp_tbl[] = {
165 { "slow", AD_LACP_SLOW},
166 { "fast", AD_LACP_FAST},
167 { NULL, -1},
168 };
169
170 const struct bond_parm_tbl bond_mode_tbl[] = {
171 { "balance-rr", BOND_MODE_ROUNDROBIN},
172 { "active-backup", BOND_MODE_ACTIVEBACKUP},
173 { "balance-xor", BOND_MODE_XOR},
174 { "broadcast", BOND_MODE_BROADCAST},
175 { "802.3ad", BOND_MODE_8023AD},
176 { "balance-tlb", BOND_MODE_TLB},
177 { "balance-alb", BOND_MODE_ALB},
178 { NULL, -1},
179 };
180
181 const struct bond_parm_tbl xmit_hashtype_tbl[] = {
182 { "layer2", BOND_XMIT_POLICY_LAYER2},
183 { "layer3+4", BOND_XMIT_POLICY_LAYER34},
184 { "layer2+3", BOND_XMIT_POLICY_LAYER23},
185 { NULL, -1},
186 };
187
188 const struct bond_parm_tbl arp_validate_tbl[] = {
189 { "none", BOND_ARP_VALIDATE_NONE},
190 { "active", BOND_ARP_VALIDATE_ACTIVE},
191 { "backup", BOND_ARP_VALIDATE_BACKUP},
192 { "all", BOND_ARP_VALIDATE_ALL},
193 { NULL, -1},
194 };
195
196 const struct bond_parm_tbl fail_over_mac_tbl[] = {
197 { "none", BOND_FOM_NONE},
198 { "active", BOND_FOM_ACTIVE},
199 { "follow", BOND_FOM_FOLLOW},
200 { NULL, -1},
201 };
202
203 struct bond_parm_tbl ad_select_tbl[] = {
204 { "stable", BOND_AD_STABLE},
205 { "bandwidth", BOND_AD_BANDWIDTH},
206 { "count", BOND_AD_COUNT},
207 { NULL, -1},
208 };
209
210 /*-------------------------- Forward declarations ---------------------------*/
211
212 static void bond_send_gratuitous_arp(struct bonding *bond);
213 static void bond_deinit(struct net_device *bond_dev);
214
215 /*---------------------------- General routines -----------------------------*/
216
bond_mode_name(int mode)217 static const char *bond_mode_name(int mode)
218 {
219 static const char *names[] = {
220 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)",
221 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)",
222 [BOND_MODE_XOR] = "load balancing (xor)",
223 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)",
224 [BOND_MODE_8023AD]= "IEEE 802.3ad Dynamic link aggregation",
225 [BOND_MODE_TLB] = "transmit load balancing",
226 [BOND_MODE_ALB] = "adaptive load balancing",
227 };
228
229 if (mode < 0 || mode > BOND_MODE_ALB)
230 return "unknown";
231
232 return names[mode];
233 }
234
235 /*---------------------------------- VLAN -----------------------------------*/
236
237 /**
238 * bond_add_vlan - add a new vlan id on bond
239 * @bond: bond that got the notification
240 * @vlan_id: the vlan id to add
241 *
242 * Returns -ENOMEM if allocation failed.
243 */
bond_add_vlan(struct bonding * bond,unsigned short vlan_id)244 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
245 {
246 struct vlan_entry *vlan;
247
248 pr_debug("bond: %s, vlan id %d\n",
249 (bond ? bond->dev->name: "None"), vlan_id);
250
251 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL);
252 if (!vlan) {
253 return -ENOMEM;
254 }
255
256 INIT_LIST_HEAD(&vlan->vlan_list);
257 vlan->vlan_id = vlan_id;
258
259 write_lock_bh(&bond->lock);
260
261 list_add_tail(&vlan->vlan_list, &bond->vlan_list);
262
263 write_unlock_bh(&bond->lock);
264
265 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
266
267 return 0;
268 }
269
270 /**
271 * bond_del_vlan - delete a vlan id from bond
272 * @bond: bond that got the notification
273 * @vlan_id: the vlan id to delete
274 *
275 * returns -ENODEV if @vlan_id was not found in @bond.
276 */
bond_del_vlan(struct bonding * bond,unsigned short vlan_id)277 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
278 {
279 struct vlan_entry *vlan;
280 int res = -ENODEV;
281
282 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
283
284 write_lock_bh(&bond->lock);
285
286 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
287 if (vlan->vlan_id == vlan_id) {
288 list_del(&vlan->vlan_list);
289
290 if (bond_is_lb(bond))
291 bond_alb_clear_vlan(bond, vlan_id);
292
293 pr_debug("removed VLAN ID %d from bond %s\n", vlan_id,
294 bond->dev->name);
295
296 kfree(vlan);
297
298 if (list_empty(&bond->vlan_list) &&
299 (bond->slave_cnt == 0)) {
300 /* Last VLAN removed and no slaves, so
301 * restore block on adding VLANs. This will
302 * be removed once new slaves that are not
303 * VLAN challenged will be added.
304 */
305 bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
306 }
307
308 res = 0;
309 goto out;
310 }
311 }
312
313 pr_debug("couldn't find VLAN ID %d in bond %s\n", vlan_id,
314 bond->dev->name);
315
316 out:
317 write_unlock_bh(&bond->lock);
318 return res;
319 }
320
321 /**
322 * bond_has_challenged_slaves
323 * @bond: the bond we're working on
324 *
325 * Searches the slave list. Returns 1 if a vlan challenged slave
326 * was found, 0 otherwise.
327 *
328 * Assumes bond->lock is held.
329 */
bond_has_challenged_slaves(struct bonding * bond)330 static int bond_has_challenged_slaves(struct bonding *bond)
331 {
332 struct slave *slave;
333 int i;
334
335 bond_for_each_slave(bond, slave, i) {
336 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
337 pr_debug("found VLAN challenged slave - %s\n",
338 slave->dev->name);
339 return 1;
340 }
341 }
342
343 pr_debug("no VLAN challenged slaves found\n");
344 return 0;
345 }
346
347 /**
348 * bond_next_vlan - safely skip to the next item in the vlans list.
349 * @bond: the bond we're working on
350 * @curr: item we're advancing from
351 *
352 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
353 * or @curr->next otherwise (even if it is @curr itself again).
354 *
355 * Caller must hold bond->lock
356 */
bond_next_vlan(struct bonding * bond,struct vlan_entry * curr)357 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
358 {
359 struct vlan_entry *next, *last;
360
361 if (list_empty(&bond->vlan_list)) {
362 return NULL;
363 }
364
365 if (!curr) {
366 next = list_entry(bond->vlan_list.next,
367 struct vlan_entry, vlan_list);
368 } else {
369 last = list_entry(bond->vlan_list.prev,
370 struct vlan_entry, vlan_list);
371 if (last == curr) {
372 next = list_entry(bond->vlan_list.next,
373 struct vlan_entry, vlan_list);
374 } else {
375 next = list_entry(curr->vlan_list.next,
376 struct vlan_entry, vlan_list);
377 }
378 }
379
380 return next;
381 }
382
383 /**
384 * bond_dev_queue_xmit - Prepare skb for xmit.
385 *
386 * @bond: bond device that got this skb for tx.
387 * @skb: hw accel VLAN tagged skb to transmit
388 * @slave_dev: slave that is supposed to xmit this skbuff
389 *
390 * When the bond gets an skb to transmit that is
391 * already hardware accelerated VLAN tagged, and it
392 * needs to relay this skb to a slave that is not
393 * hw accel capable, the skb needs to be "unaccelerated",
394 * i.e. strip the hwaccel tag and re-insert it as part
395 * of the payload.
396 */
bond_dev_queue_xmit(struct bonding * bond,struct sk_buff * skb,struct net_device * slave_dev)397 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
398 {
399 unsigned short uninitialized_var(vlan_id);
400
401 if (!list_empty(&bond->vlan_list) &&
402 !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
403 vlan_get_tag(skb, &vlan_id) == 0) {
404 skb->dev = slave_dev;
405 skb = vlan_put_tag(skb, vlan_id);
406 if (!skb) {
407 /* vlan_put_tag() frees the skb in case of error,
408 * so return success here so the calling functions
409 * won't attempt to free is again.
410 */
411 return 0;
412 }
413 } else {
414 skb->dev = slave_dev;
415 }
416
417 skb->priority = 1;
418 dev_queue_xmit(skb);
419
420 return 0;
421 }
422
423 /*
424 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
425 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
426 * lock because:
427 * a. This operation is performed in IOCTL context,
428 * b. The operation is protected by the RTNL semaphore in the 8021q code,
429 * c. Holding a lock with BH disabled while directly calling a base driver
430 * entry point is generally a BAD idea.
431 *
432 * The design of synchronization/protection for this operation in the 8021q
433 * module is good for one or more VLAN devices over a single physical device
434 * and cannot be extended for a teaming solution like bonding, so there is a
435 * potential race condition here where a net device from the vlan group might
436 * be referenced (either by a base driver or the 8021q code) while it is being
437 * removed from the system. However, it turns out we're not making matters
438 * worse, and if it works for regular VLAN usage it will work here too.
439 */
440
441 /**
442 * bond_vlan_rx_register - Propagates registration to slaves
443 * @bond_dev: bonding net device that got called
444 * @grp: vlan group being registered
445 */
bond_vlan_rx_register(struct net_device * bond_dev,struct vlan_group * grp)446 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
447 {
448 struct bonding *bond = netdev_priv(bond_dev);
449 struct slave *slave;
450 int i;
451
452 bond->vlgrp = grp;
453
454 bond_for_each_slave(bond, slave, i) {
455 struct net_device *slave_dev = slave->dev;
456 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
457
458 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
459 slave_ops->ndo_vlan_rx_register) {
460 slave_ops->ndo_vlan_rx_register(slave_dev, grp);
461 }
462 }
463 }
464
465 /**
466 * bond_vlan_rx_add_vid - Propagates adding an id to slaves
467 * @bond_dev: bonding net device that got called
468 * @vid: vlan id being added
469 */
bond_vlan_rx_add_vid(struct net_device * bond_dev,uint16_t vid)470 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
471 {
472 struct bonding *bond = netdev_priv(bond_dev);
473 struct slave *slave;
474 int i, res;
475
476 bond_for_each_slave(bond, slave, i) {
477 struct net_device *slave_dev = slave->dev;
478 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
479
480 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
481 slave_ops->ndo_vlan_rx_add_vid) {
482 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vid);
483 }
484 }
485
486 res = bond_add_vlan(bond, vid);
487 if (res) {
488 printk(KERN_ERR DRV_NAME
489 ": %s: Error: Failed to add vlan id %d\n",
490 bond_dev->name, vid);
491 }
492 }
493
494 /**
495 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
496 * @bond_dev: bonding net device that got called
497 * @vid: vlan id being removed
498 */
bond_vlan_rx_kill_vid(struct net_device * bond_dev,uint16_t vid)499 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
500 {
501 struct bonding *bond = netdev_priv(bond_dev);
502 struct slave *slave;
503 struct net_device *vlan_dev;
504 int i, res;
505
506 bond_for_each_slave(bond, slave, i) {
507 struct net_device *slave_dev = slave->dev;
508 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
509
510 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
511 slave_ops->ndo_vlan_rx_kill_vid) {
512 /* Save and then restore vlan_dev in the grp array,
513 * since the slave's driver might clear it.
514 */
515 vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
516 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vid);
517 vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
518 }
519 }
520
521 res = bond_del_vlan(bond, vid);
522 if (res) {
523 printk(KERN_ERR DRV_NAME
524 ": %s: Error: Failed to remove vlan id %d\n",
525 bond_dev->name, vid);
526 }
527 }
528
bond_add_vlans_on_slave(struct bonding * bond,struct net_device * slave_dev)529 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
530 {
531 struct vlan_entry *vlan;
532 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
533
534 write_lock_bh(&bond->lock);
535
536 if (list_empty(&bond->vlan_list))
537 goto out;
538
539 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
540 slave_ops->ndo_vlan_rx_register)
541 slave_ops->ndo_vlan_rx_register(slave_dev, bond->vlgrp);
542
543 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
544 !(slave_ops->ndo_vlan_rx_add_vid))
545 goto out;
546
547 list_for_each_entry(vlan, &bond->vlan_list, vlan_list)
548 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vlan->vlan_id);
549
550 out:
551 write_unlock_bh(&bond->lock);
552 }
553
bond_del_vlans_from_slave(struct bonding * bond,struct net_device * slave_dev)554 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
555 {
556 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
557 struct vlan_entry *vlan;
558 struct net_device *vlan_dev;
559
560 write_lock_bh(&bond->lock);
561
562 if (list_empty(&bond->vlan_list))
563 goto out;
564
565 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
566 !(slave_ops->ndo_vlan_rx_kill_vid))
567 goto unreg;
568
569 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
570 /* Save and then restore vlan_dev in the grp array,
571 * since the slave's driver might clear it.
572 */
573 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
574 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
575 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
576 }
577
578 unreg:
579 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
580 slave_ops->ndo_vlan_rx_register)
581 slave_ops->ndo_vlan_rx_register(slave_dev, NULL);
582
583 out:
584 write_unlock_bh(&bond->lock);
585 }
586
587 /*------------------------------- Link status -------------------------------*/
588
589 /*
590 * Set the carrier state for the master according to the state of its
591 * slaves. If any slaves are up, the master is up. In 802.3ad mode,
592 * do special 802.3ad magic.
593 *
594 * Returns zero if carrier state does not change, nonzero if it does.
595 */
bond_set_carrier(struct bonding * bond)596 static int bond_set_carrier(struct bonding *bond)
597 {
598 struct slave *slave;
599 int i;
600
601 if (bond->slave_cnt == 0)
602 goto down;
603
604 if (bond->params.mode == BOND_MODE_8023AD)
605 return bond_3ad_set_carrier(bond);
606
607 bond_for_each_slave(bond, slave, i) {
608 if (slave->link == BOND_LINK_UP) {
609 if (!netif_carrier_ok(bond->dev)) {
610 netif_carrier_on(bond->dev);
611 return 1;
612 }
613 return 0;
614 }
615 }
616
617 down:
618 if (netif_carrier_ok(bond->dev)) {
619 netif_carrier_off(bond->dev);
620 return 1;
621 }
622 return 0;
623 }
624
625 /*
626 * Get link speed and duplex from the slave's base driver
627 * using ethtool. If for some reason the call fails or the
628 * values are invalid, fake speed and duplex to 100/Full
629 * and return error.
630 */
bond_update_speed_duplex(struct slave * slave)631 static int bond_update_speed_duplex(struct slave *slave)
632 {
633 struct net_device *slave_dev = slave->dev;
634 struct ethtool_cmd etool;
635 int res;
636
637 /* Fake speed and duplex */
638 slave->speed = SPEED_100;
639 slave->duplex = DUPLEX_FULL;
640
641 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
642 return -1;
643
644 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
645 if (res < 0)
646 return -1;
647
648 switch (etool.speed) {
649 case SPEED_10:
650 case SPEED_100:
651 case SPEED_1000:
652 case SPEED_10000:
653 break;
654 default:
655 return -1;
656 }
657
658 switch (etool.duplex) {
659 case DUPLEX_FULL:
660 case DUPLEX_HALF:
661 break;
662 default:
663 return -1;
664 }
665
666 slave->speed = etool.speed;
667 slave->duplex = etool.duplex;
668
669 return 0;
670 }
671
672 /*
673 * if <dev> supports MII link status reporting, check its link status.
674 *
675 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
676 * depening upon the setting of the use_carrier parameter.
677 *
678 * Return either BMSR_LSTATUS, meaning that the link is up (or we
679 * can't tell and just pretend it is), or 0, meaning that the link is
680 * down.
681 *
682 * If reporting is non-zero, instead of faking link up, return -1 if
683 * both ETHTOOL and MII ioctls fail (meaning the device does not
684 * support them). If use_carrier is set, return whatever it says.
685 * It'd be nice if there was a good way to tell if a driver supports
686 * netif_carrier, but there really isn't.
687 */
bond_check_dev_link(struct bonding * bond,struct net_device * slave_dev,int reporting)688 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
689 {
690 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
691 static int (* ioctl)(struct net_device *, struct ifreq *, int);
692 struct ifreq ifr;
693 struct mii_ioctl_data *mii;
694
695 if (bond->params.use_carrier)
696 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
697
698 ioctl = slave_ops->ndo_do_ioctl;
699 if (ioctl) {
700 /* TODO: set pointer to correct ioctl on a per team member */
701 /* bases to make this more efficient. that is, once */
702 /* we determine the correct ioctl, we will always */
703 /* call it and not the others for that team */
704 /* member. */
705
706 /*
707 * We cannot assume that SIOCGMIIPHY will also read a
708 * register; not all network drivers (e.g., e100)
709 * support that.
710 */
711
712 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */
713 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
714 mii = if_mii(&ifr);
715 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
716 mii->reg_num = MII_BMSR;
717 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
718 return (mii->val_out & BMSR_LSTATUS);
719 }
720 }
721 }
722
723 /*
724 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
725 * attempt to get link status from it if the above MII ioctls fail.
726 */
727 if (slave_dev->ethtool_ops) {
728 if (slave_dev->ethtool_ops->get_link) {
729 u32 link;
730
731 link = slave_dev->ethtool_ops->get_link(slave_dev);
732
733 return link ? BMSR_LSTATUS : 0;
734 }
735 }
736
737 /*
738 * If reporting, report that either there's no dev->do_ioctl,
739 * or both SIOCGMIIREG and get_link failed (meaning that we
740 * cannot report link status). If not reporting, pretend
741 * we're ok.
742 */
743 return (reporting ? -1 : BMSR_LSTATUS);
744 }
745
746 /*----------------------------- Multicast list ------------------------------*/
747
748 /*
749 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
750 */
bond_is_dmi_same(struct dev_mc_list * dmi1,struct dev_mc_list * dmi2)751 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
752 {
753 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
754 dmi1->dmi_addrlen == dmi2->dmi_addrlen;
755 }
756
757 /*
758 * returns dmi entry if found, NULL otherwise
759 */
bond_mc_list_find_dmi(struct dev_mc_list * dmi,struct dev_mc_list * mc_list)760 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
761 {
762 struct dev_mc_list *idmi;
763
764 for (idmi = mc_list; idmi; idmi = idmi->next) {
765 if (bond_is_dmi_same(dmi, idmi)) {
766 return idmi;
767 }
768 }
769
770 return NULL;
771 }
772
773 /*
774 * Push the promiscuity flag down to appropriate slaves
775 */
bond_set_promiscuity(struct bonding * bond,int inc)776 static int bond_set_promiscuity(struct bonding *bond, int inc)
777 {
778 int err = 0;
779 if (USES_PRIMARY(bond->params.mode)) {
780 /* write lock already acquired */
781 if (bond->curr_active_slave) {
782 err = dev_set_promiscuity(bond->curr_active_slave->dev,
783 inc);
784 }
785 } else {
786 struct slave *slave;
787 int i;
788 bond_for_each_slave(bond, slave, i) {
789 err = dev_set_promiscuity(slave->dev, inc);
790 if (err)
791 return err;
792 }
793 }
794 return err;
795 }
796
797 /*
798 * Push the allmulti flag down to all slaves
799 */
bond_set_allmulti(struct bonding * bond,int inc)800 static int bond_set_allmulti(struct bonding *bond, int inc)
801 {
802 int err = 0;
803 if (USES_PRIMARY(bond->params.mode)) {
804 /* write lock already acquired */
805 if (bond->curr_active_slave) {
806 err = dev_set_allmulti(bond->curr_active_slave->dev,
807 inc);
808 }
809 } else {
810 struct slave *slave;
811 int i;
812 bond_for_each_slave(bond, slave, i) {
813 err = dev_set_allmulti(slave->dev, inc);
814 if (err)
815 return err;
816 }
817 }
818 return err;
819 }
820
821 /*
822 * Add a Multicast address to slaves
823 * according to mode
824 */
bond_mc_add(struct bonding * bond,void * addr,int alen)825 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
826 {
827 if (USES_PRIMARY(bond->params.mode)) {
828 /* write lock already acquired */
829 if (bond->curr_active_slave) {
830 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
831 }
832 } else {
833 struct slave *slave;
834 int i;
835 bond_for_each_slave(bond, slave, i) {
836 dev_mc_add(slave->dev, addr, alen, 0);
837 }
838 }
839 }
840
841 /*
842 * Remove a multicast address from slave
843 * according to mode
844 */
bond_mc_delete(struct bonding * bond,void * addr,int alen)845 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
846 {
847 if (USES_PRIMARY(bond->params.mode)) {
848 /* write lock already acquired */
849 if (bond->curr_active_slave) {
850 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
851 }
852 } else {
853 struct slave *slave;
854 int i;
855 bond_for_each_slave(bond, slave, i) {
856 dev_mc_delete(slave->dev, addr, alen, 0);
857 }
858 }
859 }
860
861
862 /*
863 * Retrieve the list of registered multicast addresses for the bonding
864 * device and retransmit an IGMP JOIN request to the current active
865 * slave.
866 */
bond_resend_igmp_join_requests(struct bonding * bond)867 static void bond_resend_igmp_join_requests(struct bonding *bond)
868 {
869 struct in_device *in_dev;
870 struct ip_mc_list *im;
871
872 rcu_read_lock();
873 in_dev = __in_dev_get_rcu(bond->dev);
874 if (in_dev) {
875 for (im = in_dev->mc_list; im; im = im->next) {
876 ip_mc_rejoin_group(im);
877 }
878 }
879
880 rcu_read_unlock();
881 }
882
883 /*
884 * Totally destroys the mc_list in bond
885 */
bond_mc_list_destroy(struct bonding * bond)886 static void bond_mc_list_destroy(struct bonding *bond)
887 {
888 struct dev_mc_list *dmi;
889
890 dmi = bond->mc_list;
891 while (dmi) {
892 bond->mc_list = dmi->next;
893 kfree(dmi);
894 dmi = bond->mc_list;
895 }
896 bond->mc_list = NULL;
897 }
898
899 /*
900 * Copy all the Multicast addresses from src to the bonding device dst
901 */
bond_mc_list_copy(struct dev_mc_list * mc_list,struct bonding * bond,gfp_t gfp_flag)902 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
903 gfp_t gfp_flag)
904 {
905 struct dev_mc_list *dmi, *new_dmi;
906
907 for (dmi = mc_list; dmi; dmi = dmi->next) {
908 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
909
910 if (!new_dmi) {
911 /* FIXME: Potential memory leak !!! */
912 return -ENOMEM;
913 }
914
915 new_dmi->next = bond->mc_list;
916 bond->mc_list = new_dmi;
917 new_dmi->dmi_addrlen = dmi->dmi_addrlen;
918 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
919 new_dmi->dmi_users = dmi->dmi_users;
920 new_dmi->dmi_gusers = dmi->dmi_gusers;
921 }
922
923 return 0;
924 }
925
926 /*
927 * flush all members of flush->mc_list from device dev->mc_list
928 */
bond_mc_list_flush(struct net_device * bond_dev,struct net_device * slave_dev)929 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
930 {
931 struct bonding *bond = netdev_priv(bond_dev);
932 struct dev_mc_list *dmi;
933
934 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
935 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
936 }
937
938 if (bond->params.mode == BOND_MODE_8023AD) {
939 /* del lacpdu mc addr from mc list */
940 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
941
942 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
943 }
944 }
945
946 /*--------------------------- Active slave change ---------------------------*/
947
948 /*
949 * Update the mc list and multicast-related flags for the new and
950 * old active slaves (if any) according to the multicast mode, and
951 * promiscuous flags unconditionally.
952 */
bond_mc_swap(struct bonding * bond,struct slave * new_active,struct slave * old_active)953 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
954 {
955 struct dev_mc_list *dmi;
956
957 if (!USES_PRIMARY(bond->params.mode)) {
958 /* nothing to do - mc list is already up-to-date on
959 * all slaves
960 */
961 return;
962 }
963
964 if (old_active) {
965 if (bond->dev->flags & IFF_PROMISC) {
966 dev_set_promiscuity(old_active->dev, -1);
967 }
968
969 if (bond->dev->flags & IFF_ALLMULTI) {
970 dev_set_allmulti(old_active->dev, -1);
971 }
972
973 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
974 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
975 }
976 }
977
978 if (new_active) {
979 /* FIXME: Signal errors upstream. */
980 if (bond->dev->flags & IFF_PROMISC) {
981 dev_set_promiscuity(new_active->dev, 1);
982 }
983
984 if (bond->dev->flags & IFF_ALLMULTI) {
985 dev_set_allmulti(new_active->dev, 1);
986 }
987
988 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
989 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
990 }
991 bond_resend_igmp_join_requests(bond);
992 }
993 }
994
995 /*
996 * bond_do_fail_over_mac
997 *
998 * Perform special MAC address swapping for fail_over_mac settings
999 *
1000 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
1001 */
bond_do_fail_over_mac(struct bonding * bond,struct slave * new_active,struct slave * old_active)1002 static void bond_do_fail_over_mac(struct bonding *bond,
1003 struct slave *new_active,
1004 struct slave *old_active)
1005 {
1006 u8 tmp_mac[ETH_ALEN];
1007 struct sockaddr saddr;
1008 int rv;
1009
1010 switch (bond->params.fail_over_mac) {
1011 case BOND_FOM_ACTIVE:
1012 if (new_active)
1013 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr,
1014 new_active->dev->addr_len);
1015 break;
1016 case BOND_FOM_FOLLOW:
1017 /*
1018 * if new_active && old_active, swap them
1019 * if just old_active, do nothing (going to no active slave)
1020 * if just new_active, set new_active to bond's MAC
1021 */
1022 if (!new_active)
1023 return;
1024
1025 write_unlock_bh(&bond->curr_slave_lock);
1026 read_unlock(&bond->lock);
1027
1028 if (old_active) {
1029 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
1030 memcpy(saddr.sa_data, old_active->dev->dev_addr,
1031 ETH_ALEN);
1032 saddr.sa_family = new_active->dev->type;
1033 } else {
1034 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
1035 saddr.sa_family = bond->dev->type;
1036 }
1037
1038 rv = dev_set_mac_address(new_active->dev, &saddr);
1039 if (rv) {
1040 printk(KERN_ERR DRV_NAME
1041 ": %s: Error %d setting MAC of slave %s\n",
1042 bond->dev->name, -rv, new_active->dev->name);
1043 goto out;
1044 }
1045
1046 if (!old_active)
1047 goto out;
1048
1049 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
1050 saddr.sa_family = old_active->dev->type;
1051
1052 rv = dev_set_mac_address(old_active->dev, &saddr);
1053 if (rv)
1054 printk(KERN_ERR DRV_NAME
1055 ": %s: Error %d setting MAC of slave %s\n",
1056 bond->dev->name, -rv, new_active->dev->name);
1057 out:
1058 read_lock(&bond->lock);
1059 write_lock_bh(&bond->curr_slave_lock);
1060 break;
1061 default:
1062 printk(KERN_ERR DRV_NAME
1063 ": %s: bond_do_fail_over_mac impossible: bad policy %d\n",
1064 bond->dev->name, bond->params.fail_over_mac);
1065 break;
1066 }
1067
1068 }
1069
1070
1071 /**
1072 * find_best_interface - select the best available slave to be the active one
1073 * @bond: our bonding struct
1074 *
1075 * Warning: Caller must hold curr_slave_lock for writing.
1076 */
bond_find_best_slave(struct bonding * bond)1077 static struct slave *bond_find_best_slave(struct bonding *bond)
1078 {
1079 struct slave *new_active, *old_active;
1080 struct slave *bestslave = NULL;
1081 int mintime = bond->params.updelay;
1082 int i;
1083
1084 new_active = old_active = bond->curr_active_slave;
1085
1086 if (!new_active) { /* there were no active slaves left */
1087 if (bond->slave_cnt > 0) { /* found one slave */
1088 new_active = bond->first_slave;
1089 } else {
1090 return NULL; /* still no slave, return NULL */
1091 }
1092 }
1093
1094 /* first try the primary link; if arping, a link must tx/rx traffic
1095 * before it can be considered the curr_active_slave - also, we would skip
1096 * slaves between the curr_active_slave and primary_slave that may be up
1097 * and able to arp
1098 */
1099 if ((bond->primary_slave) &&
1100 (!bond->params.arp_interval) &&
1101 (IS_UP(bond->primary_slave->dev))) {
1102 new_active = bond->primary_slave;
1103 }
1104
1105 /* remember where to stop iterating over the slaves */
1106 old_active = new_active;
1107
1108 bond_for_each_slave_from(bond, new_active, i, old_active) {
1109 if (IS_UP(new_active->dev)) {
1110 if (new_active->link == BOND_LINK_UP) {
1111 return new_active;
1112 } else if (new_active->link == BOND_LINK_BACK) {
1113 /* link up, but waiting for stabilization */
1114 if (new_active->delay < mintime) {
1115 mintime = new_active->delay;
1116 bestslave = new_active;
1117 }
1118 }
1119 }
1120 }
1121
1122 return bestslave;
1123 }
1124
1125 /**
1126 * change_active_interface - change the active slave into the specified one
1127 * @bond: our bonding struct
1128 * @new: the new slave to make the active one
1129 *
1130 * Set the new slave to the bond's settings and unset them on the old
1131 * curr_active_slave.
1132 * Setting include flags, mc-list, promiscuity, allmulti, etc.
1133 *
1134 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1135 * because it is apparently the best available slave we have, even though its
1136 * updelay hasn't timed out yet.
1137 *
1138 * If new_active is not NULL, caller must hold bond->lock for read and
1139 * curr_slave_lock for write_bh.
1140 */
bond_change_active_slave(struct bonding * bond,struct slave * new_active)1141 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1142 {
1143 struct slave *old_active = bond->curr_active_slave;
1144
1145 if (old_active == new_active) {
1146 return;
1147 }
1148
1149 if (new_active) {
1150 new_active->jiffies = jiffies;
1151
1152 if (new_active->link == BOND_LINK_BACK) {
1153 if (USES_PRIMARY(bond->params.mode)) {
1154 printk(KERN_INFO DRV_NAME
1155 ": %s: making interface %s the new "
1156 "active one %d ms earlier.\n",
1157 bond->dev->name, new_active->dev->name,
1158 (bond->params.updelay - new_active->delay) * bond->params.miimon);
1159 }
1160
1161 new_active->delay = 0;
1162 new_active->link = BOND_LINK_UP;
1163
1164 if (bond->params.mode == BOND_MODE_8023AD) {
1165 bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1166 }
1167
1168 if (bond_is_lb(bond))
1169 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1170 } else {
1171 if (USES_PRIMARY(bond->params.mode)) {
1172 printk(KERN_INFO DRV_NAME
1173 ": %s: making interface %s the new "
1174 "active one.\n",
1175 bond->dev->name, new_active->dev->name);
1176 }
1177 }
1178 }
1179
1180 if (USES_PRIMARY(bond->params.mode)) {
1181 bond_mc_swap(bond, new_active, old_active);
1182 }
1183
1184 if (bond_is_lb(bond)) {
1185 bond_alb_handle_active_change(bond, new_active);
1186 if (old_active)
1187 bond_set_slave_inactive_flags(old_active);
1188 if (new_active)
1189 bond_set_slave_active_flags(new_active);
1190 } else {
1191 bond->curr_active_slave = new_active;
1192 }
1193
1194 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1195 if (old_active) {
1196 bond_set_slave_inactive_flags(old_active);
1197 }
1198
1199 if (new_active) {
1200 bond_set_slave_active_flags(new_active);
1201
1202 if (bond->params.fail_over_mac)
1203 bond_do_fail_over_mac(bond, new_active,
1204 old_active);
1205
1206 bond->send_grat_arp = bond->params.num_grat_arp;
1207 bond_send_gratuitous_arp(bond);
1208
1209 bond->send_unsol_na = bond->params.num_unsol_na;
1210 bond_send_unsolicited_na(bond);
1211
1212 write_unlock_bh(&bond->curr_slave_lock);
1213 read_unlock(&bond->lock);
1214
1215 netdev_bonding_change(bond->dev);
1216
1217 read_lock(&bond->lock);
1218 write_lock_bh(&bond->curr_slave_lock);
1219 }
1220 }
1221 }
1222
1223 /**
1224 * bond_select_active_slave - select a new active slave, if needed
1225 * @bond: our bonding struct
1226 *
1227 * This functions shoud be called when one of the following occurs:
1228 * - The old curr_active_slave has been released or lost its link.
1229 * - The primary_slave has got its link back.
1230 * - A slave has got its link back and there's no old curr_active_slave.
1231 *
1232 * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
1233 */
bond_select_active_slave(struct bonding * bond)1234 void bond_select_active_slave(struct bonding *bond)
1235 {
1236 struct slave *best_slave;
1237 int rv;
1238
1239 best_slave = bond_find_best_slave(bond);
1240 if (best_slave != bond->curr_active_slave) {
1241 bond_change_active_slave(bond, best_slave);
1242 rv = bond_set_carrier(bond);
1243 if (!rv)
1244 return;
1245
1246 if (netif_carrier_ok(bond->dev)) {
1247 printk(KERN_INFO DRV_NAME
1248 ": %s: first active interface up!\n",
1249 bond->dev->name);
1250 } else {
1251 printk(KERN_INFO DRV_NAME ": %s: "
1252 "now running without any active interface !\n",
1253 bond->dev->name);
1254 }
1255 }
1256 }
1257
1258 /*--------------------------- slave list handling ---------------------------*/
1259
1260 /*
1261 * This function attaches the slave to the end of list.
1262 *
1263 * bond->lock held for writing by caller.
1264 */
bond_attach_slave(struct bonding * bond,struct slave * new_slave)1265 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1266 {
1267 if (bond->first_slave == NULL) { /* attaching the first slave */
1268 new_slave->next = new_slave;
1269 new_slave->prev = new_slave;
1270 bond->first_slave = new_slave;
1271 } else {
1272 new_slave->next = bond->first_slave;
1273 new_slave->prev = bond->first_slave->prev;
1274 new_slave->next->prev = new_slave;
1275 new_slave->prev->next = new_slave;
1276 }
1277
1278 bond->slave_cnt++;
1279 }
1280
1281 /*
1282 * This function detaches the slave from the list.
1283 * WARNING: no check is made to verify if the slave effectively
1284 * belongs to <bond>.
1285 * Nothing is freed on return, structures are just unchained.
1286 * If any slave pointer in bond was pointing to <slave>,
1287 * it should be changed by the calling function.
1288 *
1289 * bond->lock held for writing by caller.
1290 */
bond_detach_slave(struct bonding * bond,struct slave * slave)1291 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1292 {
1293 if (slave->next) {
1294 slave->next->prev = slave->prev;
1295 }
1296
1297 if (slave->prev) {
1298 slave->prev->next = slave->next;
1299 }
1300
1301 if (bond->first_slave == slave) { /* slave is the first slave */
1302 if (bond->slave_cnt > 1) { /* there are more slave */
1303 bond->first_slave = slave->next;
1304 } else {
1305 bond->first_slave = NULL; /* slave was the last one */
1306 }
1307 }
1308
1309 slave->next = NULL;
1310 slave->prev = NULL;
1311 bond->slave_cnt--;
1312 }
1313
1314 /*---------------------------------- IOCTL ----------------------------------*/
1315
bond_sethwaddr(struct net_device * bond_dev,struct net_device * slave_dev)1316 static int bond_sethwaddr(struct net_device *bond_dev,
1317 struct net_device *slave_dev)
1318 {
1319 pr_debug("bond_dev=%p\n", bond_dev);
1320 pr_debug("slave_dev=%p\n", slave_dev);
1321 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1322 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1323 return 0;
1324 }
1325
1326 #define BOND_VLAN_FEATURES \
1327 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1328 NETIF_F_HW_VLAN_FILTER)
1329
1330 /*
1331 * Compute the common dev->feature set available to all slaves. Some
1332 * feature bits are managed elsewhere, so preserve those feature bits
1333 * on the master device.
1334 */
bond_compute_features(struct bonding * bond)1335 static int bond_compute_features(struct bonding *bond)
1336 {
1337 struct slave *slave;
1338 struct net_device *bond_dev = bond->dev;
1339 unsigned long features = bond_dev->features;
1340 unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1341 bond_dev->hard_header_len);
1342 int i;
1343
1344 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1345 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1346
1347 if (!bond->first_slave)
1348 goto done;
1349
1350 features &= ~NETIF_F_ONE_FOR_ALL;
1351
1352 bond_for_each_slave(bond, slave, i) {
1353 features = netdev_increment_features(features,
1354 slave->dev->features,
1355 NETIF_F_ONE_FOR_ALL);
1356 if (slave->dev->hard_header_len > max_hard_header_len)
1357 max_hard_header_len = slave->dev->hard_header_len;
1358 }
1359
1360 done:
1361 features |= (bond_dev->features & BOND_VLAN_FEATURES);
1362 bond_dev->features = netdev_fix_features(features, NULL);
1363 bond_dev->hard_header_len = max_hard_header_len;
1364
1365 return 0;
1366 }
1367
bond_setup_by_slave(struct net_device * bond_dev,struct net_device * slave_dev)1368 static void bond_setup_by_slave(struct net_device *bond_dev,
1369 struct net_device *slave_dev)
1370 {
1371 struct bonding *bond = netdev_priv(bond_dev);
1372
1373 bond_dev->header_ops = slave_dev->header_ops;
1374
1375 bond_dev->type = slave_dev->type;
1376 bond_dev->hard_header_len = slave_dev->hard_header_len;
1377 bond_dev->addr_len = slave_dev->addr_len;
1378
1379 memcpy(bond_dev->broadcast, slave_dev->broadcast,
1380 slave_dev->addr_len);
1381 bond->setup_by_slave = 1;
1382 }
1383
1384 /* enslave device <slave> to bond device <master> */
bond_enslave(struct net_device * bond_dev,struct net_device * slave_dev)1385 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1386 {
1387 struct bonding *bond = netdev_priv(bond_dev);
1388 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
1389 struct slave *new_slave = NULL;
1390 struct dev_mc_list *dmi;
1391 struct sockaddr addr;
1392 int link_reporting;
1393 int old_features = bond_dev->features;
1394 int res = 0;
1395
1396 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1397 slave_ops->ndo_do_ioctl == NULL) {
1398 printk(KERN_WARNING DRV_NAME
1399 ": %s: Warning: no link monitoring support for %s\n",
1400 bond_dev->name, slave_dev->name);
1401 }
1402
1403 /* bond must be initialized by bond_open() before enslaving */
1404 if (!(bond_dev->flags & IFF_UP)) {
1405 printk(KERN_WARNING DRV_NAME
1406 " %s: master_dev is not up in bond_enslave\n",
1407 bond_dev->name);
1408 }
1409
1410 /* already enslaved */
1411 if (slave_dev->flags & IFF_SLAVE) {
1412 pr_debug("Error, Device was already enslaved\n");
1413 return -EBUSY;
1414 }
1415
1416 /* vlan challenged mutual exclusion */
1417 /* no need to lock since we're protected by rtnl_lock */
1418 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1419 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1420 if (!list_empty(&bond->vlan_list)) {
1421 printk(KERN_ERR DRV_NAME
1422 ": %s: Error: cannot enslave VLAN "
1423 "challenged slave %s on VLAN enabled "
1424 "bond %s\n", bond_dev->name, slave_dev->name,
1425 bond_dev->name);
1426 return -EPERM;
1427 } else {
1428 printk(KERN_WARNING DRV_NAME
1429 ": %s: Warning: enslaved VLAN challenged "
1430 "slave %s. Adding VLANs will be blocked as "
1431 "long as %s is part of bond %s\n",
1432 bond_dev->name, slave_dev->name, slave_dev->name,
1433 bond_dev->name);
1434 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1435 }
1436 } else {
1437 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1438 if (bond->slave_cnt == 0) {
1439 /* First slave, and it is not VLAN challenged,
1440 * so remove the block of adding VLANs over the bond.
1441 */
1442 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1443 }
1444 }
1445
1446 /*
1447 * Old ifenslave binaries are no longer supported. These can
1448 * be identified with moderate accurary by the state of the slave:
1449 * the current ifenslave will set the interface down prior to
1450 * enslaving it; the old ifenslave will not.
1451 */
1452 if ((slave_dev->flags & IFF_UP)) {
1453 printk(KERN_ERR DRV_NAME ": %s is up. "
1454 "This may be due to an out of date ifenslave.\n",
1455 slave_dev->name);
1456 res = -EPERM;
1457 goto err_undo_flags;
1458 }
1459
1460 /* set bonding device ether type by slave - bonding netdevices are
1461 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1462 * there is a need to override some of the type dependent attribs/funcs.
1463 *
1464 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1465 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1466 */
1467 if (bond->slave_cnt == 0) {
1468 if (slave_dev->type != ARPHRD_ETHER)
1469 bond_setup_by_slave(bond_dev, slave_dev);
1470 } else if (bond_dev->type != slave_dev->type) {
1471 printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different "
1472 "from other slaves (%d), can not enslave it.\n",
1473 slave_dev->name,
1474 slave_dev->type, bond_dev->type);
1475 res = -EINVAL;
1476 goto err_undo_flags;
1477 }
1478
1479 if (slave_ops->ndo_set_mac_address == NULL) {
1480 if (bond->slave_cnt == 0) {
1481 printk(KERN_WARNING DRV_NAME
1482 ": %s: Warning: The first slave device "
1483 "specified does not support setting the MAC "
1484 "address. Setting fail_over_mac to active.",
1485 bond_dev->name);
1486 bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1487 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1488 printk(KERN_ERR DRV_NAME
1489 ": %s: Error: The slave device specified "
1490 "does not support setting the MAC address, "
1491 "but fail_over_mac is not set to active.\n"
1492 , bond_dev->name);
1493 res = -EOPNOTSUPP;
1494 goto err_undo_flags;
1495 }
1496 }
1497
1498 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1499 if (!new_slave) {
1500 res = -ENOMEM;
1501 goto err_undo_flags;
1502 }
1503
1504 /* save slave's original flags before calling
1505 * netdev_set_master and dev_open
1506 */
1507 new_slave->original_flags = slave_dev->flags;
1508
1509 /*
1510 * Save slave's original ("permanent") mac address for modes
1511 * that need it, and for restoring it upon release, and then
1512 * set it to the master's address
1513 */
1514 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1515
1516 if (!bond->params.fail_over_mac) {
1517 /*
1518 * Set slave to master's mac address. The application already
1519 * set the master's mac address to that of the first slave
1520 */
1521 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1522 addr.sa_family = slave_dev->type;
1523 res = dev_set_mac_address(slave_dev, &addr);
1524 if (res) {
1525 pr_debug("Error %d calling set_mac_address\n", res);
1526 goto err_free;
1527 }
1528 }
1529
1530 res = netdev_set_master(slave_dev, bond_dev);
1531 if (res) {
1532 pr_debug("Error %d calling netdev_set_master\n", res);
1533 goto err_restore_mac;
1534 }
1535 /* open the slave since the application closed it */
1536 res = dev_open(slave_dev);
1537 if (res) {
1538 pr_debug("Openning slave %s failed\n", slave_dev->name);
1539 goto err_unset_master;
1540 }
1541
1542 new_slave->dev = slave_dev;
1543 slave_dev->priv_flags |= IFF_BONDING;
1544
1545 if (bond_is_lb(bond)) {
1546 /* bond_alb_init_slave() must be called before all other stages since
1547 * it might fail and we do not want to have to undo everything
1548 */
1549 res = bond_alb_init_slave(bond, new_slave);
1550 if (res) {
1551 goto err_close;
1552 }
1553 }
1554
1555 /* If the mode USES_PRIMARY, then the new slave gets the
1556 * master's promisc (and mc) settings only if it becomes the
1557 * curr_active_slave, and that is taken care of later when calling
1558 * bond_change_active()
1559 */
1560 if (!USES_PRIMARY(bond->params.mode)) {
1561 /* set promiscuity level to new slave */
1562 if (bond_dev->flags & IFF_PROMISC) {
1563 res = dev_set_promiscuity(slave_dev, 1);
1564 if (res)
1565 goto err_close;
1566 }
1567
1568 /* set allmulti level to new slave */
1569 if (bond_dev->flags & IFF_ALLMULTI) {
1570 res = dev_set_allmulti(slave_dev, 1);
1571 if (res)
1572 goto err_close;
1573 }
1574
1575 netif_addr_lock_bh(bond_dev);
1576 /* upload master's mc_list to new slave */
1577 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1578 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1579 }
1580 netif_addr_unlock_bh(bond_dev);
1581 }
1582
1583 if (bond->params.mode == BOND_MODE_8023AD) {
1584 /* add lacpdu mc addr to mc list */
1585 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1586
1587 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1588 }
1589
1590 bond_add_vlans_on_slave(bond, slave_dev);
1591
1592 write_lock_bh(&bond->lock);
1593
1594 bond_attach_slave(bond, new_slave);
1595
1596 new_slave->delay = 0;
1597 new_slave->link_failure_count = 0;
1598
1599 bond_compute_features(bond);
1600
1601 write_unlock_bh(&bond->lock);
1602
1603 read_lock(&bond->lock);
1604
1605 new_slave->last_arp_rx = jiffies;
1606
1607 if (bond->params.miimon && !bond->params.use_carrier) {
1608 link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1609
1610 if ((link_reporting == -1) && !bond->params.arp_interval) {
1611 /*
1612 * miimon is set but a bonded network driver
1613 * does not support ETHTOOL/MII and
1614 * arp_interval is not set. Note: if
1615 * use_carrier is enabled, we will never go
1616 * here (because netif_carrier is always
1617 * supported); thus, we don't need to change
1618 * the messages for netif_carrier.
1619 */
1620 printk(KERN_WARNING DRV_NAME
1621 ": %s: Warning: MII and ETHTOOL support not "
1622 "available for interface %s, and "
1623 "arp_interval/arp_ip_target module parameters "
1624 "not specified, thus bonding will not detect "
1625 "link failures! see bonding.txt for details.\n",
1626 bond_dev->name, slave_dev->name);
1627 } else if (link_reporting == -1) {
1628 /* unable get link status using mii/ethtool */
1629 printk(KERN_WARNING DRV_NAME
1630 ": %s: Warning: can't get link status from "
1631 "interface %s; the network driver associated "
1632 "with this interface does not support MII or "
1633 "ETHTOOL link status reporting, thus miimon "
1634 "has no effect on this interface.\n",
1635 bond_dev->name, slave_dev->name);
1636 }
1637 }
1638
1639 /* check for initial state */
1640 if (!bond->params.miimon ||
1641 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1642 if (bond->params.updelay) {
1643 pr_debug("Initial state of slave_dev is "
1644 "BOND_LINK_BACK\n");
1645 new_slave->link = BOND_LINK_BACK;
1646 new_slave->delay = bond->params.updelay;
1647 } else {
1648 pr_debug("Initial state of slave_dev is "
1649 "BOND_LINK_UP\n");
1650 new_slave->link = BOND_LINK_UP;
1651 }
1652 new_slave->jiffies = jiffies;
1653 } else {
1654 pr_debug("Initial state of slave_dev is "
1655 "BOND_LINK_DOWN\n");
1656 new_slave->link = BOND_LINK_DOWN;
1657 }
1658
1659 if (bond_update_speed_duplex(new_slave) &&
1660 (new_slave->link != BOND_LINK_DOWN)) {
1661 printk(KERN_WARNING DRV_NAME
1662 ": %s: Warning: failed to get speed and duplex from %s, "
1663 "assumed to be 100Mb/sec and Full.\n",
1664 bond_dev->name, new_slave->dev->name);
1665
1666 if (bond->params.mode == BOND_MODE_8023AD) {
1667 printk(KERN_WARNING DRV_NAME
1668 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1669 "support in base driver for proper aggregator "
1670 "selection.\n", bond_dev->name);
1671 }
1672 }
1673
1674 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1675 /* if there is a primary slave, remember it */
1676 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1677 bond->primary_slave = new_slave;
1678 }
1679 }
1680
1681 write_lock_bh(&bond->curr_slave_lock);
1682
1683 switch (bond->params.mode) {
1684 case BOND_MODE_ACTIVEBACKUP:
1685 bond_set_slave_inactive_flags(new_slave);
1686 bond_select_active_slave(bond);
1687 break;
1688 case BOND_MODE_8023AD:
1689 /* in 802.3ad mode, the internal mechanism
1690 * will activate the slaves in the selected
1691 * aggregator
1692 */
1693 bond_set_slave_inactive_flags(new_slave);
1694 /* if this is the first slave */
1695 if (bond->slave_cnt == 1) {
1696 SLAVE_AD_INFO(new_slave).id = 1;
1697 /* Initialize AD with the number of times that the AD timer is called in 1 second
1698 * can be called only after the mac address of the bond is set
1699 */
1700 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1701 bond->params.lacp_fast);
1702 } else {
1703 SLAVE_AD_INFO(new_slave).id =
1704 SLAVE_AD_INFO(new_slave->prev).id + 1;
1705 }
1706
1707 bond_3ad_bind_slave(new_slave);
1708 break;
1709 case BOND_MODE_TLB:
1710 case BOND_MODE_ALB:
1711 new_slave->state = BOND_STATE_ACTIVE;
1712 bond_set_slave_inactive_flags(new_slave);
1713 break;
1714 default:
1715 pr_debug("This slave is always active in trunk mode\n");
1716
1717 /* always active in trunk mode */
1718 new_slave->state = BOND_STATE_ACTIVE;
1719
1720 /* In trunking mode there is little meaning to curr_active_slave
1721 * anyway (it holds no special properties of the bond device),
1722 * so we can change it without calling change_active_interface()
1723 */
1724 if (!bond->curr_active_slave) {
1725 bond->curr_active_slave = new_slave;
1726 }
1727 break;
1728 } /* switch(bond_mode) */
1729
1730 write_unlock_bh(&bond->curr_slave_lock);
1731
1732 bond_set_carrier(bond);
1733
1734 read_unlock(&bond->lock);
1735
1736 res = bond_create_slave_symlinks(bond_dev, slave_dev);
1737 if (res)
1738 goto err_close;
1739
1740 printk(KERN_INFO DRV_NAME
1741 ": %s: enslaving %s as a%s interface with a%s link.\n",
1742 bond_dev->name, slave_dev->name,
1743 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1744 new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1745
1746 /* enslave is successful */
1747 return 0;
1748
1749 /* Undo stages on error */
1750 err_close:
1751 dev_close(slave_dev);
1752
1753 err_unset_master:
1754 netdev_set_master(slave_dev, NULL);
1755
1756 err_restore_mac:
1757 if (!bond->params.fail_over_mac) {
1758 /* XXX TODO - fom follow mode needs to change master's
1759 * MAC if this slave's MAC is in use by the bond, or at
1760 * least print a warning.
1761 */
1762 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1763 addr.sa_family = slave_dev->type;
1764 dev_set_mac_address(slave_dev, &addr);
1765 }
1766
1767 err_free:
1768 kfree(new_slave);
1769
1770 err_undo_flags:
1771 bond_dev->features = old_features;
1772
1773 return res;
1774 }
1775
1776 /*
1777 * Try to release the slave device <slave> from the bond device <master>
1778 * It is legal to access curr_active_slave without a lock because all the function
1779 * is write-locked.
1780 *
1781 * The rules for slave state should be:
1782 * for Active/Backup:
1783 * Active stays on all backups go down
1784 * for Bonded connections:
1785 * The first up interface should be left on and all others downed.
1786 */
bond_release(struct net_device * bond_dev,struct net_device * slave_dev)1787 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1788 {
1789 struct bonding *bond = netdev_priv(bond_dev);
1790 struct slave *slave, *oldcurrent;
1791 struct sockaddr addr;
1792 int mac_addr_differ;
1793
1794 /* slave is not a slave or master is not master of this slave */
1795 if (!(slave_dev->flags & IFF_SLAVE) ||
1796 (slave_dev->master != bond_dev)) {
1797 printk(KERN_ERR DRV_NAME
1798 ": %s: Error: cannot release %s.\n",
1799 bond_dev->name, slave_dev->name);
1800 return -EINVAL;
1801 }
1802
1803 write_lock_bh(&bond->lock);
1804
1805 slave = bond_get_slave_by_dev(bond, slave_dev);
1806 if (!slave) {
1807 /* not a slave of this bond */
1808 printk(KERN_INFO DRV_NAME
1809 ": %s: %s not enslaved\n",
1810 bond_dev->name, slave_dev->name);
1811 write_unlock_bh(&bond->lock);
1812 return -EINVAL;
1813 }
1814
1815 if (!bond->params.fail_over_mac) {
1816 mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr,
1817 ETH_ALEN);
1818 if (!mac_addr_differ && (bond->slave_cnt > 1))
1819 printk(KERN_WARNING DRV_NAME
1820 ": %s: Warning: the permanent HWaddr of %s - "
1821 "%pM - is still in use by %s. "
1822 "Set the HWaddr of %s to a different address "
1823 "to avoid conflicts.\n",
1824 bond_dev->name, slave_dev->name,
1825 slave->perm_hwaddr,
1826 bond_dev->name, slave_dev->name);
1827 }
1828
1829 /* Inform AD package of unbinding of slave. */
1830 if (bond->params.mode == BOND_MODE_8023AD) {
1831 /* must be called before the slave is
1832 * detached from the list
1833 */
1834 bond_3ad_unbind_slave(slave);
1835 }
1836
1837 printk(KERN_INFO DRV_NAME
1838 ": %s: releasing %s interface %s\n",
1839 bond_dev->name,
1840 (slave->state == BOND_STATE_ACTIVE)
1841 ? "active" : "backup",
1842 slave_dev->name);
1843
1844 oldcurrent = bond->curr_active_slave;
1845
1846 bond->current_arp_slave = NULL;
1847
1848 /* release the slave from its bond */
1849 bond_detach_slave(bond, slave);
1850
1851 bond_compute_features(bond);
1852
1853 if (bond->primary_slave == slave) {
1854 bond->primary_slave = NULL;
1855 }
1856
1857 if (oldcurrent == slave) {
1858 bond_change_active_slave(bond, NULL);
1859 }
1860
1861 if (bond_is_lb(bond)) {
1862 /* Must be called only after the slave has been
1863 * detached from the list and the curr_active_slave
1864 * has been cleared (if our_slave == old_current),
1865 * but before a new active slave is selected.
1866 */
1867 write_unlock_bh(&bond->lock);
1868 bond_alb_deinit_slave(bond, slave);
1869 write_lock_bh(&bond->lock);
1870 }
1871
1872 if (oldcurrent == slave) {
1873 /*
1874 * Note that we hold RTNL over this sequence, so there
1875 * is no concern that another slave add/remove event
1876 * will interfere.
1877 */
1878 write_unlock_bh(&bond->lock);
1879 read_lock(&bond->lock);
1880 write_lock_bh(&bond->curr_slave_lock);
1881
1882 bond_select_active_slave(bond);
1883
1884 write_unlock_bh(&bond->curr_slave_lock);
1885 read_unlock(&bond->lock);
1886 write_lock_bh(&bond->lock);
1887 }
1888
1889 if (bond->slave_cnt == 0) {
1890 bond_set_carrier(bond);
1891
1892 /* if the last slave was removed, zero the mac address
1893 * of the master so it will be set by the application
1894 * to the mac address of the first slave
1895 */
1896 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1897
1898 if (list_empty(&bond->vlan_list)) {
1899 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1900 } else {
1901 printk(KERN_WARNING DRV_NAME
1902 ": %s: Warning: clearing HW address of %s while it "
1903 "still has VLANs.\n",
1904 bond_dev->name, bond_dev->name);
1905 printk(KERN_WARNING DRV_NAME
1906 ": %s: When re-adding slaves, make sure the bond's "
1907 "HW address matches its VLANs'.\n",
1908 bond_dev->name);
1909 }
1910 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1911 !bond_has_challenged_slaves(bond)) {
1912 printk(KERN_INFO DRV_NAME
1913 ": %s: last VLAN challenged slave %s "
1914 "left bond %s. VLAN blocking is removed\n",
1915 bond_dev->name, slave_dev->name, bond_dev->name);
1916 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1917 }
1918
1919 write_unlock_bh(&bond->lock);
1920
1921 /* must do this from outside any spinlocks */
1922 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1923
1924 bond_del_vlans_from_slave(bond, slave_dev);
1925
1926 /* If the mode USES_PRIMARY, then we should only remove its
1927 * promisc and mc settings if it was the curr_active_slave, but that was
1928 * already taken care of above when we detached the slave
1929 */
1930 if (!USES_PRIMARY(bond->params.mode)) {
1931 /* unset promiscuity level from slave */
1932 if (bond_dev->flags & IFF_PROMISC) {
1933 dev_set_promiscuity(slave_dev, -1);
1934 }
1935
1936 /* unset allmulti level from slave */
1937 if (bond_dev->flags & IFF_ALLMULTI) {
1938 dev_set_allmulti(slave_dev, -1);
1939 }
1940
1941 /* flush master's mc_list from slave */
1942 netif_addr_lock_bh(bond_dev);
1943 bond_mc_list_flush(bond_dev, slave_dev);
1944 netif_addr_unlock_bh(bond_dev);
1945 }
1946
1947 netdev_set_master(slave_dev, NULL);
1948
1949 /* close slave before restoring its mac address */
1950 dev_close(slave_dev);
1951
1952 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1953 /* restore original ("permanent") mac address */
1954 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1955 addr.sa_family = slave_dev->type;
1956 dev_set_mac_address(slave_dev, &addr);
1957 }
1958
1959 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1960 IFF_SLAVE_INACTIVE | IFF_BONDING |
1961 IFF_SLAVE_NEEDARP);
1962
1963 kfree(slave);
1964
1965 return 0; /* deletion OK */
1966 }
1967
1968 /*
1969 * Destroy a bonding device.
1970 * Must be under rtnl_lock when this function is called.
1971 */
bond_destroy(struct bonding * bond)1972 void bond_destroy(struct bonding *bond)
1973 {
1974 bond_deinit(bond->dev);
1975 bond_destroy_sysfs_entry(bond);
1976 unregister_netdevice(bond->dev);
1977 }
1978
bond_destructor(struct net_device * bond_dev)1979 static void bond_destructor(struct net_device *bond_dev)
1980 {
1981 struct bonding *bond = netdev_priv(bond_dev);
1982
1983 if (bond->wq)
1984 destroy_workqueue(bond->wq);
1985
1986 netif_addr_lock_bh(bond_dev);
1987 bond_mc_list_destroy(bond);
1988 netif_addr_unlock_bh(bond_dev);
1989
1990 free_netdev(bond_dev);
1991 }
1992
1993 /*
1994 * First release a slave and than destroy the bond if no more slaves iare left.
1995 * Must be under rtnl_lock when this function is called.
1996 */
bond_release_and_destroy(struct net_device * bond_dev,struct net_device * slave_dev)1997 int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev)
1998 {
1999 struct bonding *bond = netdev_priv(bond_dev);
2000 int ret;
2001
2002 ret = bond_release(bond_dev, slave_dev);
2003 if ((ret == 0) && (bond->slave_cnt == 0)) {
2004 printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n",
2005 bond_dev->name, bond_dev->name);
2006 bond_destroy(bond);
2007 }
2008 return ret;
2009 }
2010
2011 /*
2012 * This function releases all slaves.
2013 */
bond_release_all(struct net_device * bond_dev)2014 static int bond_release_all(struct net_device *bond_dev)
2015 {
2016 struct bonding *bond = netdev_priv(bond_dev);
2017 struct slave *slave;
2018 struct net_device *slave_dev;
2019 struct sockaddr addr;
2020
2021 write_lock_bh(&bond->lock);
2022
2023 netif_carrier_off(bond_dev);
2024
2025 if (bond->slave_cnt == 0) {
2026 goto out;
2027 }
2028
2029 bond->current_arp_slave = NULL;
2030 bond->primary_slave = NULL;
2031 bond_change_active_slave(bond, NULL);
2032
2033 while ((slave = bond->first_slave) != NULL) {
2034 /* Inform AD package of unbinding of slave
2035 * before slave is detached from the list.
2036 */
2037 if (bond->params.mode == BOND_MODE_8023AD) {
2038 bond_3ad_unbind_slave(slave);
2039 }
2040
2041 slave_dev = slave->dev;
2042 bond_detach_slave(bond, slave);
2043
2044 /* now that the slave is detached, unlock and perform
2045 * all the undo steps that should not be called from
2046 * within a lock.
2047 */
2048 write_unlock_bh(&bond->lock);
2049
2050 if (bond_is_lb(bond)) {
2051 /* must be called only after the slave
2052 * has been detached from the list
2053 */
2054 bond_alb_deinit_slave(bond, slave);
2055 }
2056
2057 bond_compute_features(bond);
2058
2059 bond_destroy_slave_symlinks(bond_dev, slave_dev);
2060 bond_del_vlans_from_slave(bond, slave_dev);
2061
2062 /* If the mode USES_PRIMARY, then we should only remove its
2063 * promisc and mc settings if it was the curr_active_slave, but that was
2064 * already taken care of above when we detached the slave
2065 */
2066 if (!USES_PRIMARY(bond->params.mode)) {
2067 /* unset promiscuity level from slave */
2068 if (bond_dev->flags & IFF_PROMISC) {
2069 dev_set_promiscuity(slave_dev, -1);
2070 }
2071
2072 /* unset allmulti level from slave */
2073 if (bond_dev->flags & IFF_ALLMULTI) {
2074 dev_set_allmulti(slave_dev, -1);
2075 }
2076
2077 /* flush master's mc_list from slave */
2078 netif_addr_lock_bh(bond_dev);
2079 bond_mc_list_flush(bond_dev, slave_dev);
2080 netif_addr_unlock_bh(bond_dev);
2081 }
2082
2083 netdev_set_master(slave_dev, NULL);
2084
2085 /* close slave before restoring its mac address */
2086 dev_close(slave_dev);
2087
2088 if (!bond->params.fail_over_mac) {
2089 /* restore original ("permanent") mac address*/
2090 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
2091 addr.sa_family = slave_dev->type;
2092 dev_set_mac_address(slave_dev, &addr);
2093 }
2094
2095 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
2096 IFF_SLAVE_INACTIVE);
2097
2098 kfree(slave);
2099
2100 /* re-acquire the lock before getting the next slave */
2101 write_lock_bh(&bond->lock);
2102 }
2103
2104 /* zero the mac address of the master so it will be
2105 * set by the application to the mac address of the
2106 * first slave
2107 */
2108 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
2109
2110 if (list_empty(&bond->vlan_list)) {
2111 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
2112 } else {
2113 printk(KERN_WARNING DRV_NAME
2114 ": %s: Warning: clearing HW address of %s while it "
2115 "still has VLANs.\n",
2116 bond_dev->name, bond_dev->name);
2117 printk(KERN_WARNING DRV_NAME
2118 ": %s: When re-adding slaves, make sure the bond's "
2119 "HW address matches its VLANs'.\n",
2120 bond_dev->name);
2121 }
2122
2123 printk(KERN_INFO DRV_NAME
2124 ": %s: released all slaves\n",
2125 bond_dev->name);
2126
2127 out:
2128 write_unlock_bh(&bond->lock);
2129
2130 return 0;
2131 }
2132
2133 /*
2134 * This function changes the active slave to slave <slave_dev>.
2135 * It returns -EINVAL in the following cases.
2136 * - <slave_dev> is not found in the list.
2137 * - There is not active slave now.
2138 * - <slave_dev> is already active.
2139 * - The link state of <slave_dev> is not BOND_LINK_UP.
2140 * - <slave_dev> is not running.
2141 * In these cases, this fuction does nothing.
2142 * In the other cases, currnt_slave pointer is changed and 0 is returned.
2143 */
bond_ioctl_change_active(struct net_device * bond_dev,struct net_device * slave_dev)2144 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2145 {
2146 struct bonding *bond = netdev_priv(bond_dev);
2147 struct slave *old_active = NULL;
2148 struct slave *new_active = NULL;
2149 int res = 0;
2150
2151 if (!USES_PRIMARY(bond->params.mode)) {
2152 return -EINVAL;
2153 }
2154
2155 /* Verify that master_dev is indeed the master of slave_dev */
2156 if (!(slave_dev->flags & IFF_SLAVE) ||
2157 (slave_dev->master != bond_dev)) {
2158 return -EINVAL;
2159 }
2160
2161 read_lock(&bond->lock);
2162
2163 read_lock(&bond->curr_slave_lock);
2164 old_active = bond->curr_active_slave;
2165 read_unlock(&bond->curr_slave_lock);
2166
2167 new_active = bond_get_slave_by_dev(bond, slave_dev);
2168
2169 /*
2170 * Changing to the current active: do nothing; return success.
2171 */
2172 if (new_active && (new_active == old_active)) {
2173 read_unlock(&bond->lock);
2174 return 0;
2175 }
2176
2177 if ((new_active) &&
2178 (old_active) &&
2179 (new_active->link == BOND_LINK_UP) &&
2180 IS_UP(new_active->dev)) {
2181 write_lock_bh(&bond->curr_slave_lock);
2182 bond_change_active_slave(bond, new_active);
2183 write_unlock_bh(&bond->curr_slave_lock);
2184 } else {
2185 res = -EINVAL;
2186 }
2187
2188 read_unlock(&bond->lock);
2189
2190 return res;
2191 }
2192
bond_info_query(struct net_device * bond_dev,struct ifbond * info)2193 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2194 {
2195 struct bonding *bond = netdev_priv(bond_dev);
2196
2197 info->bond_mode = bond->params.mode;
2198 info->miimon = bond->params.miimon;
2199
2200 read_lock(&bond->lock);
2201 info->num_slaves = bond->slave_cnt;
2202 read_unlock(&bond->lock);
2203
2204 return 0;
2205 }
2206
bond_slave_info_query(struct net_device * bond_dev,struct ifslave * info)2207 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2208 {
2209 struct bonding *bond = netdev_priv(bond_dev);
2210 struct slave *slave;
2211 int i, found = 0;
2212
2213 if (info->slave_id < 0) {
2214 return -ENODEV;
2215 }
2216
2217 read_lock(&bond->lock);
2218
2219 bond_for_each_slave(bond, slave, i) {
2220 if (i == (int)info->slave_id) {
2221 found = 1;
2222 break;
2223 }
2224 }
2225
2226 read_unlock(&bond->lock);
2227
2228 if (found) {
2229 strcpy(info->slave_name, slave->dev->name);
2230 info->link = slave->link;
2231 info->state = slave->state;
2232 info->link_failure_count = slave->link_failure_count;
2233 } else {
2234 return -ENODEV;
2235 }
2236
2237 return 0;
2238 }
2239
2240 /*-------------------------------- Monitoring -------------------------------*/
2241
2242
bond_miimon_inspect(struct bonding * bond)2243 static int bond_miimon_inspect(struct bonding *bond)
2244 {
2245 struct slave *slave;
2246 int i, link_state, commit = 0;
2247
2248 bond_for_each_slave(bond, slave, i) {
2249 slave->new_link = BOND_LINK_NOCHANGE;
2250
2251 link_state = bond_check_dev_link(bond, slave->dev, 0);
2252
2253 switch (slave->link) {
2254 case BOND_LINK_UP:
2255 if (link_state)
2256 continue;
2257
2258 slave->link = BOND_LINK_FAIL;
2259 slave->delay = bond->params.downdelay;
2260 if (slave->delay) {
2261 printk(KERN_INFO DRV_NAME
2262 ": %s: link status down for %s"
2263 "interface %s, disabling it in %d ms.\n",
2264 bond->dev->name,
2265 (bond->params.mode ==
2266 BOND_MODE_ACTIVEBACKUP) ?
2267 ((slave->state == BOND_STATE_ACTIVE) ?
2268 "active " : "backup ") : "",
2269 slave->dev->name,
2270 bond->params.downdelay * bond->params.miimon);
2271 }
2272 /*FALLTHRU*/
2273 case BOND_LINK_FAIL:
2274 if (link_state) {
2275 /*
2276 * recovered before downdelay expired
2277 */
2278 slave->link = BOND_LINK_UP;
2279 slave->jiffies = jiffies;
2280 printk(KERN_INFO DRV_NAME
2281 ": %s: link status up again after %d "
2282 "ms for interface %s.\n",
2283 bond->dev->name,
2284 (bond->params.downdelay - slave->delay) *
2285 bond->params.miimon,
2286 slave->dev->name);
2287 continue;
2288 }
2289
2290 if (slave->delay <= 0) {
2291 slave->new_link = BOND_LINK_DOWN;
2292 commit++;
2293 continue;
2294 }
2295
2296 slave->delay--;
2297 break;
2298
2299 case BOND_LINK_DOWN:
2300 if (!link_state)
2301 continue;
2302
2303 slave->link = BOND_LINK_BACK;
2304 slave->delay = bond->params.updelay;
2305
2306 if (slave->delay) {
2307 printk(KERN_INFO DRV_NAME
2308 ": %s: link status up for "
2309 "interface %s, enabling it in %d ms.\n",
2310 bond->dev->name, slave->dev->name,
2311 bond->params.updelay *
2312 bond->params.miimon);
2313 }
2314 /*FALLTHRU*/
2315 case BOND_LINK_BACK:
2316 if (!link_state) {
2317 slave->link = BOND_LINK_DOWN;
2318 printk(KERN_INFO DRV_NAME
2319 ": %s: link status down again after %d "
2320 "ms for interface %s.\n",
2321 bond->dev->name,
2322 (bond->params.updelay - slave->delay) *
2323 bond->params.miimon,
2324 slave->dev->name);
2325
2326 continue;
2327 }
2328
2329 if (slave->delay <= 0) {
2330 slave->new_link = BOND_LINK_UP;
2331 commit++;
2332 continue;
2333 }
2334
2335 slave->delay--;
2336 break;
2337 }
2338 }
2339
2340 return commit;
2341 }
2342
bond_miimon_commit(struct bonding * bond)2343 static void bond_miimon_commit(struct bonding *bond)
2344 {
2345 struct slave *slave;
2346 int i;
2347
2348 bond_for_each_slave(bond, slave, i) {
2349 switch (slave->new_link) {
2350 case BOND_LINK_NOCHANGE:
2351 continue;
2352
2353 case BOND_LINK_UP:
2354 slave->link = BOND_LINK_UP;
2355 slave->jiffies = jiffies;
2356
2357 if (bond->params.mode == BOND_MODE_8023AD) {
2358 /* prevent it from being the active one */
2359 slave->state = BOND_STATE_BACKUP;
2360 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2361 /* make it immediately active */
2362 slave->state = BOND_STATE_ACTIVE;
2363 } else if (slave != bond->primary_slave) {
2364 /* prevent it from being the active one */
2365 slave->state = BOND_STATE_BACKUP;
2366 }
2367
2368 printk(KERN_INFO DRV_NAME
2369 ": %s: link status definitely "
2370 "up for interface %s.\n",
2371 bond->dev->name, slave->dev->name);
2372
2373 /* notify ad that the link status has changed */
2374 if (bond->params.mode == BOND_MODE_8023AD)
2375 bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2376
2377 if (bond_is_lb(bond))
2378 bond_alb_handle_link_change(bond, slave,
2379 BOND_LINK_UP);
2380
2381 if (!bond->curr_active_slave ||
2382 (slave == bond->primary_slave))
2383 goto do_failover;
2384
2385 continue;
2386
2387 case BOND_LINK_DOWN:
2388 if (slave->link_failure_count < UINT_MAX)
2389 slave->link_failure_count++;
2390
2391 slave->link = BOND_LINK_DOWN;
2392
2393 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP ||
2394 bond->params.mode == BOND_MODE_8023AD)
2395 bond_set_slave_inactive_flags(slave);
2396
2397 printk(KERN_INFO DRV_NAME
2398 ": %s: link status definitely down for "
2399 "interface %s, disabling it\n",
2400 bond->dev->name, slave->dev->name);
2401
2402 if (bond->params.mode == BOND_MODE_8023AD)
2403 bond_3ad_handle_link_change(slave,
2404 BOND_LINK_DOWN);
2405
2406 if (bond->params.mode == BOND_MODE_TLB ||
2407 bond->params.mode == BOND_MODE_ALB)
2408 bond_alb_handle_link_change(bond, slave,
2409 BOND_LINK_DOWN);
2410
2411 if (slave == bond->curr_active_slave)
2412 goto do_failover;
2413
2414 continue;
2415
2416 default:
2417 printk(KERN_ERR DRV_NAME
2418 ": %s: invalid new link %d on slave %s\n",
2419 bond->dev->name, slave->new_link,
2420 slave->dev->name);
2421 slave->new_link = BOND_LINK_NOCHANGE;
2422
2423 continue;
2424 }
2425
2426 do_failover:
2427 ASSERT_RTNL();
2428 write_lock_bh(&bond->curr_slave_lock);
2429 bond_select_active_slave(bond);
2430 write_unlock_bh(&bond->curr_slave_lock);
2431 }
2432
2433 bond_set_carrier(bond);
2434 }
2435
2436 /*
2437 * bond_mii_monitor
2438 *
2439 * Really a wrapper that splits the mii monitor into two phases: an
2440 * inspection, then (if inspection indicates something needs to be done)
2441 * an acquisition of appropriate locks followed by a commit phase to
2442 * implement whatever link state changes are indicated.
2443 */
bond_mii_monitor(struct work_struct * work)2444 void bond_mii_monitor(struct work_struct *work)
2445 {
2446 struct bonding *bond = container_of(work, struct bonding,
2447 mii_work.work);
2448
2449 read_lock(&bond->lock);
2450 if (bond->kill_timers)
2451 goto out;
2452
2453 if (bond->slave_cnt == 0)
2454 goto re_arm;
2455
2456 if (bond->send_grat_arp) {
2457 read_lock(&bond->curr_slave_lock);
2458 bond_send_gratuitous_arp(bond);
2459 read_unlock(&bond->curr_slave_lock);
2460 }
2461
2462 if (bond->send_unsol_na) {
2463 read_lock(&bond->curr_slave_lock);
2464 bond_send_unsolicited_na(bond);
2465 read_unlock(&bond->curr_slave_lock);
2466 }
2467
2468 if (bond_miimon_inspect(bond)) {
2469 read_unlock(&bond->lock);
2470 rtnl_lock();
2471 read_lock(&bond->lock);
2472
2473 bond_miimon_commit(bond);
2474
2475 read_unlock(&bond->lock);
2476 rtnl_unlock(); /* might sleep, hold no other locks */
2477 read_lock(&bond->lock);
2478 }
2479
2480 re_arm:
2481 if (bond->params.miimon)
2482 queue_delayed_work(bond->wq, &bond->mii_work,
2483 msecs_to_jiffies(bond->params.miimon));
2484 out:
2485 read_unlock(&bond->lock);
2486 }
2487
bond_glean_dev_ip(struct net_device * dev)2488 static __be32 bond_glean_dev_ip(struct net_device *dev)
2489 {
2490 struct in_device *idev;
2491 struct in_ifaddr *ifa;
2492 __be32 addr = 0;
2493
2494 if (!dev)
2495 return 0;
2496
2497 rcu_read_lock();
2498 idev = __in_dev_get_rcu(dev);
2499 if (!idev)
2500 goto out;
2501
2502 ifa = idev->ifa_list;
2503 if (!ifa)
2504 goto out;
2505
2506 addr = ifa->ifa_local;
2507 out:
2508 rcu_read_unlock();
2509 return addr;
2510 }
2511
bond_has_this_ip(struct bonding * bond,__be32 ip)2512 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2513 {
2514 struct vlan_entry *vlan;
2515
2516 if (ip == bond->master_ip)
2517 return 1;
2518
2519 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2520 if (ip == vlan->vlan_ip)
2521 return 1;
2522 }
2523
2524 return 0;
2525 }
2526
2527 /*
2528 * We go to the (large) trouble of VLAN tagging ARP frames because
2529 * switches in VLAN mode (especially if ports are configured as
2530 * "native" to a VLAN) might not pass non-tagged frames.
2531 */
bond_arp_send(struct net_device * slave_dev,int arp_op,__be32 dest_ip,__be32 src_ip,unsigned short vlan_id)2532 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2533 {
2534 struct sk_buff *skb;
2535
2536 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2537 slave_dev->name, dest_ip, src_ip, vlan_id);
2538
2539 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2540 NULL, slave_dev->dev_addr, NULL);
2541
2542 if (!skb) {
2543 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2544 return;
2545 }
2546 if (vlan_id) {
2547 skb = vlan_put_tag(skb, vlan_id);
2548 if (!skb) {
2549 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2550 return;
2551 }
2552 }
2553 arp_xmit(skb);
2554 }
2555
2556
bond_arp_send_all(struct bonding * bond,struct slave * slave)2557 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2558 {
2559 int i, vlan_id, rv;
2560 __be32 *targets = bond->params.arp_targets;
2561 struct vlan_entry *vlan;
2562 struct net_device *vlan_dev;
2563 struct flowi fl;
2564 struct rtable *rt;
2565
2566 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2567 if (!targets[i])
2568 continue;
2569 pr_debug("basa: target %x\n", targets[i]);
2570 if (list_empty(&bond->vlan_list)) {
2571 pr_debug("basa: empty vlan: arp_send\n");
2572 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2573 bond->master_ip, 0);
2574 continue;
2575 }
2576
2577 /*
2578 * If VLANs are configured, we do a route lookup to
2579 * determine which VLAN interface would be used, so we
2580 * can tag the ARP with the proper VLAN tag.
2581 */
2582 memset(&fl, 0, sizeof(fl));
2583 fl.fl4_dst = targets[i];
2584 fl.fl4_tos = RTO_ONLINK;
2585
2586 rv = ip_route_output_key(&init_net, &rt, &fl);
2587 if (rv) {
2588 if (net_ratelimit()) {
2589 printk(KERN_WARNING DRV_NAME
2590 ": %s: no route to arp_ip_target %pI4\n",
2591 bond->dev->name, &fl.fl4_dst);
2592 }
2593 continue;
2594 }
2595
2596 /*
2597 * This target is not on a VLAN
2598 */
2599 if (rt->u.dst.dev == bond->dev) {
2600 ip_rt_put(rt);
2601 pr_debug("basa: rtdev == bond->dev: arp_send\n");
2602 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2603 bond->master_ip, 0);
2604 continue;
2605 }
2606
2607 vlan_id = 0;
2608 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2609 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2610 if (vlan_dev == rt->u.dst.dev) {
2611 vlan_id = vlan->vlan_id;
2612 pr_debug("basa: vlan match on %s %d\n",
2613 vlan_dev->name, vlan_id);
2614 break;
2615 }
2616 }
2617
2618 if (vlan_id) {
2619 ip_rt_put(rt);
2620 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2621 vlan->vlan_ip, vlan_id);
2622 continue;
2623 }
2624
2625 if (net_ratelimit()) {
2626 printk(KERN_WARNING DRV_NAME
2627 ": %s: no path to arp_ip_target %pI4 via rt.dev %s\n",
2628 bond->dev->name, &fl.fl4_dst,
2629 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2630 }
2631 ip_rt_put(rt);
2632 }
2633 }
2634
2635 /*
2636 * Kick out a gratuitous ARP for an IP on the bonding master plus one
2637 * for each VLAN above us.
2638 *
2639 * Caller must hold curr_slave_lock for read or better
2640 */
bond_send_gratuitous_arp(struct bonding * bond)2641 static void bond_send_gratuitous_arp(struct bonding *bond)
2642 {
2643 struct slave *slave = bond->curr_active_slave;
2644 struct vlan_entry *vlan;
2645 struct net_device *vlan_dev;
2646
2647 pr_debug("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2648 slave ? slave->dev->name : "NULL");
2649
2650 if (!slave || !bond->send_grat_arp ||
2651 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
2652 return;
2653
2654 bond->send_grat_arp--;
2655
2656 if (bond->master_ip) {
2657 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2658 bond->master_ip, 0);
2659 }
2660
2661 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2662 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2663 if (vlan->vlan_ip) {
2664 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2665 vlan->vlan_ip, vlan->vlan_id);
2666 }
2667 }
2668 }
2669
bond_validate_arp(struct bonding * bond,struct slave * slave,__be32 sip,__be32 tip)2670 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2671 {
2672 int i;
2673 __be32 *targets = bond->params.arp_targets;
2674
2675 targets = bond->params.arp_targets;
2676 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2677 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n",
2678 &sip, &tip, i, &targets[i], bond_has_this_ip(bond, tip));
2679 if (sip == targets[i]) {
2680 if (bond_has_this_ip(bond, tip))
2681 slave->last_arp_rx = jiffies;
2682 return;
2683 }
2684 }
2685 }
2686
bond_arp_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)2687 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2688 {
2689 struct arphdr *arp;
2690 struct slave *slave;
2691 struct bonding *bond;
2692 unsigned char *arp_ptr;
2693 __be32 sip, tip;
2694
2695 if (dev_net(dev) != &init_net)
2696 goto out;
2697
2698 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2699 goto out;
2700
2701 bond = netdev_priv(dev);
2702 read_lock(&bond->lock);
2703
2704 pr_debug("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2705 bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2706 orig_dev ? orig_dev->name : "NULL");
2707
2708 slave = bond_get_slave_by_dev(bond, orig_dev);
2709 if (!slave || !slave_do_arp_validate(bond, slave))
2710 goto out_unlock;
2711
2712 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
2713 goto out_unlock;
2714
2715 arp = arp_hdr(skb);
2716 if (arp->ar_hln != dev->addr_len ||
2717 skb->pkt_type == PACKET_OTHERHOST ||
2718 skb->pkt_type == PACKET_LOOPBACK ||
2719 arp->ar_hrd != htons(ARPHRD_ETHER) ||
2720 arp->ar_pro != htons(ETH_P_IP) ||
2721 arp->ar_pln != 4)
2722 goto out_unlock;
2723
2724 arp_ptr = (unsigned char *)(arp + 1);
2725 arp_ptr += dev->addr_len;
2726 memcpy(&sip, arp_ptr, 4);
2727 arp_ptr += 4 + dev->addr_len;
2728 memcpy(&tip, arp_ptr, 4);
2729
2730 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n",
2731 bond->dev->name, slave->dev->name, slave->state,
2732 bond->params.arp_validate, slave_do_arp_validate(bond, slave),
2733 &sip, &tip);
2734
2735 /*
2736 * Backup slaves won't see the ARP reply, but do come through
2737 * here for each ARP probe (so we swap the sip/tip to validate
2738 * the probe). In a "redundant switch, common router" type of
2739 * configuration, the ARP probe will (hopefully) travel from
2740 * the active, through one switch, the router, then the other
2741 * switch before reaching the backup.
2742 */
2743 if (slave->state == BOND_STATE_ACTIVE)
2744 bond_validate_arp(bond, slave, sip, tip);
2745 else
2746 bond_validate_arp(bond, slave, tip, sip);
2747
2748 out_unlock:
2749 read_unlock(&bond->lock);
2750 out:
2751 dev_kfree_skb(skb);
2752 return NET_RX_SUCCESS;
2753 }
2754
2755 /*
2756 * this function is called regularly to monitor each slave's link
2757 * ensuring that traffic is being sent and received when arp monitoring
2758 * is used in load-balancing mode. if the adapter has been dormant, then an
2759 * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2760 * arp monitoring in active backup mode.
2761 */
bond_loadbalance_arp_mon(struct work_struct * work)2762 void bond_loadbalance_arp_mon(struct work_struct *work)
2763 {
2764 struct bonding *bond = container_of(work, struct bonding,
2765 arp_work.work);
2766 struct slave *slave, *oldcurrent;
2767 int do_failover = 0;
2768 int delta_in_ticks;
2769 int i;
2770
2771 read_lock(&bond->lock);
2772
2773 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2774
2775 if (bond->kill_timers) {
2776 goto out;
2777 }
2778
2779 if (bond->slave_cnt == 0) {
2780 goto re_arm;
2781 }
2782
2783 read_lock(&bond->curr_slave_lock);
2784 oldcurrent = bond->curr_active_slave;
2785 read_unlock(&bond->curr_slave_lock);
2786
2787 /* see if any of the previous devices are up now (i.e. they have
2788 * xmt and rcv traffic). the curr_active_slave does not come into
2789 * the picture unless it is null. also, slave->jiffies is not needed
2790 * here because we send an arp on each slave and give a slave as
2791 * long as it needs to get the tx/rx within the delta.
2792 * TODO: what about up/down delay in arp mode? it wasn't here before
2793 * so it can wait
2794 */
2795 bond_for_each_slave(bond, slave, i) {
2796 if (slave->link != BOND_LINK_UP) {
2797 if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) &&
2798 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) {
2799
2800 slave->link = BOND_LINK_UP;
2801 slave->state = BOND_STATE_ACTIVE;
2802
2803 /* primary_slave has no meaning in round-robin
2804 * mode. the window of a slave being up and
2805 * curr_active_slave being null after enslaving
2806 * is closed.
2807 */
2808 if (!oldcurrent) {
2809 printk(KERN_INFO DRV_NAME
2810 ": %s: link status definitely "
2811 "up for interface %s, ",
2812 bond->dev->name,
2813 slave->dev->name);
2814 do_failover = 1;
2815 } else {
2816 printk(KERN_INFO DRV_NAME
2817 ": %s: interface %s is now up\n",
2818 bond->dev->name,
2819 slave->dev->name);
2820 }
2821 }
2822 } else {
2823 /* slave->link == BOND_LINK_UP */
2824
2825 /* not all switches will respond to an arp request
2826 * when the source ip is 0, so don't take the link down
2827 * if we don't know our ip yet
2828 */
2829 if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) ||
2830 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) {
2831
2832 slave->link = BOND_LINK_DOWN;
2833 slave->state = BOND_STATE_BACKUP;
2834
2835 if (slave->link_failure_count < UINT_MAX) {
2836 slave->link_failure_count++;
2837 }
2838
2839 printk(KERN_INFO DRV_NAME
2840 ": %s: interface %s is now down.\n",
2841 bond->dev->name,
2842 slave->dev->name);
2843
2844 if (slave == oldcurrent) {
2845 do_failover = 1;
2846 }
2847 }
2848 }
2849
2850 /* note: if switch is in round-robin mode, all links
2851 * must tx arp to ensure all links rx an arp - otherwise
2852 * links may oscillate or not come up at all; if switch is
2853 * in something like xor mode, there is nothing we can
2854 * do - all replies will be rx'ed on same link causing slaves
2855 * to be unstable during low/no traffic periods
2856 */
2857 if (IS_UP(slave->dev)) {
2858 bond_arp_send_all(bond, slave);
2859 }
2860 }
2861
2862 if (do_failover) {
2863 write_lock_bh(&bond->curr_slave_lock);
2864
2865 bond_select_active_slave(bond);
2866
2867 write_unlock_bh(&bond->curr_slave_lock);
2868 }
2869
2870 re_arm:
2871 if (bond->params.arp_interval)
2872 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2873 out:
2874 read_unlock(&bond->lock);
2875 }
2876
2877 /*
2878 * Called to inspect slaves for active-backup mode ARP monitor link state
2879 * changes. Sets new_link in slaves to specify what action should take
2880 * place for the slave. Returns 0 if no changes are found, >0 if changes
2881 * to link states must be committed.
2882 *
2883 * Called with bond->lock held for read.
2884 */
bond_ab_arp_inspect(struct bonding * bond,int delta_in_ticks)2885 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks)
2886 {
2887 struct slave *slave;
2888 int i, commit = 0;
2889
2890 bond_for_each_slave(bond, slave, i) {
2891 slave->new_link = BOND_LINK_NOCHANGE;
2892
2893 if (slave->link != BOND_LINK_UP) {
2894 if (time_before_eq(jiffies, slave_last_rx(bond, slave) +
2895 delta_in_ticks)) {
2896 slave->new_link = BOND_LINK_UP;
2897 commit++;
2898 }
2899
2900 continue;
2901 }
2902
2903 /*
2904 * Give slaves 2*delta after being enslaved or made
2905 * active. This avoids bouncing, as the last receive
2906 * times need a full ARP monitor cycle to be updated.
2907 */
2908 if (!time_after_eq(jiffies, slave->jiffies +
2909 2 * delta_in_ticks))
2910 continue;
2911
2912 /*
2913 * Backup slave is down if:
2914 * - No current_arp_slave AND
2915 * - more than 3*delta since last receive AND
2916 * - the bond has an IP address
2917 *
2918 * Note: a non-null current_arp_slave indicates
2919 * the curr_active_slave went down and we are
2920 * searching for a new one; under this condition
2921 * we only take the curr_active_slave down - this
2922 * gives each slave a chance to tx/rx traffic
2923 * before being taken out
2924 */
2925 if (slave->state == BOND_STATE_BACKUP &&
2926 !bond->current_arp_slave &&
2927 time_after(jiffies, slave_last_rx(bond, slave) +
2928 3 * delta_in_ticks)) {
2929 slave->new_link = BOND_LINK_DOWN;
2930 commit++;
2931 }
2932
2933 /*
2934 * Active slave is down if:
2935 * - more than 2*delta since transmitting OR
2936 * - (more than 2*delta since receive AND
2937 * the bond has an IP address)
2938 */
2939 if ((slave->state == BOND_STATE_ACTIVE) &&
2940 (time_after_eq(jiffies, slave->dev->trans_start +
2941 2 * delta_in_ticks) ||
2942 (time_after_eq(jiffies, slave_last_rx(bond, slave)
2943 + 2 * delta_in_ticks)))) {
2944 slave->new_link = BOND_LINK_DOWN;
2945 commit++;
2946 }
2947 }
2948
2949 read_lock(&bond->curr_slave_lock);
2950
2951 /*
2952 * Trigger a commit if the primary option setting has changed.
2953 */
2954 if (bond->primary_slave &&
2955 (bond->primary_slave != bond->curr_active_slave) &&
2956 (bond->primary_slave->link == BOND_LINK_UP))
2957 commit++;
2958
2959 read_unlock(&bond->curr_slave_lock);
2960
2961 return commit;
2962 }
2963
2964 /*
2965 * Called to commit link state changes noted by inspection step of
2966 * active-backup mode ARP monitor.
2967 *
2968 * Called with RTNL and bond->lock for read.
2969 */
bond_ab_arp_commit(struct bonding * bond,int delta_in_ticks)2970 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks)
2971 {
2972 struct slave *slave;
2973 int i;
2974
2975 bond_for_each_slave(bond, slave, i) {
2976 switch (slave->new_link) {
2977 case BOND_LINK_NOCHANGE:
2978 continue;
2979
2980 case BOND_LINK_UP:
2981 write_lock_bh(&bond->curr_slave_lock);
2982
2983 if (!bond->curr_active_slave &&
2984 time_before_eq(jiffies, slave->dev->trans_start +
2985 delta_in_ticks)) {
2986 slave->link = BOND_LINK_UP;
2987 bond_change_active_slave(bond, slave);
2988 bond->current_arp_slave = NULL;
2989
2990 printk(KERN_INFO DRV_NAME
2991 ": %s: %s is up and now the "
2992 "active interface\n",
2993 bond->dev->name, slave->dev->name);
2994
2995 } else if (bond->curr_active_slave != slave) {
2996 /* this slave has just come up but we
2997 * already have a current slave; this can
2998 * also happen if bond_enslave adds a new
2999 * slave that is up while we are searching
3000 * for a new slave
3001 */
3002 slave->link = BOND_LINK_UP;
3003 bond_set_slave_inactive_flags(slave);
3004 bond->current_arp_slave = NULL;
3005
3006 printk(KERN_INFO DRV_NAME
3007 ": %s: backup interface %s is now up\n",
3008 bond->dev->name, slave->dev->name);
3009 }
3010
3011 write_unlock_bh(&bond->curr_slave_lock);
3012
3013 break;
3014
3015 case BOND_LINK_DOWN:
3016 if (slave->link_failure_count < UINT_MAX)
3017 slave->link_failure_count++;
3018
3019 slave->link = BOND_LINK_DOWN;
3020
3021 if (slave == bond->curr_active_slave) {
3022 printk(KERN_INFO DRV_NAME
3023 ": %s: link status down for active "
3024 "interface %s, disabling it\n",
3025 bond->dev->name, slave->dev->name);
3026
3027 bond_set_slave_inactive_flags(slave);
3028
3029 write_lock_bh(&bond->curr_slave_lock);
3030
3031 bond_select_active_slave(bond);
3032 if (bond->curr_active_slave)
3033 bond->curr_active_slave->jiffies =
3034 jiffies;
3035
3036 write_unlock_bh(&bond->curr_slave_lock);
3037
3038 bond->current_arp_slave = NULL;
3039
3040 } else if (slave->state == BOND_STATE_BACKUP) {
3041 printk(KERN_INFO DRV_NAME
3042 ": %s: backup interface %s is now down\n",
3043 bond->dev->name, slave->dev->name);
3044
3045 bond_set_slave_inactive_flags(slave);
3046 }
3047 break;
3048
3049 default:
3050 printk(KERN_ERR DRV_NAME
3051 ": %s: impossible: new_link %d on slave %s\n",
3052 bond->dev->name, slave->new_link,
3053 slave->dev->name);
3054 }
3055 }
3056
3057 /*
3058 * No race with changes to primary via sysfs, as we hold rtnl.
3059 */
3060 if (bond->primary_slave &&
3061 (bond->primary_slave != bond->curr_active_slave) &&
3062 (bond->primary_slave->link == BOND_LINK_UP)) {
3063 write_lock_bh(&bond->curr_slave_lock);
3064 bond_change_active_slave(bond, bond->primary_slave);
3065 write_unlock_bh(&bond->curr_slave_lock);
3066 }
3067
3068 bond_set_carrier(bond);
3069 }
3070
3071 /*
3072 * Send ARP probes for active-backup mode ARP monitor.
3073 *
3074 * Called with bond->lock held for read.
3075 */
bond_ab_arp_probe(struct bonding * bond)3076 static void bond_ab_arp_probe(struct bonding *bond)
3077 {
3078 struct slave *slave;
3079 int i;
3080
3081 read_lock(&bond->curr_slave_lock);
3082
3083 if (bond->current_arp_slave && bond->curr_active_slave)
3084 printk("PROBE: c_arp %s && cas %s BAD\n",
3085 bond->current_arp_slave->dev->name,
3086 bond->curr_active_slave->dev->name);
3087
3088 if (bond->curr_active_slave) {
3089 bond_arp_send_all(bond, bond->curr_active_slave);
3090 read_unlock(&bond->curr_slave_lock);
3091 return;
3092 }
3093
3094 read_unlock(&bond->curr_slave_lock);
3095
3096 /* if we don't have a curr_active_slave, search for the next available
3097 * backup slave from the current_arp_slave and make it the candidate
3098 * for becoming the curr_active_slave
3099 */
3100
3101 if (!bond->current_arp_slave) {
3102 bond->current_arp_slave = bond->first_slave;
3103 if (!bond->current_arp_slave)
3104 return;
3105 }
3106
3107 bond_set_slave_inactive_flags(bond->current_arp_slave);
3108
3109 /* search for next candidate */
3110 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3111 if (IS_UP(slave->dev)) {
3112 slave->link = BOND_LINK_BACK;
3113 bond_set_slave_active_flags(slave);
3114 bond_arp_send_all(bond, slave);
3115 slave->jiffies = jiffies;
3116 bond->current_arp_slave = slave;
3117 break;
3118 }
3119
3120 /* if the link state is up at this point, we
3121 * mark it down - this can happen if we have
3122 * simultaneous link failures and
3123 * reselect_active_interface doesn't make this
3124 * one the current slave so it is still marked
3125 * up when it is actually down
3126 */
3127 if (slave->link == BOND_LINK_UP) {
3128 slave->link = BOND_LINK_DOWN;
3129 if (slave->link_failure_count < UINT_MAX)
3130 slave->link_failure_count++;
3131
3132 bond_set_slave_inactive_flags(slave);
3133
3134 printk(KERN_INFO DRV_NAME
3135 ": %s: backup interface %s is now down.\n",
3136 bond->dev->name, slave->dev->name);
3137 }
3138 }
3139 }
3140
bond_activebackup_arp_mon(struct work_struct * work)3141 void bond_activebackup_arp_mon(struct work_struct *work)
3142 {
3143 struct bonding *bond = container_of(work, struct bonding,
3144 arp_work.work);
3145 int delta_in_ticks;
3146
3147 read_lock(&bond->lock);
3148
3149 if (bond->kill_timers)
3150 goto out;
3151
3152 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
3153
3154 if (bond->slave_cnt == 0)
3155 goto re_arm;
3156
3157 if (bond->send_grat_arp) {
3158 read_lock(&bond->curr_slave_lock);
3159 bond_send_gratuitous_arp(bond);
3160 read_unlock(&bond->curr_slave_lock);
3161 }
3162
3163 if (bond->send_unsol_na) {
3164 read_lock(&bond->curr_slave_lock);
3165 bond_send_unsolicited_na(bond);
3166 read_unlock(&bond->curr_slave_lock);
3167 }
3168
3169 if (bond_ab_arp_inspect(bond, delta_in_ticks)) {
3170 read_unlock(&bond->lock);
3171 rtnl_lock();
3172 read_lock(&bond->lock);
3173
3174 bond_ab_arp_commit(bond, delta_in_ticks);
3175
3176 read_unlock(&bond->lock);
3177 rtnl_unlock();
3178 read_lock(&bond->lock);
3179 }
3180
3181 bond_ab_arp_probe(bond);
3182
3183 re_arm:
3184 if (bond->params.arp_interval) {
3185 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3186 }
3187 out:
3188 read_unlock(&bond->lock);
3189 }
3190
3191 /*------------------------------ proc/seq_file-------------------------------*/
3192
3193 #ifdef CONFIG_PROC_FS
3194
bond_info_seq_start(struct seq_file * seq,loff_t * pos)3195 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3196 {
3197 struct bonding *bond = seq->private;
3198 loff_t off = 0;
3199 struct slave *slave;
3200 int i;
3201
3202 /* make sure the bond won't be taken away */
3203 read_lock(&dev_base_lock);
3204 read_lock(&bond->lock);
3205
3206 if (*pos == 0) {
3207 return SEQ_START_TOKEN;
3208 }
3209
3210 bond_for_each_slave(bond, slave, i) {
3211 if (++off == *pos) {
3212 return slave;
3213 }
3214 }
3215
3216 return NULL;
3217 }
3218
bond_info_seq_next(struct seq_file * seq,void * v,loff_t * pos)3219 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3220 {
3221 struct bonding *bond = seq->private;
3222 struct slave *slave = v;
3223
3224 ++*pos;
3225 if (v == SEQ_START_TOKEN) {
3226 return bond->first_slave;
3227 }
3228
3229 slave = slave->next;
3230
3231 return (slave == bond->first_slave) ? NULL : slave;
3232 }
3233
bond_info_seq_stop(struct seq_file * seq,void * v)3234 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3235 {
3236 struct bonding *bond = seq->private;
3237
3238 read_unlock(&bond->lock);
3239 read_unlock(&dev_base_lock);
3240 }
3241
bond_info_show_master(struct seq_file * seq)3242 static void bond_info_show_master(struct seq_file *seq)
3243 {
3244 struct bonding *bond = seq->private;
3245 struct slave *curr;
3246 int i;
3247
3248 read_lock(&bond->curr_slave_lock);
3249 curr = bond->curr_active_slave;
3250 read_unlock(&bond->curr_slave_lock);
3251
3252 seq_printf(seq, "Bonding Mode: %s",
3253 bond_mode_name(bond->params.mode));
3254
3255 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3256 bond->params.fail_over_mac)
3257 seq_printf(seq, " (fail_over_mac %s)",
3258 fail_over_mac_tbl[bond->params.fail_over_mac].modename);
3259
3260 seq_printf(seq, "\n");
3261
3262 if (bond->params.mode == BOND_MODE_XOR ||
3263 bond->params.mode == BOND_MODE_8023AD) {
3264 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3265 xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3266 bond->params.xmit_policy);
3267 }
3268
3269 if (USES_PRIMARY(bond->params.mode)) {
3270 seq_printf(seq, "Primary Slave: %s\n",
3271 (bond->primary_slave) ?
3272 bond->primary_slave->dev->name : "None");
3273
3274 seq_printf(seq, "Currently Active Slave: %s\n",
3275 (curr) ? curr->dev->name : "None");
3276 }
3277
3278 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3279 "up" : "down");
3280 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3281 seq_printf(seq, "Up Delay (ms): %d\n",
3282 bond->params.updelay * bond->params.miimon);
3283 seq_printf(seq, "Down Delay (ms): %d\n",
3284 bond->params.downdelay * bond->params.miimon);
3285
3286
3287 /* ARP information */
3288 if(bond->params.arp_interval > 0) {
3289 int printed=0;
3290 seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3291 bond->params.arp_interval);
3292
3293 seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3294
3295 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
3296 if (!bond->params.arp_targets[i])
3297 continue;
3298 if (printed)
3299 seq_printf(seq, ",");
3300 seq_printf(seq, " %pI4", &bond->params.arp_targets[i]);
3301 printed = 1;
3302 }
3303 seq_printf(seq, "\n");
3304 }
3305
3306 if (bond->params.mode == BOND_MODE_8023AD) {
3307 struct ad_info ad_info;
3308
3309 seq_puts(seq, "\n802.3ad info\n");
3310 seq_printf(seq, "LACP rate: %s\n",
3311 (bond->params.lacp_fast) ? "fast" : "slow");
3312 seq_printf(seq, "Aggregator selection policy (ad_select): %s\n",
3313 ad_select_tbl[bond->params.ad_select].modename);
3314
3315 if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3316 seq_printf(seq, "bond %s has no active aggregator\n",
3317 bond->dev->name);
3318 } else {
3319 seq_printf(seq, "Active Aggregator Info:\n");
3320
3321 seq_printf(seq, "\tAggregator ID: %d\n",
3322 ad_info.aggregator_id);
3323 seq_printf(seq, "\tNumber of ports: %d\n",
3324 ad_info.ports);
3325 seq_printf(seq, "\tActor Key: %d\n",
3326 ad_info.actor_key);
3327 seq_printf(seq, "\tPartner Key: %d\n",
3328 ad_info.partner_key);
3329 seq_printf(seq, "\tPartner Mac Address: %pM\n",
3330 ad_info.partner_system);
3331 }
3332 }
3333 }
3334
bond_info_show_slave(struct seq_file * seq,const struct slave * slave)3335 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3336 {
3337 struct bonding *bond = seq->private;
3338
3339 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3340 seq_printf(seq, "MII Status: %s\n",
3341 (slave->link == BOND_LINK_UP) ? "up" : "down");
3342 seq_printf(seq, "Link Failure Count: %u\n",
3343 slave->link_failure_count);
3344
3345 seq_printf(seq, "Permanent HW addr: %pM\n", slave->perm_hwaddr);
3346
3347 if (bond->params.mode == BOND_MODE_8023AD) {
3348 const struct aggregator *agg
3349 = SLAVE_AD_INFO(slave).port.aggregator;
3350
3351 if (agg) {
3352 seq_printf(seq, "Aggregator ID: %d\n",
3353 agg->aggregator_identifier);
3354 } else {
3355 seq_puts(seq, "Aggregator ID: N/A\n");
3356 }
3357 }
3358 }
3359
bond_info_seq_show(struct seq_file * seq,void * v)3360 static int bond_info_seq_show(struct seq_file *seq, void *v)
3361 {
3362 if (v == SEQ_START_TOKEN) {
3363 seq_printf(seq, "%s\n", version);
3364 bond_info_show_master(seq);
3365 } else {
3366 bond_info_show_slave(seq, v);
3367 }
3368
3369 return 0;
3370 }
3371
3372 static struct seq_operations bond_info_seq_ops = {
3373 .start = bond_info_seq_start,
3374 .next = bond_info_seq_next,
3375 .stop = bond_info_seq_stop,
3376 .show = bond_info_seq_show,
3377 };
3378
bond_info_open(struct inode * inode,struct file * file)3379 static int bond_info_open(struct inode *inode, struct file *file)
3380 {
3381 struct seq_file *seq;
3382 struct proc_dir_entry *proc;
3383 int res;
3384
3385 res = seq_open(file, &bond_info_seq_ops);
3386 if (!res) {
3387 /* recover the pointer buried in proc_dir_entry data */
3388 seq = file->private_data;
3389 proc = PDE(inode);
3390 seq->private = proc->data;
3391 }
3392
3393 return res;
3394 }
3395
3396 static const struct file_operations bond_info_fops = {
3397 .owner = THIS_MODULE,
3398 .open = bond_info_open,
3399 .read = seq_read,
3400 .llseek = seq_lseek,
3401 .release = seq_release,
3402 };
3403
bond_create_proc_entry(struct bonding * bond)3404 static int bond_create_proc_entry(struct bonding *bond)
3405 {
3406 struct net_device *bond_dev = bond->dev;
3407
3408 if (bond_proc_dir) {
3409 bond->proc_entry = proc_create_data(bond_dev->name,
3410 S_IRUGO, bond_proc_dir,
3411 &bond_info_fops, bond);
3412 if (bond->proc_entry == NULL) {
3413 printk(KERN_WARNING DRV_NAME
3414 ": Warning: Cannot create /proc/net/%s/%s\n",
3415 DRV_NAME, bond_dev->name);
3416 } else {
3417 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3418 }
3419 }
3420
3421 return 0;
3422 }
3423
bond_remove_proc_entry(struct bonding * bond)3424 static void bond_remove_proc_entry(struct bonding *bond)
3425 {
3426 if (bond_proc_dir && bond->proc_entry) {
3427 remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3428 memset(bond->proc_file_name, 0, IFNAMSIZ);
3429 bond->proc_entry = NULL;
3430 }
3431 }
3432
3433 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3434 * Caller must hold rtnl_lock.
3435 */
bond_create_proc_dir(void)3436 static void bond_create_proc_dir(void)
3437 {
3438 int len = strlen(DRV_NAME);
3439
3440 for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3441 bond_proc_dir = bond_proc_dir->next) {
3442 if ((bond_proc_dir->namelen == len) &&
3443 !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3444 break;
3445 }
3446 }
3447
3448 if (!bond_proc_dir) {
3449 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3450 if (bond_proc_dir) {
3451 bond_proc_dir->owner = THIS_MODULE;
3452 } else {
3453 printk(KERN_WARNING DRV_NAME
3454 ": Warning: cannot create /proc/net/%s\n",
3455 DRV_NAME);
3456 }
3457 }
3458 }
3459
3460 /* Destroy the bonding directory under /proc/net, if empty.
3461 * Caller must hold rtnl_lock.
3462 */
bond_destroy_proc_dir(void)3463 static void bond_destroy_proc_dir(void)
3464 {
3465 struct proc_dir_entry *de;
3466
3467 if (!bond_proc_dir) {
3468 return;
3469 }
3470
3471 /* verify that the /proc dir is empty */
3472 for (de = bond_proc_dir->subdir; de; de = de->next) {
3473 /* ignore . and .. */
3474 if (*(de->name) != '.') {
3475 break;
3476 }
3477 }
3478
3479 if (de) {
3480 if (bond_proc_dir->owner == THIS_MODULE) {
3481 bond_proc_dir->owner = NULL;
3482 }
3483 } else {
3484 remove_proc_entry(DRV_NAME, init_net.proc_net);
3485 bond_proc_dir = NULL;
3486 }
3487 }
3488 #endif /* CONFIG_PROC_FS */
3489
3490 /*-------------------------- netdev event handling --------------------------*/
3491
3492 /*
3493 * Change device name
3494 */
bond_event_changename(struct bonding * bond)3495 static int bond_event_changename(struct bonding *bond)
3496 {
3497 #ifdef CONFIG_PROC_FS
3498 bond_remove_proc_entry(bond);
3499 bond_create_proc_entry(bond);
3500 #endif
3501 down_write(&(bonding_rwsem));
3502 bond_destroy_sysfs_entry(bond);
3503 bond_create_sysfs_entry(bond);
3504 up_write(&(bonding_rwsem));
3505 return NOTIFY_DONE;
3506 }
3507
bond_master_netdev_event(unsigned long event,struct net_device * bond_dev)3508 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3509 {
3510 struct bonding *event_bond = netdev_priv(bond_dev);
3511
3512 switch (event) {
3513 case NETDEV_CHANGENAME:
3514 return bond_event_changename(event_bond);
3515 case NETDEV_UNREGISTER:
3516 bond_release_all(event_bond->dev);
3517 break;
3518 default:
3519 break;
3520 }
3521
3522 return NOTIFY_DONE;
3523 }
3524
bond_slave_netdev_event(unsigned long event,struct net_device * slave_dev)3525 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3526 {
3527 struct net_device *bond_dev = slave_dev->master;
3528 struct bonding *bond = netdev_priv(bond_dev);
3529
3530 switch (event) {
3531 case NETDEV_UNREGISTER:
3532 if (bond_dev) {
3533 if (bond->setup_by_slave)
3534 bond_release_and_destroy(bond_dev, slave_dev);
3535 else
3536 bond_release(bond_dev, slave_dev);
3537 }
3538 break;
3539 case NETDEV_CHANGE:
3540 if (bond->params.mode == BOND_MODE_8023AD || bond_is_lb(bond)) {
3541 struct slave *slave;
3542
3543 slave = bond_get_slave_by_dev(bond, slave_dev);
3544 if (slave) {
3545 u16 old_speed = slave->speed;
3546 u16 old_duplex = slave->duplex;
3547
3548 bond_update_speed_duplex(slave);
3549
3550 if (bond_is_lb(bond))
3551 break;
3552
3553 if (old_speed != slave->speed)
3554 bond_3ad_adapter_speed_changed(slave);
3555 if (old_duplex != slave->duplex)
3556 bond_3ad_adapter_duplex_changed(slave);
3557 }
3558 }
3559
3560 break;
3561 case NETDEV_DOWN:
3562 /*
3563 * ... Or is it this?
3564 */
3565 break;
3566 case NETDEV_CHANGEMTU:
3567 /*
3568 * TODO: Should slaves be allowed to
3569 * independently alter their MTU? For
3570 * an active-backup bond, slaves need
3571 * not be the same type of device, so
3572 * MTUs may vary. For other modes,
3573 * slaves arguably should have the
3574 * same MTUs. To do this, we'd need to
3575 * take over the slave's change_mtu
3576 * function for the duration of their
3577 * servitude.
3578 */
3579 break;
3580 case NETDEV_CHANGENAME:
3581 /*
3582 * TODO: handle changing the primary's name
3583 */
3584 break;
3585 case NETDEV_FEAT_CHANGE:
3586 bond_compute_features(bond);
3587 break;
3588 default:
3589 break;
3590 }
3591
3592 return NOTIFY_DONE;
3593 }
3594
3595 /*
3596 * bond_netdev_event: handle netdev notifier chain events.
3597 *
3598 * This function receives events for the netdev chain. The caller (an
3599 * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3600 * locks for us to safely manipulate the slave devices (RTNL lock,
3601 * dev_probe_lock).
3602 */
bond_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)3603 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3604 {
3605 struct net_device *event_dev = (struct net_device *)ptr;
3606
3607 if (dev_net(event_dev) != &init_net)
3608 return NOTIFY_DONE;
3609
3610 pr_debug("event_dev: %s, event: %lx\n",
3611 (event_dev ? event_dev->name : "None"),
3612 event);
3613
3614 if (!(event_dev->priv_flags & IFF_BONDING))
3615 return NOTIFY_DONE;
3616
3617 if (event_dev->flags & IFF_MASTER) {
3618 pr_debug("IFF_MASTER\n");
3619 return bond_master_netdev_event(event, event_dev);
3620 }
3621
3622 if (event_dev->flags & IFF_SLAVE) {
3623 pr_debug("IFF_SLAVE\n");
3624 return bond_slave_netdev_event(event, event_dev);
3625 }
3626
3627 return NOTIFY_DONE;
3628 }
3629
3630 /*
3631 * bond_inetaddr_event: handle inetaddr notifier chain events.
3632 *
3633 * We keep track of device IPs primarily to use as source addresses in
3634 * ARP monitor probes (rather than spewing out broadcasts all the time).
3635 *
3636 * We track one IP for the main device (if it has one), plus one per VLAN.
3637 */
bond_inetaddr_event(struct notifier_block * this,unsigned long event,void * ptr)3638 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3639 {
3640 struct in_ifaddr *ifa = ptr;
3641 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3642 struct bonding *bond;
3643 struct vlan_entry *vlan;
3644
3645 if (dev_net(ifa->ifa_dev->dev) != &init_net)
3646 return NOTIFY_DONE;
3647
3648 list_for_each_entry(bond, &bond_dev_list, bond_list) {
3649 if (bond->dev == event_dev) {
3650 switch (event) {
3651 case NETDEV_UP:
3652 bond->master_ip = ifa->ifa_local;
3653 return NOTIFY_OK;
3654 case NETDEV_DOWN:
3655 bond->master_ip = bond_glean_dev_ip(bond->dev);
3656 return NOTIFY_OK;
3657 default:
3658 return NOTIFY_DONE;
3659 }
3660 }
3661
3662 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
3663 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3664 if (vlan_dev == event_dev) {
3665 switch (event) {
3666 case NETDEV_UP:
3667 vlan->vlan_ip = ifa->ifa_local;
3668 return NOTIFY_OK;
3669 case NETDEV_DOWN:
3670 vlan->vlan_ip =
3671 bond_glean_dev_ip(vlan_dev);
3672 return NOTIFY_OK;
3673 default:
3674 return NOTIFY_DONE;
3675 }
3676 }
3677 }
3678 }
3679 return NOTIFY_DONE;
3680 }
3681
3682 static struct notifier_block bond_netdev_notifier = {
3683 .notifier_call = bond_netdev_event,
3684 };
3685
3686 static struct notifier_block bond_inetaddr_notifier = {
3687 .notifier_call = bond_inetaddr_event,
3688 };
3689
3690 /*-------------------------- Packet type handling ---------------------------*/
3691
3692 /* register to receive lacpdus on a bond */
bond_register_lacpdu(struct bonding * bond)3693 static void bond_register_lacpdu(struct bonding *bond)
3694 {
3695 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3696
3697 /* initialize packet type */
3698 pk_type->type = PKT_TYPE_LACPDU;
3699 pk_type->dev = bond->dev;
3700 pk_type->func = bond_3ad_lacpdu_recv;
3701
3702 dev_add_pack(pk_type);
3703 }
3704
3705 /* unregister to receive lacpdus on a bond */
bond_unregister_lacpdu(struct bonding * bond)3706 static void bond_unregister_lacpdu(struct bonding *bond)
3707 {
3708 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3709 }
3710
bond_register_arp(struct bonding * bond)3711 void bond_register_arp(struct bonding *bond)
3712 {
3713 struct packet_type *pt = &bond->arp_mon_pt;
3714
3715 if (pt->type)
3716 return;
3717
3718 pt->type = htons(ETH_P_ARP);
3719 pt->dev = bond->dev;
3720 pt->func = bond_arp_rcv;
3721 dev_add_pack(pt);
3722 }
3723
bond_unregister_arp(struct bonding * bond)3724 void bond_unregister_arp(struct bonding *bond)
3725 {
3726 struct packet_type *pt = &bond->arp_mon_pt;
3727
3728 dev_remove_pack(pt);
3729 pt->type = 0;
3730 }
3731
3732 /*---------------------------- Hashing Policies -----------------------------*/
3733
3734 /*
3735 * Hash for the output device based upon layer 2 and layer 3 data. If
3736 * the packet is not IP mimic bond_xmit_hash_policy_l2()
3737 */
bond_xmit_hash_policy_l23(struct sk_buff * skb,struct net_device * bond_dev,int count)3738 static int bond_xmit_hash_policy_l23(struct sk_buff *skb,
3739 struct net_device *bond_dev, int count)
3740 {
3741 struct ethhdr *data = (struct ethhdr *)skb->data;
3742 struct iphdr *iph = ip_hdr(skb);
3743
3744 if (skb->protocol == htons(ETH_P_IP)) {
3745 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3746 (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count;
3747 }
3748
3749 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3750 }
3751
3752 /*
3753 * Hash for the output device based upon layer 3 and layer 4 data. If
3754 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
3755 * altogether not IP, mimic bond_xmit_hash_policy_l2()
3756 */
bond_xmit_hash_policy_l34(struct sk_buff * skb,struct net_device * bond_dev,int count)3757 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3758 struct net_device *bond_dev, int count)
3759 {
3760 struct ethhdr *data = (struct ethhdr *)skb->data;
3761 struct iphdr *iph = ip_hdr(skb);
3762 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3763 int layer4_xor = 0;
3764
3765 if (skb->protocol == htons(ETH_P_IP)) {
3766 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) &&
3767 (iph->protocol == IPPROTO_TCP ||
3768 iph->protocol == IPPROTO_UDP)) {
3769 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3770 }
3771 return (layer4_xor ^
3772 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3773
3774 }
3775
3776 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3777 }
3778
3779 /*
3780 * Hash for the output device based upon layer 2 data
3781 */
bond_xmit_hash_policy_l2(struct sk_buff * skb,struct net_device * bond_dev,int count)3782 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3783 struct net_device *bond_dev, int count)
3784 {
3785 struct ethhdr *data = (struct ethhdr *)skb->data;
3786
3787 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3788 }
3789
3790 /*-------------------------- Device entry points ----------------------------*/
3791
bond_open(struct net_device * bond_dev)3792 static int bond_open(struct net_device *bond_dev)
3793 {
3794 struct bonding *bond = netdev_priv(bond_dev);
3795
3796 bond->kill_timers = 0;
3797
3798 if (bond_is_lb(bond)) {
3799 /* bond_alb_initialize must be called before the timer
3800 * is started.
3801 */
3802 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3803 /* something went wrong - fail the open operation */
3804 return -1;
3805 }
3806
3807 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3808 queue_delayed_work(bond->wq, &bond->alb_work, 0);
3809 }
3810
3811 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3812 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3813 queue_delayed_work(bond->wq, &bond->mii_work, 0);
3814 }
3815
3816 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3817 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3818 INIT_DELAYED_WORK(&bond->arp_work,
3819 bond_activebackup_arp_mon);
3820 else
3821 INIT_DELAYED_WORK(&bond->arp_work,
3822 bond_loadbalance_arp_mon);
3823
3824 queue_delayed_work(bond->wq, &bond->arp_work, 0);
3825 if (bond->params.arp_validate)
3826 bond_register_arp(bond);
3827 }
3828
3829 if (bond->params.mode == BOND_MODE_8023AD) {
3830 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3831 queue_delayed_work(bond->wq, &bond->ad_work, 0);
3832 /* register to receive LACPDUs */
3833 bond_register_lacpdu(bond);
3834 bond_3ad_initiate_agg_selection(bond, 1);
3835 }
3836
3837 return 0;
3838 }
3839
bond_close(struct net_device * bond_dev)3840 static int bond_close(struct net_device *bond_dev)
3841 {
3842 struct bonding *bond = netdev_priv(bond_dev);
3843
3844 if (bond->params.mode == BOND_MODE_8023AD) {
3845 /* Unregister the receive of LACPDUs */
3846 bond_unregister_lacpdu(bond);
3847 }
3848
3849 if (bond->params.arp_validate)
3850 bond_unregister_arp(bond);
3851
3852 write_lock_bh(&bond->lock);
3853
3854 bond->send_grat_arp = 0;
3855 bond->send_unsol_na = 0;
3856
3857 /* signal timers not to re-arm */
3858 bond->kill_timers = 1;
3859
3860 write_unlock_bh(&bond->lock);
3861
3862 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3863 cancel_delayed_work(&bond->mii_work);
3864 }
3865
3866 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3867 cancel_delayed_work(&bond->arp_work);
3868 }
3869
3870 switch (bond->params.mode) {
3871 case BOND_MODE_8023AD:
3872 cancel_delayed_work(&bond->ad_work);
3873 break;
3874 case BOND_MODE_TLB:
3875 case BOND_MODE_ALB:
3876 cancel_delayed_work(&bond->alb_work);
3877 break;
3878 default:
3879 break;
3880 }
3881
3882
3883 if (bond_is_lb(bond)) {
3884 /* Must be called only after all
3885 * slaves have been released
3886 */
3887 bond_alb_deinitialize(bond);
3888 }
3889
3890 return 0;
3891 }
3892
bond_get_stats(struct net_device * bond_dev)3893 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3894 {
3895 struct bonding *bond = netdev_priv(bond_dev);
3896 struct net_device_stats *stats = &bond->stats;
3897 struct net_device_stats local_stats;
3898 struct slave *slave;
3899 int i;
3900
3901 memset(&local_stats, 0, sizeof(struct net_device_stats));
3902
3903 read_lock_bh(&bond->lock);
3904
3905 bond_for_each_slave(bond, slave, i) {
3906 const struct net_device_stats *sstats = dev_get_stats(slave->dev);
3907
3908 local_stats.rx_packets += sstats->rx_packets;
3909 local_stats.rx_bytes += sstats->rx_bytes;
3910 local_stats.rx_errors += sstats->rx_errors;
3911 local_stats.rx_dropped += sstats->rx_dropped;
3912
3913 local_stats.tx_packets += sstats->tx_packets;
3914 local_stats.tx_bytes += sstats->tx_bytes;
3915 local_stats.tx_errors += sstats->tx_errors;
3916 local_stats.tx_dropped += sstats->tx_dropped;
3917
3918 local_stats.multicast += sstats->multicast;
3919 local_stats.collisions += sstats->collisions;
3920
3921 local_stats.rx_length_errors += sstats->rx_length_errors;
3922 local_stats.rx_over_errors += sstats->rx_over_errors;
3923 local_stats.rx_crc_errors += sstats->rx_crc_errors;
3924 local_stats.rx_frame_errors += sstats->rx_frame_errors;
3925 local_stats.rx_fifo_errors += sstats->rx_fifo_errors;
3926 local_stats.rx_missed_errors += sstats->rx_missed_errors;
3927
3928 local_stats.tx_aborted_errors += sstats->tx_aborted_errors;
3929 local_stats.tx_carrier_errors += sstats->tx_carrier_errors;
3930 local_stats.tx_fifo_errors += sstats->tx_fifo_errors;
3931 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3932 local_stats.tx_window_errors += sstats->tx_window_errors;
3933 }
3934
3935 memcpy(stats, &local_stats, sizeof(struct net_device_stats));
3936
3937 read_unlock_bh(&bond->lock);
3938
3939 return stats;
3940 }
3941
bond_do_ioctl(struct net_device * bond_dev,struct ifreq * ifr,int cmd)3942 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3943 {
3944 struct net_device *slave_dev = NULL;
3945 struct ifbond k_binfo;
3946 struct ifbond __user *u_binfo = NULL;
3947 struct ifslave k_sinfo;
3948 struct ifslave __user *u_sinfo = NULL;
3949 struct mii_ioctl_data *mii = NULL;
3950 int res = 0;
3951
3952 pr_debug("bond_ioctl: master=%s, cmd=%d\n",
3953 bond_dev->name, cmd);
3954
3955 switch (cmd) {
3956 case SIOCGMIIPHY:
3957 mii = if_mii(ifr);
3958 if (!mii) {
3959 return -EINVAL;
3960 }
3961 mii->phy_id = 0;
3962 /* Fall Through */
3963 case SIOCGMIIREG:
3964 /*
3965 * We do this again just in case we were called by SIOCGMIIREG
3966 * instead of SIOCGMIIPHY.
3967 */
3968 mii = if_mii(ifr);
3969 if (!mii) {
3970 return -EINVAL;
3971 }
3972
3973 if (mii->reg_num == 1) {
3974 struct bonding *bond = netdev_priv(bond_dev);
3975 mii->val_out = 0;
3976 read_lock(&bond->lock);
3977 read_lock(&bond->curr_slave_lock);
3978 if (netif_carrier_ok(bond->dev)) {
3979 mii->val_out = BMSR_LSTATUS;
3980 }
3981 read_unlock(&bond->curr_slave_lock);
3982 read_unlock(&bond->lock);
3983 }
3984
3985 return 0;
3986 case BOND_INFO_QUERY_OLD:
3987 case SIOCBONDINFOQUERY:
3988 u_binfo = (struct ifbond __user *)ifr->ifr_data;
3989
3990 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3991 return -EFAULT;
3992 }
3993
3994 res = bond_info_query(bond_dev, &k_binfo);
3995 if (res == 0) {
3996 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3997 return -EFAULT;
3998 }
3999 }
4000
4001 return res;
4002 case BOND_SLAVE_INFO_QUERY_OLD:
4003 case SIOCBONDSLAVEINFOQUERY:
4004 u_sinfo = (struct ifslave __user *)ifr->ifr_data;
4005
4006 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
4007 return -EFAULT;
4008 }
4009
4010 res = bond_slave_info_query(bond_dev, &k_sinfo);
4011 if (res == 0) {
4012 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
4013 return -EFAULT;
4014 }
4015 }
4016
4017 return res;
4018 default:
4019 /* Go on */
4020 break;
4021 }
4022
4023 if (!capable(CAP_NET_ADMIN)) {
4024 return -EPERM;
4025 }
4026
4027 down_write(&(bonding_rwsem));
4028 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
4029
4030 pr_debug("slave_dev=%p: \n", slave_dev);
4031
4032 if (!slave_dev) {
4033 res = -ENODEV;
4034 } else {
4035 pr_debug("slave_dev->name=%s: \n", slave_dev->name);
4036 switch (cmd) {
4037 case BOND_ENSLAVE_OLD:
4038 case SIOCBONDENSLAVE:
4039 res = bond_enslave(bond_dev, slave_dev);
4040 break;
4041 case BOND_RELEASE_OLD:
4042 case SIOCBONDRELEASE:
4043 res = bond_release(bond_dev, slave_dev);
4044 break;
4045 case BOND_SETHWADDR_OLD:
4046 case SIOCBONDSETHWADDR:
4047 res = bond_sethwaddr(bond_dev, slave_dev);
4048 break;
4049 case BOND_CHANGE_ACTIVE_OLD:
4050 case SIOCBONDCHANGEACTIVE:
4051 res = bond_ioctl_change_active(bond_dev, slave_dev);
4052 break;
4053 default:
4054 res = -EOPNOTSUPP;
4055 }
4056
4057 dev_put(slave_dev);
4058 }
4059
4060 up_write(&(bonding_rwsem));
4061 return res;
4062 }
4063
bond_set_multicast_list(struct net_device * bond_dev)4064 static void bond_set_multicast_list(struct net_device *bond_dev)
4065 {
4066 struct bonding *bond = netdev_priv(bond_dev);
4067 struct dev_mc_list *dmi;
4068
4069 /*
4070 * Do promisc before checking multicast_mode
4071 */
4072 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
4073 /*
4074 * FIXME: Need to handle the error when one of the multi-slaves
4075 * encounters error.
4076 */
4077 bond_set_promiscuity(bond, 1);
4078 }
4079
4080 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
4081 bond_set_promiscuity(bond, -1);
4082 }
4083
4084 /* set allmulti flag to slaves */
4085 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
4086 /*
4087 * FIXME: Need to handle the error when one of the multi-slaves
4088 * encounters error.
4089 */
4090 bond_set_allmulti(bond, 1);
4091 }
4092
4093 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
4094 bond_set_allmulti(bond, -1);
4095 }
4096
4097 read_lock(&bond->lock);
4098
4099 bond->flags = bond_dev->flags;
4100
4101 /* looking for addresses to add to slaves' mc list */
4102 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
4103 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
4104 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4105 }
4106 }
4107
4108 /* looking for addresses to delete from slaves' list */
4109 for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
4110 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
4111 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
4112 }
4113 }
4114
4115 /* save master's multicast list */
4116 bond_mc_list_destroy(bond);
4117 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
4118
4119 read_unlock(&bond->lock);
4120 }
4121
bond_neigh_setup(struct net_device * dev,struct neigh_parms * parms)4122 static int bond_neigh_setup(struct net_device *dev, struct neigh_parms *parms)
4123 {
4124 struct bonding *bond = netdev_priv(dev);
4125 struct slave *slave = bond->first_slave;
4126
4127 if (slave) {
4128 const struct net_device_ops *slave_ops
4129 = slave->dev->netdev_ops;
4130 if (slave_ops->ndo_neigh_setup)
4131 return slave_ops->ndo_neigh_setup(slave->dev, parms);
4132 }
4133 return 0;
4134 }
4135
4136 /*
4137 * Change the MTU of all of a master's slaves to match the master
4138 */
bond_change_mtu(struct net_device * bond_dev,int new_mtu)4139 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
4140 {
4141 struct bonding *bond = netdev_priv(bond_dev);
4142 struct slave *slave, *stop_at;
4143 int res = 0;
4144 int i;
4145
4146 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond,
4147 (bond_dev ? bond_dev->name : "None"), new_mtu);
4148
4149 /* Can't hold bond->lock with bh disabled here since
4150 * some base drivers panic. On the other hand we can't
4151 * hold bond->lock without bh disabled because we'll
4152 * deadlock. The only solution is to rely on the fact
4153 * that we're under rtnl_lock here, and the slaves
4154 * list won't change. This doesn't solve the problem
4155 * of setting the slave's MTU while it is
4156 * transmitting, but the assumption is that the base
4157 * driver can handle that.
4158 *
4159 * TODO: figure out a way to safely iterate the slaves
4160 * list, but without holding a lock around the actual
4161 * call to the base driver.
4162 */
4163
4164 bond_for_each_slave(bond, slave, i) {
4165 pr_debug("s %p s->p %p c_m %p\n", slave,
4166 slave->prev, slave->dev->netdev_ops->ndo_change_mtu);
4167
4168 res = dev_set_mtu(slave->dev, new_mtu);
4169
4170 if (res) {
4171 /* If we failed to set the slave's mtu to the new value
4172 * we must abort the operation even in ACTIVE_BACKUP
4173 * mode, because if we allow the backup slaves to have
4174 * different mtu values than the active slave we'll
4175 * need to change their mtu when doing a failover. That
4176 * means changing their mtu from timer context, which
4177 * is probably not a good idea.
4178 */
4179 pr_debug("err %d %s\n", res, slave->dev->name);
4180 goto unwind;
4181 }
4182 }
4183
4184 bond_dev->mtu = new_mtu;
4185
4186 return 0;
4187
4188 unwind:
4189 /* unwind from head to the slave that failed */
4190 stop_at = slave;
4191 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4192 int tmp_res;
4193
4194 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4195 if (tmp_res) {
4196 pr_debug("unwind err %d dev %s\n", tmp_res,
4197 slave->dev->name);
4198 }
4199 }
4200
4201 return res;
4202 }
4203
4204 /*
4205 * Change HW address
4206 *
4207 * Note that many devices must be down to change the HW address, and
4208 * downing the master releases all slaves. We can make bonds full of
4209 * bonding devices to test this, however.
4210 */
bond_set_mac_address(struct net_device * bond_dev,void * addr)4211 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4212 {
4213 struct bonding *bond = netdev_priv(bond_dev);
4214 struct sockaddr *sa = addr, tmp_sa;
4215 struct slave *slave, *stop_at;
4216 int res = 0;
4217 int i;
4218
4219 if (bond->params.mode == BOND_MODE_ALB)
4220 return bond_alb_set_mac_address(bond_dev, addr);
4221
4222
4223 pr_debug("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
4224
4225 /*
4226 * If fail_over_mac is set to active, do nothing and return
4227 * success. Returning an error causes ifenslave to fail.
4228 */
4229 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE)
4230 return 0;
4231
4232 if (!is_valid_ether_addr(sa->sa_data)) {
4233 return -EADDRNOTAVAIL;
4234 }
4235
4236 /* Can't hold bond->lock with bh disabled here since
4237 * some base drivers panic. On the other hand we can't
4238 * hold bond->lock without bh disabled because we'll
4239 * deadlock. The only solution is to rely on the fact
4240 * that we're under rtnl_lock here, and the slaves
4241 * list won't change. This doesn't solve the problem
4242 * of setting the slave's hw address while it is
4243 * transmitting, but the assumption is that the base
4244 * driver can handle that.
4245 *
4246 * TODO: figure out a way to safely iterate the slaves
4247 * list, but without holding a lock around the actual
4248 * call to the base driver.
4249 */
4250
4251 bond_for_each_slave(bond, slave, i) {
4252 const struct net_device_ops *slave_ops = slave->dev->netdev_ops;
4253 pr_debug("slave %p %s\n", slave, slave->dev->name);
4254
4255 if (slave_ops->ndo_set_mac_address == NULL) {
4256 res = -EOPNOTSUPP;
4257 pr_debug("EOPNOTSUPP %s\n", slave->dev->name);
4258 goto unwind;
4259 }
4260
4261 res = dev_set_mac_address(slave->dev, addr);
4262 if (res) {
4263 /* TODO: consider downing the slave
4264 * and retry ?
4265 * User should expect communications
4266 * breakage anyway until ARP finish
4267 * updating, so...
4268 */
4269 pr_debug("err %d %s\n", res, slave->dev->name);
4270 goto unwind;
4271 }
4272 }
4273
4274 /* success */
4275 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4276 return 0;
4277
4278 unwind:
4279 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4280 tmp_sa.sa_family = bond_dev->type;
4281
4282 /* unwind from head to the slave that failed */
4283 stop_at = slave;
4284 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4285 int tmp_res;
4286
4287 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4288 if (tmp_res) {
4289 pr_debug("unwind err %d dev %s\n", tmp_res,
4290 slave->dev->name);
4291 }
4292 }
4293
4294 return res;
4295 }
4296
bond_xmit_roundrobin(struct sk_buff * skb,struct net_device * bond_dev)4297 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4298 {
4299 struct bonding *bond = netdev_priv(bond_dev);
4300 struct slave *slave, *start_at;
4301 int i, slave_no, res = 1;
4302
4303 read_lock(&bond->lock);
4304
4305 if (!BOND_IS_OK(bond)) {
4306 goto out;
4307 }
4308
4309 /*
4310 * Concurrent TX may collide on rr_tx_counter; we accept that
4311 * as being rare enough not to justify using an atomic op here
4312 */
4313 slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4314
4315 bond_for_each_slave(bond, slave, i) {
4316 slave_no--;
4317 if (slave_no < 0) {
4318 break;
4319 }
4320 }
4321
4322 start_at = slave;
4323 bond_for_each_slave_from(bond, slave, i, start_at) {
4324 if (IS_UP(slave->dev) &&
4325 (slave->link == BOND_LINK_UP) &&
4326 (slave->state == BOND_STATE_ACTIVE)) {
4327 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4328 break;
4329 }
4330 }
4331
4332 out:
4333 if (res) {
4334 /* no suitable interface, frame not sent */
4335 dev_kfree_skb(skb);
4336 }
4337 read_unlock(&bond->lock);
4338 return 0;
4339 }
4340
4341
4342 /*
4343 * in active-backup mode, we know that bond->curr_active_slave is always valid if
4344 * the bond has a usable interface.
4345 */
bond_xmit_activebackup(struct sk_buff * skb,struct net_device * bond_dev)4346 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4347 {
4348 struct bonding *bond = netdev_priv(bond_dev);
4349 int res = 1;
4350
4351 read_lock(&bond->lock);
4352 read_lock(&bond->curr_slave_lock);
4353
4354 if (!BOND_IS_OK(bond)) {
4355 goto out;
4356 }
4357
4358 if (!bond->curr_active_slave)
4359 goto out;
4360
4361 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4362
4363 out:
4364 if (res) {
4365 /* no suitable interface, frame not sent */
4366 dev_kfree_skb(skb);
4367 }
4368 read_unlock(&bond->curr_slave_lock);
4369 read_unlock(&bond->lock);
4370 return 0;
4371 }
4372
4373 /*
4374 * In bond_xmit_xor() , we determine the output device by using a pre-
4375 * determined xmit_hash_policy(), If the selected device is not enabled,
4376 * find the next active slave.
4377 */
bond_xmit_xor(struct sk_buff * skb,struct net_device * bond_dev)4378 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4379 {
4380 struct bonding *bond = netdev_priv(bond_dev);
4381 struct slave *slave, *start_at;
4382 int slave_no;
4383 int i;
4384 int res = 1;
4385
4386 read_lock(&bond->lock);
4387
4388 if (!BOND_IS_OK(bond)) {
4389 goto out;
4390 }
4391
4392 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4393
4394 bond_for_each_slave(bond, slave, i) {
4395 slave_no--;
4396 if (slave_no < 0) {
4397 break;
4398 }
4399 }
4400
4401 start_at = slave;
4402
4403 bond_for_each_slave_from(bond, slave, i, start_at) {
4404 if (IS_UP(slave->dev) &&
4405 (slave->link == BOND_LINK_UP) &&
4406 (slave->state == BOND_STATE_ACTIVE)) {
4407 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4408 break;
4409 }
4410 }
4411
4412 out:
4413 if (res) {
4414 /* no suitable interface, frame not sent */
4415 dev_kfree_skb(skb);
4416 }
4417 read_unlock(&bond->lock);
4418 return 0;
4419 }
4420
4421 /*
4422 * in broadcast mode, we send everything to all usable interfaces.
4423 */
bond_xmit_broadcast(struct sk_buff * skb,struct net_device * bond_dev)4424 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4425 {
4426 struct bonding *bond = netdev_priv(bond_dev);
4427 struct slave *slave, *start_at;
4428 struct net_device *tx_dev = NULL;
4429 int i;
4430 int res = 1;
4431
4432 read_lock(&bond->lock);
4433
4434 if (!BOND_IS_OK(bond)) {
4435 goto out;
4436 }
4437
4438 read_lock(&bond->curr_slave_lock);
4439 start_at = bond->curr_active_slave;
4440 read_unlock(&bond->curr_slave_lock);
4441
4442 if (!start_at) {
4443 goto out;
4444 }
4445
4446 bond_for_each_slave_from(bond, slave, i, start_at) {
4447 if (IS_UP(slave->dev) &&
4448 (slave->link == BOND_LINK_UP) &&
4449 (slave->state == BOND_STATE_ACTIVE)) {
4450 if (tx_dev) {
4451 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4452 if (!skb2) {
4453 printk(KERN_ERR DRV_NAME
4454 ": %s: Error: bond_xmit_broadcast(): "
4455 "skb_clone() failed\n",
4456 bond_dev->name);
4457 continue;
4458 }
4459
4460 res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4461 if (res) {
4462 dev_kfree_skb(skb2);
4463 continue;
4464 }
4465 }
4466 tx_dev = slave->dev;
4467 }
4468 }
4469
4470 if (tx_dev) {
4471 res = bond_dev_queue_xmit(bond, skb, tx_dev);
4472 }
4473
4474 out:
4475 if (res) {
4476 /* no suitable interface, frame not sent */
4477 dev_kfree_skb(skb);
4478 }
4479 /* frame sent to all suitable interfaces */
4480 read_unlock(&bond->lock);
4481 return 0;
4482 }
4483
4484 /*------------------------- Device initialization ---------------------------*/
4485
bond_set_xmit_hash_policy(struct bonding * bond)4486 static void bond_set_xmit_hash_policy(struct bonding *bond)
4487 {
4488 switch (bond->params.xmit_policy) {
4489 case BOND_XMIT_POLICY_LAYER23:
4490 bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4491 break;
4492 case BOND_XMIT_POLICY_LAYER34:
4493 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4494 break;
4495 case BOND_XMIT_POLICY_LAYER2:
4496 default:
4497 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4498 break;
4499 }
4500 }
4501
bond_start_xmit(struct sk_buff * skb,struct net_device * dev)4502 static int bond_start_xmit(struct sk_buff *skb, struct net_device *dev)
4503 {
4504 const struct bonding *bond = netdev_priv(dev);
4505
4506 switch (bond->params.mode) {
4507 case BOND_MODE_ROUNDROBIN:
4508 return bond_xmit_roundrobin(skb, dev);
4509 case BOND_MODE_ACTIVEBACKUP:
4510 return bond_xmit_activebackup(skb, dev);
4511 case BOND_MODE_XOR:
4512 return bond_xmit_xor(skb, dev);
4513 case BOND_MODE_BROADCAST:
4514 return bond_xmit_broadcast(skb, dev);
4515 case BOND_MODE_8023AD:
4516 return bond_3ad_xmit_xor(skb, dev);
4517 case BOND_MODE_ALB:
4518 case BOND_MODE_TLB:
4519 return bond_alb_xmit(skb, dev);
4520 default:
4521 /* Should never happen, mode already checked */
4522 printk(KERN_ERR DRV_NAME ": %s: Error: Unknown bonding mode %d\n",
4523 dev->name, bond->params.mode);
4524 WARN_ON_ONCE(1);
4525 dev_kfree_skb(skb);
4526 return NETDEV_TX_OK;
4527 }
4528 }
4529
4530
4531 /*
4532 * set bond mode specific net device operations
4533 */
bond_set_mode_ops(struct bonding * bond,int mode)4534 void bond_set_mode_ops(struct bonding *bond, int mode)
4535 {
4536 struct net_device *bond_dev = bond->dev;
4537
4538 switch (mode) {
4539 case BOND_MODE_ROUNDROBIN:
4540 break;
4541 case BOND_MODE_ACTIVEBACKUP:
4542 break;
4543 case BOND_MODE_XOR:
4544 bond_set_xmit_hash_policy(bond);
4545 break;
4546 case BOND_MODE_BROADCAST:
4547 break;
4548 case BOND_MODE_8023AD:
4549 bond_set_master_3ad_flags(bond);
4550 bond_set_xmit_hash_policy(bond);
4551 break;
4552 case BOND_MODE_ALB:
4553 bond_set_master_alb_flags(bond);
4554 /* FALLTHRU */
4555 case BOND_MODE_TLB:
4556 break;
4557 default:
4558 /* Should never happen, mode already checked */
4559 printk(KERN_ERR DRV_NAME
4560 ": %s: Error: Unknown bonding mode %d\n",
4561 bond_dev->name,
4562 mode);
4563 break;
4564 }
4565 }
4566
bond_ethtool_get_drvinfo(struct net_device * bond_dev,struct ethtool_drvinfo * drvinfo)4567 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4568 struct ethtool_drvinfo *drvinfo)
4569 {
4570 strncpy(drvinfo->driver, DRV_NAME, 32);
4571 strncpy(drvinfo->version, DRV_VERSION, 32);
4572 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4573 }
4574
4575 static const struct ethtool_ops bond_ethtool_ops = {
4576 .get_drvinfo = bond_ethtool_get_drvinfo,
4577 .get_link = ethtool_op_get_link,
4578 .get_tx_csum = ethtool_op_get_tx_csum,
4579 .get_sg = ethtool_op_get_sg,
4580 .get_tso = ethtool_op_get_tso,
4581 .get_ufo = ethtool_op_get_ufo,
4582 .get_flags = ethtool_op_get_flags,
4583 };
4584
4585 static const struct net_device_ops bond_netdev_ops = {
4586 .ndo_open = bond_open,
4587 .ndo_stop = bond_close,
4588 .ndo_start_xmit = bond_start_xmit,
4589 .ndo_get_stats = bond_get_stats,
4590 .ndo_do_ioctl = bond_do_ioctl,
4591 .ndo_set_multicast_list = bond_set_multicast_list,
4592 .ndo_change_mtu = bond_change_mtu,
4593 .ndo_set_mac_address = bond_set_mac_address,
4594 .ndo_neigh_setup = bond_neigh_setup,
4595 .ndo_vlan_rx_register = bond_vlan_rx_register,
4596 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid,
4597 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid,
4598 };
4599
4600 /*
4601 * Does not allocate but creates a /proc entry.
4602 * Allowed to fail.
4603 */
bond_init(struct net_device * bond_dev,struct bond_params * params)4604 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4605 {
4606 struct bonding *bond = netdev_priv(bond_dev);
4607
4608 pr_debug("Begin bond_init for %s\n", bond_dev->name);
4609
4610 /* initialize rwlocks */
4611 rwlock_init(&bond->lock);
4612 rwlock_init(&bond->curr_slave_lock);
4613
4614 bond->params = *params; /* copy params struct */
4615
4616 bond->wq = create_singlethread_workqueue(bond_dev->name);
4617 if (!bond->wq)
4618 return -ENOMEM;
4619
4620 /* Initialize pointers */
4621 bond->first_slave = NULL;
4622 bond->curr_active_slave = NULL;
4623 bond->current_arp_slave = NULL;
4624 bond->primary_slave = NULL;
4625 bond->dev = bond_dev;
4626 bond->send_grat_arp = 0;
4627 bond->send_unsol_na = 0;
4628 bond->setup_by_slave = 0;
4629 INIT_LIST_HEAD(&bond->vlan_list);
4630
4631 /* Initialize the device entry points */
4632 bond_dev->netdev_ops = &bond_netdev_ops;
4633 bond_dev->ethtool_ops = &bond_ethtool_ops;
4634 bond_set_mode_ops(bond, bond->params.mode);
4635
4636 bond_dev->destructor = bond_destructor;
4637
4638 /* Initialize the device options */
4639 bond_dev->tx_queue_len = 0;
4640 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4641 bond_dev->priv_flags |= IFF_BONDING;
4642 if (bond->params.arp_interval)
4643 bond_dev->priv_flags |= IFF_MASTER_ARPMON;
4644
4645 /* At first, we block adding VLANs. That's the only way to
4646 * prevent problems that occur when adding VLANs over an
4647 * empty bond. The block will be removed once non-challenged
4648 * slaves are enslaved.
4649 */
4650 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4651
4652 /* don't acquire bond device's netif_tx_lock when
4653 * transmitting */
4654 bond_dev->features |= NETIF_F_LLTX;
4655
4656 /* By default, we declare the bond to be fully
4657 * VLAN hardware accelerated capable. Special
4658 * care is taken in the various xmit functions
4659 * when there are slaves that are not hw accel
4660 * capable
4661 */
4662 bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4663 NETIF_F_HW_VLAN_RX |
4664 NETIF_F_HW_VLAN_FILTER);
4665
4666 #ifdef CONFIG_PROC_FS
4667 bond_create_proc_entry(bond);
4668 #endif
4669 list_add_tail(&bond->bond_list, &bond_dev_list);
4670
4671 return 0;
4672 }
4673
bond_work_cancel_all(struct bonding * bond)4674 static void bond_work_cancel_all(struct bonding *bond)
4675 {
4676 write_lock_bh(&bond->lock);
4677 bond->kill_timers = 1;
4678 write_unlock_bh(&bond->lock);
4679
4680 if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4681 cancel_delayed_work(&bond->mii_work);
4682
4683 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4684 cancel_delayed_work(&bond->arp_work);
4685
4686 if (bond->params.mode == BOND_MODE_ALB &&
4687 delayed_work_pending(&bond->alb_work))
4688 cancel_delayed_work(&bond->alb_work);
4689
4690 if (bond->params.mode == BOND_MODE_8023AD &&
4691 delayed_work_pending(&bond->ad_work))
4692 cancel_delayed_work(&bond->ad_work);
4693 }
4694
4695 /* De-initialize device specific data.
4696 * Caller must hold rtnl_lock.
4697 */
bond_deinit(struct net_device * bond_dev)4698 static void bond_deinit(struct net_device *bond_dev)
4699 {
4700 struct bonding *bond = netdev_priv(bond_dev);
4701
4702 list_del(&bond->bond_list);
4703
4704 bond_work_cancel_all(bond);
4705
4706 #ifdef CONFIG_PROC_FS
4707 bond_remove_proc_entry(bond);
4708 #endif
4709 }
4710
4711 /* Unregister and free all bond devices.
4712 * Caller must hold rtnl_lock.
4713 */
bond_free_all(void)4714 static void bond_free_all(void)
4715 {
4716 struct bonding *bond, *nxt;
4717
4718 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4719 struct net_device *bond_dev = bond->dev;
4720
4721 bond_work_cancel_all(bond);
4722 /* Release the bonded slaves */
4723 bond_release_all(bond_dev);
4724 bond_destroy(bond);
4725 }
4726
4727 #ifdef CONFIG_PROC_FS
4728 bond_destroy_proc_dir();
4729 #endif
4730 }
4731
4732 /*------------------------- Module initialization ---------------------------*/
4733
4734 /*
4735 * Convert string input module parms. Accept either the
4736 * number of the mode or its string name. A bit complicated because
4737 * some mode names are substrings of other names, and calls from sysfs
4738 * may have whitespace in the name (trailing newlines, for example).
4739 */
bond_parse_parm(const char * buf,const struct bond_parm_tbl * tbl)4740 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl)
4741 {
4742 int mode = -1, i, rv;
4743 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4744
4745 for (p = (char *)buf; *p; p++)
4746 if (!(isdigit(*p) || isspace(*p)))
4747 break;
4748
4749 if (*p)
4750 rv = sscanf(buf, "%20s", modestr);
4751 else
4752 rv = sscanf(buf, "%d", &mode);
4753
4754 if (!rv)
4755 return -1;
4756
4757 for (i = 0; tbl[i].modename; i++) {
4758 if (mode == tbl[i].mode)
4759 return tbl[i].mode;
4760 if (strcmp(modestr, tbl[i].modename) == 0)
4761 return tbl[i].mode;
4762 }
4763
4764 return -1;
4765 }
4766
bond_check_params(struct bond_params * params)4767 static int bond_check_params(struct bond_params *params)
4768 {
4769 int arp_validate_value, fail_over_mac_value;
4770
4771 /*
4772 * Convert string parameters.
4773 */
4774 if (mode) {
4775 bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4776 if (bond_mode == -1) {
4777 printk(KERN_ERR DRV_NAME
4778 ": Error: Invalid bonding mode \"%s\"\n",
4779 mode == NULL ? "NULL" : mode);
4780 return -EINVAL;
4781 }
4782 }
4783
4784 if (xmit_hash_policy) {
4785 if ((bond_mode != BOND_MODE_XOR) &&
4786 (bond_mode != BOND_MODE_8023AD)) {
4787 printk(KERN_INFO DRV_NAME
4788 ": xor_mode param is irrelevant in mode %s\n",
4789 bond_mode_name(bond_mode));
4790 } else {
4791 xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4792 xmit_hashtype_tbl);
4793 if (xmit_hashtype == -1) {
4794 printk(KERN_ERR DRV_NAME
4795 ": Error: Invalid xmit_hash_policy \"%s\"\n",
4796 xmit_hash_policy == NULL ? "NULL" :
4797 xmit_hash_policy);
4798 return -EINVAL;
4799 }
4800 }
4801 }
4802
4803 if (lacp_rate) {
4804 if (bond_mode != BOND_MODE_8023AD) {
4805 printk(KERN_INFO DRV_NAME
4806 ": lacp_rate param is irrelevant in mode %s\n",
4807 bond_mode_name(bond_mode));
4808 } else {
4809 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4810 if (lacp_fast == -1) {
4811 printk(KERN_ERR DRV_NAME
4812 ": Error: Invalid lacp rate \"%s\"\n",
4813 lacp_rate == NULL ? "NULL" : lacp_rate);
4814 return -EINVAL;
4815 }
4816 }
4817 }
4818
4819 if (ad_select) {
4820 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl);
4821 if (params->ad_select == -1) {
4822 printk(KERN_ERR DRV_NAME
4823 ": Error: Invalid ad_select \"%s\"\n",
4824 ad_select == NULL ? "NULL" : ad_select);
4825 return -EINVAL;
4826 }
4827
4828 if (bond_mode != BOND_MODE_8023AD) {
4829 printk(KERN_WARNING DRV_NAME
4830 ": ad_select param only affects 802.3ad mode\n");
4831 }
4832 } else {
4833 params->ad_select = BOND_AD_STABLE;
4834 }
4835
4836 if (max_bonds < 0 || max_bonds > INT_MAX) {
4837 printk(KERN_WARNING DRV_NAME
4838 ": Warning: max_bonds (%d) not in range %d-%d, so it "
4839 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4840 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4841 max_bonds = BOND_DEFAULT_MAX_BONDS;
4842 }
4843
4844 if (miimon < 0) {
4845 printk(KERN_WARNING DRV_NAME
4846 ": Warning: miimon module parameter (%d), "
4847 "not in range 0-%d, so it was reset to %d\n",
4848 miimon, INT_MAX, BOND_LINK_MON_INTERV);
4849 miimon = BOND_LINK_MON_INTERV;
4850 }
4851
4852 if (updelay < 0) {
4853 printk(KERN_WARNING DRV_NAME
4854 ": Warning: updelay module parameter (%d), "
4855 "not in range 0-%d, so it was reset to 0\n",
4856 updelay, INT_MAX);
4857 updelay = 0;
4858 }
4859
4860 if (downdelay < 0) {
4861 printk(KERN_WARNING DRV_NAME
4862 ": Warning: downdelay module parameter (%d), "
4863 "not in range 0-%d, so it was reset to 0\n",
4864 downdelay, INT_MAX);
4865 downdelay = 0;
4866 }
4867
4868 if ((use_carrier != 0) && (use_carrier != 1)) {
4869 printk(KERN_WARNING DRV_NAME
4870 ": Warning: use_carrier module parameter (%d), "
4871 "not of valid value (0/1), so it was set to 1\n",
4872 use_carrier);
4873 use_carrier = 1;
4874 }
4875
4876 if (num_grat_arp < 0 || num_grat_arp > 255) {
4877 printk(KERN_WARNING DRV_NAME
4878 ": Warning: num_grat_arp (%d) not in range 0-255 so it "
4879 "was reset to 1 \n", num_grat_arp);
4880 num_grat_arp = 1;
4881 }
4882
4883 if (num_unsol_na < 0 || num_unsol_na > 255) {
4884 printk(KERN_WARNING DRV_NAME
4885 ": Warning: num_unsol_na (%d) not in range 0-255 so it "
4886 "was reset to 1 \n", num_unsol_na);
4887 num_unsol_na = 1;
4888 }
4889
4890 /* reset values for 802.3ad */
4891 if (bond_mode == BOND_MODE_8023AD) {
4892 if (!miimon) {
4893 printk(KERN_WARNING DRV_NAME
4894 ": Warning: miimon must be specified, "
4895 "otherwise bonding will not detect link "
4896 "failure, speed and duplex which are "
4897 "essential for 802.3ad operation\n");
4898 printk(KERN_WARNING "Forcing miimon to 100msec\n");
4899 miimon = 100;
4900 }
4901 }
4902
4903 /* reset values for TLB/ALB */
4904 if ((bond_mode == BOND_MODE_TLB) ||
4905 (bond_mode == BOND_MODE_ALB)) {
4906 if (!miimon) {
4907 printk(KERN_WARNING DRV_NAME
4908 ": Warning: miimon must be specified, "
4909 "otherwise bonding will not detect link "
4910 "failure and link speed which are essential "
4911 "for TLB/ALB load balancing\n");
4912 printk(KERN_WARNING "Forcing miimon to 100msec\n");
4913 miimon = 100;
4914 }
4915 }
4916
4917 if (bond_mode == BOND_MODE_ALB) {
4918 printk(KERN_NOTICE DRV_NAME
4919 ": In ALB mode you might experience client "
4920 "disconnections upon reconnection of a link if the "
4921 "bonding module updelay parameter (%d msec) is "
4922 "incompatible with the forwarding delay time of the "
4923 "switch\n",
4924 updelay);
4925 }
4926
4927 if (!miimon) {
4928 if (updelay || downdelay) {
4929 /* just warn the user the up/down delay will have
4930 * no effect since miimon is zero...
4931 */
4932 printk(KERN_WARNING DRV_NAME
4933 ": Warning: miimon module parameter not set "
4934 "and updelay (%d) or downdelay (%d) module "
4935 "parameter is set; updelay and downdelay have "
4936 "no effect unless miimon is set\n",
4937 updelay, downdelay);
4938 }
4939 } else {
4940 /* don't allow arp monitoring */
4941 if (arp_interval) {
4942 printk(KERN_WARNING DRV_NAME
4943 ": Warning: miimon (%d) and arp_interval (%d) "
4944 "can't be used simultaneously, disabling ARP "
4945 "monitoring\n",
4946 miimon, arp_interval);
4947 arp_interval = 0;
4948 }
4949
4950 if ((updelay % miimon) != 0) {
4951 printk(KERN_WARNING DRV_NAME
4952 ": Warning: updelay (%d) is not a multiple "
4953 "of miimon (%d), updelay rounded to %d ms\n",
4954 updelay, miimon, (updelay / miimon) * miimon);
4955 }
4956
4957 updelay /= miimon;
4958
4959 if ((downdelay % miimon) != 0) {
4960 printk(KERN_WARNING DRV_NAME
4961 ": Warning: downdelay (%d) is not a multiple "
4962 "of miimon (%d), downdelay rounded to %d ms\n",
4963 downdelay, miimon,
4964 (downdelay / miimon) * miimon);
4965 }
4966
4967 downdelay /= miimon;
4968 }
4969
4970 if (arp_interval < 0) {
4971 printk(KERN_WARNING DRV_NAME
4972 ": Warning: arp_interval module parameter (%d) "
4973 ", not in range 0-%d, so it was reset to %d\n",
4974 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4975 arp_interval = BOND_LINK_ARP_INTERV;
4976 }
4977
4978 for (arp_ip_count = 0;
4979 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4980 arp_ip_count++) {
4981 /* not complete check, but should be good enough to
4982 catch mistakes */
4983 if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4984 printk(KERN_WARNING DRV_NAME
4985 ": Warning: bad arp_ip_target module parameter "
4986 "(%s), ARP monitoring will not be performed\n",
4987 arp_ip_target[arp_ip_count]);
4988 arp_interval = 0;
4989 } else {
4990 __be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4991 arp_target[arp_ip_count] = ip;
4992 }
4993 }
4994
4995 if (arp_interval && !arp_ip_count) {
4996 /* don't allow arping if no arp_ip_target given... */
4997 printk(KERN_WARNING DRV_NAME
4998 ": Warning: arp_interval module parameter (%d) "
4999 "specified without providing an arp_ip_target "
5000 "parameter, arp_interval was reset to 0\n",
5001 arp_interval);
5002 arp_interval = 0;
5003 }
5004
5005 if (arp_validate) {
5006 if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
5007 printk(KERN_ERR DRV_NAME
5008 ": arp_validate only supported in active-backup mode\n");
5009 return -EINVAL;
5010 }
5011 if (!arp_interval) {
5012 printk(KERN_ERR DRV_NAME
5013 ": arp_validate requires arp_interval\n");
5014 return -EINVAL;
5015 }
5016
5017 arp_validate_value = bond_parse_parm(arp_validate,
5018 arp_validate_tbl);
5019 if (arp_validate_value == -1) {
5020 printk(KERN_ERR DRV_NAME
5021 ": Error: invalid arp_validate \"%s\"\n",
5022 arp_validate == NULL ? "NULL" : arp_validate);
5023 return -EINVAL;
5024 }
5025 } else
5026 arp_validate_value = 0;
5027
5028 if (miimon) {
5029 printk(KERN_INFO DRV_NAME
5030 ": MII link monitoring set to %d ms\n",
5031 miimon);
5032 } else if (arp_interval) {
5033 int i;
5034
5035 printk(KERN_INFO DRV_NAME
5036 ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
5037 arp_interval,
5038 arp_validate_tbl[arp_validate_value].modename,
5039 arp_ip_count);
5040
5041 for (i = 0; i < arp_ip_count; i++)
5042 printk (" %s", arp_ip_target[i]);
5043
5044 printk("\n");
5045
5046 } else if (max_bonds) {
5047 /* miimon and arp_interval not set, we need one so things
5048 * work as expected, see bonding.txt for details
5049 */
5050 printk(KERN_WARNING DRV_NAME
5051 ": Warning: either miimon or arp_interval and "
5052 "arp_ip_target module parameters must be specified, "
5053 "otherwise bonding will not detect link failures! see "
5054 "bonding.txt for details.\n");
5055 }
5056
5057 if (primary && !USES_PRIMARY(bond_mode)) {
5058 /* currently, using a primary only makes sense
5059 * in active backup, TLB or ALB modes
5060 */
5061 printk(KERN_WARNING DRV_NAME
5062 ": Warning: %s primary device specified but has no "
5063 "effect in %s mode\n",
5064 primary, bond_mode_name(bond_mode));
5065 primary = NULL;
5066 }
5067
5068 if (fail_over_mac) {
5069 fail_over_mac_value = bond_parse_parm(fail_over_mac,
5070 fail_over_mac_tbl);
5071 if (fail_over_mac_value == -1) {
5072 printk(KERN_ERR DRV_NAME
5073 ": Error: invalid fail_over_mac \"%s\"\n",
5074 arp_validate == NULL ? "NULL" : arp_validate);
5075 return -EINVAL;
5076 }
5077
5078 if (bond_mode != BOND_MODE_ACTIVEBACKUP)
5079 printk(KERN_WARNING DRV_NAME
5080 ": Warning: fail_over_mac only affects "
5081 "active-backup mode.\n");
5082 } else {
5083 fail_over_mac_value = BOND_FOM_NONE;
5084 }
5085
5086 /* fill params struct with the proper values */
5087 params->mode = bond_mode;
5088 params->xmit_policy = xmit_hashtype;
5089 params->miimon = miimon;
5090 params->num_grat_arp = num_grat_arp;
5091 params->num_unsol_na = num_unsol_na;
5092 params->arp_interval = arp_interval;
5093 params->arp_validate = arp_validate_value;
5094 params->updelay = updelay;
5095 params->downdelay = downdelay;
5096 params->use_carrier = use_carrier;
5097 params->lacp_fast = lacp_fast;
5098 params->primary[0] = 0;
5099 params->fail_over_mac = fail_over_mac_value;
5100
5101 if (primary) {
5102 strncpy(params->primary, primary, IFNAMSIZ);
5103 params->primary[IFNAMSIZ - 1] = 0;
5104 }
5105
5106 memcpy(params->arp_targets, arp_target, sizeof(arp_target));
5107
5108 return 0;
5109 }
5110
5111 static struct lock_class_key bonding_netdev_xmit_lock_key;
5112 static struct lock_class_key bonding_netdev_addr_lock_key;
5113
bond_set_lockdep_class_one(struct net_device * dev,struct netdev_queue * txq,void * _unused)5114 static void bond_set_lockdep_class_one(struct net_device *dev,
5115 struct netdev_queue *txq,
5116 void *_unused)
5117 {
5118 lockdep_set_class(&txq->_xmit_lock,
5119 &bonding_netdev_xmit_lock_key);
5120 }
5121
bond_set_lockdep_class(struct net_device * dev)5122 static void bond_set_lockdep_class(struct net_device *dev)
5123 {
5124 lockdep_set_class(&dev->addr_list_lock,
5125 &bonding_netdev_addr_lock_key);
5126 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
5127 }
5128
5129 /* Create a new bond based on the specified name and bonding parameters.
5130 * If name is NULL, obtain a suitable "bond%d" name for us.
5131 * Caller must NOT hold rtnl_lock; we need to release it here before we
5132 * set up our sysfs entries.
5133 */
bond_create(char * name,struct bond_params * params)5134 int bond_create(char *name, struct bond_params *params)
5135 {
5136 struct net_device *bond_dev;
5137 struct bonding *bond;
5138 int res;
5139
5140 rtnl_lock();
5141 down_write(&bonding_rwsem);
5142
5143 /* Check to see if the bond already exists. */
5144 if (name) {
5145 list_for_each_entry(bond, &bond_dev_list, bond_list)
5146 if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) {
5147 printk(KERN_ERR DRV_NAME
5148 ": cannot add bond %s; it already exists\n",
5149 name);
5150 res = -EPERM;
5151 goto out_rtnl;
5152 }
5153 }
5154
5155 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
5156 ether_setup);
5157 if (!bond_dev) {
5158 printk(KERN_ERR DRV_NAME
5159 ": %s: eek! can't alloc netdev!\n",
5160 name);
5161 res = -ENOMEM;
5162 goto out_rtnl;
5163 }
5164
5165 if (!name) {
5166 res = dev_alloc_name(bond_dev, "bond%d");
5167 if (res < 0)
5168 goto out_netdev;
5169 }
5170
5171 /* bond_init() must be called after dev_alloc_name() (for the
5172 * /proc files), but before register_netdevice(), because we
5173 * need to set function pointers.
5174 */
5175
5176 res = bond_init(bond_dev, params);
5177 if (res < 0) {
5178 goto out_netdev;
5179 }
5180
5181 res = register_netdevice(bond_dev);
5182 if (res < 0) {
5183 goto out_bond;
5184 }
5185
5186 bond_set_lockdep_class(bond_dev);
5187
5188 netif_carrier_off(bond_dev);
5189
5190 up_write(&bonding_rwsem);
5191 rtnl_unlock(); /* allows sysfs registration of net device */
5192 res = bond_create_sysfs_entry(netdev_priv(bond_dev));
5193 if (res < 0) {
5194 rtnl_lock();
5195 down_write(&bonding_rwsem);
5196 bond_deinit(bond_dev);
5197 unregister_netdevice(bond_dev);
5198 goto out_rtnl;
5199 }
5200
5201 return 0;
5202
5203 out_bond:
5204 bond_deinit(bond_dev);
5205 out_netdev:
5206 free_netdev(bond_dev);
5207 out_rtnl:
5208 up_write(&bonding_rwsem);
5209 rtnl_unlock();
5210 return res;
5211 }
5212
bonding_init(void)5213 static int __init bonding_init(void)
5214 {
5215 int i;
5216 int res;
5217 struct bonding *bond;
5218
5219 printk(KERN_INFO "%s", version);
5220
5221 res = bond_check_params(&bonding_defaults);
5222 if (res) {
5223 goto out;
5224 }
5225
5226 #ifdef CONFIG_PROC_FS
5227 bond_create_proc_dir();
5228 #endif
5229
5230 init_rwsem(&bonding_rwsem);
5231
5232 for (i = 0; i < max_bonds; i++) {
5233 res = bond_create(NULL, &bonding_defaults);
5234 if (res)
5235 goto err;
5236 }
5237
5238 res = bond_create_sysfs();
5239 if (res)
5240 goto err;
5241
5242 register_netdevice_notifier(&bond_netdev_notifier);
5243 register_inetaddr_notifier(&bond_inetaddr_notifier);
5244 bond_register_ipv6_notifier();
5245
5246 goto out;
5247 err:
5248 list_for_each_entry(bond, &bond_dev_list, bond_list) {
5249 bond_work_cancel_all(bond);
5250 destroy_workqueue(bond->wq);
5251 }
5252
5253 bond_destroy_sysfs();
5254
5255 rtnl_lock();
5256 bond_free_all();
5257 rtnl_unlock();
5258 out:
5259 return res;
5260
5261 }
5262
bonding_exit(void)5263 static void __exit bonding_exit(void)
5264 {
5265 unregister_netdevice_notifier(&bond_netdev_notifier);
5266 unregister_inetaddr_notifier(&bond_inetaddr_notifier);
5267 bond_unregister_ipv6_notifier();
5268
5269 bond_destroy_sysfs();
5270
5271 rtnl_lock();
5272 bond_free_all();
5273 rtnl_unlock();
5274 }
5275
5276 module_init(bonding_init);
5277 module_exit(bonding_exit);
5278 MODULE_LICENSE("GPL");
5279 MODULE_VERSION(DRV_VERSION);
5280 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
5281 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
5282 MODULE_SUPPORTED_DEVICE("most ethernet devices");
5283
5284 /*
5285 * Local variables:
5286 * c-indent-level: 8
5287 * c-basic-offset: 8
5288 * tab-width: 8
5289 * End:
5290 */
5291
5292