• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Aic94xx SAS/SATA driver hardware interface.
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This file is part of the aic94xx driver.
10  *
11  * The aic94xx driver is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; version 2 of the
14  * License.
15  *
16  * The aic94xx driver is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with the aic94xx driver; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
24  *
25  */
26 
27 #include <linux/pci.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
30 #include <linux/firmware.h>
31 
32 #include "aic94xx.h"
33 #include "aic94xx_reg.h"
34 #include "aic94xx_hwi.h"
35 #include "aic94xx_seq.h"
36 #include "aic94xx_dump.h"
37 
38 u32 MBAR0_SWB_SIZE;
39 
40 /* ---------- Initialization ---------- */
41 
asd_get_user_sas_addr(struct asd_ha_struct * asd_ha)42 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
43 {
44 	/* adapter came with a sas address */
45 	if (asd_ha->hw_prof.sas_addr[0])
46 		return 0;
47 
48 	return sas_request_addr(asd_ha->sas_ha.core.shost,
49 				asd_ha->hw_prof.sas_addr);
50 }
51 
asd_propagate_sas_addr(struct asd_ha_struct * asd_ha)52 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
53 {
54 	int i;
55 
56 	for (i = 0; i < ASD_MAX_PHYS; i++) {
57 		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
58 			continue;
59 		/* Set a phy's address only if it has none.
60 		 */
61 		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
62 			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
63 		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
64 		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
65 	}
66 }
67 
68 /* ---------- PHY initialization ---------- */
69 
asd_init_phy_identify(struct asd_phy * phy)70 static void asd_init_phy_identify(struct asd_phy *phy)
71 {
72 	phy->identify_frame = phy->id_frm_tok->vaddr;
73 
74 	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
75 
76 	phy->identify_frame->dev_type = SAS_END_DEV;
77 	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
78 		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
79 	if (phy->sas_phy.role & PHY_ROLE_TARGET)
80 		phy->identify_frame->target_bits = phy->sas_phy.tproto;
81 	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
82 	       SAS_ADDR_SIZE);
83 	phy->identify_frame->phy_id = phy->sas_phy.id;
84 }
85 
asd_init_phy(struct asd_phy * phy)86 static int asd_init_phy(struct asd_phy *phy)
87 {
88 	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
89 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
90 
91 	sas_phy->enabled = 1;
92 	sas_phy->class = SAS;
93 	sas_phy->iproto = SAS_PROTOCOL_ALL;
94 	sas_phy->tproto = 0;
95 	sas_phy->type = PHY_TYPE_PHYSICAL;
96 	sas_phy->role = PHY_ROLE_INITIATOR;
97 	sas_phy->oob_mode = OOB_NOT_CONNECTED;
98 	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
99 
100 	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
101 					     sizeof(*phy->identify_frame),
102 					     GFP_KERNEL);
103 	if (!phy->id_frm_tok) {
104 		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
105 		return -ENOMEM;
106 	} else
107 		asd_init_phy_identify(phy);
108 
109 	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
110 
111 	return 0;
112 }
113 
asd_init_ports(struct asd_ha_struct * asd_ha)114 static void asd_init_ports(struct asd_ha_struct *asd_ha)
115 {
116 	int i;
117 
118 	spin_lock_init(&asd_ha->asd_ports_lock);
119 	for (i = 0; i < ASD_MAX_PHYS; i++) {
120 		struct asd_port *asd_port = &asd_ha->asd_ports[i];
121 
122 		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
123 		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
124 		asd_port->phy_mask = 0;
125 		asd_port->num_phys = 0;
126 	}
127 }
128 
asd_init_phys(struct asd_ha_struct * asd_ha)129 static int asd_init_phys(struct asd_ha_struct *asd_ha)
130 {
131 	u8 i;
132 	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
133 
134 	for (i = 0; i < ASD_MAX_PHYS; i++) {
135 		struct asd_phy *phy = &asd_ha->phys[i];
136 
137 		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
138 		phy->asd_port = NULL;
139 
140 		phy->sas_phy.enabled = 0;
141 		phy->sas_phy.id = i;
142 		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
143 		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
144 		phy->sas_phy.ha = &asd_ha->sas_ha;
145 		phy->sas_phy.lldd_phy = phy;
146 	}
147 
148 	/* Now enable and initialize only the enabled phys. */
149 	for_each_phy(phy_mask, phy_mask, i) {
150 		int err = asd_init_phy(&asd_ha->phys[i]);
151 		if (err)
152 			return err;
153 	}
154 
155 	return 0;
156 }
157 
158 /* ---------- Sliding windows ---------- */
159 
asd_init_sw(struct asd_ha_struct * asd_ha)160 static int asd_init_sw(struct asd_ha_struct *asd_ha)
161 {
162 	struct pci_dev *pcidev = asd_ha->pcidev;
163 	int err;
164 	u32 v;
165 
166 	/* Unlock MBARs */
167 	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
168 	if (err) {
169 		asd_printk("couldn't access conf. space of %s\n",
170 			   pci_name(pcidev));
171 		goto Err;
172 	}
173 	if (v)
174 		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
175 	if (err) {
176 		asd_printk("couldn't write to MBAR_KEY of %s\n",
177 			   pci_name(pcidev));
178 		goto Err;
179 	}
180 
181 	/* Set sliding windows A, B and C to point to proper internal
182 	 * memory regions.
183 	 */
184 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
185 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
186 			       REG_BASE_ADDR_CSEQCIO);
187 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
188 	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
189 	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
190 	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
191 	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
192 	if (!asd_ha->iospace) {
193 		/* MBAR1 will point to OCM (On Chip Memory) */
194 		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
195 		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
196 	}
197 	spin_lock_init(&asd_ha->iolock);
198 Err:
199 	return err;
200 }
201 
202 /* ---------- SCB initialization ---------- */
203 
204 /**
205  * asd_init_scbs - manually allocate the first SCB.
206  * @asd_ha: pointer to host adapter structure
207  *
208  * This allocates the very first SCB which would be sent to the
209  * sequencer for execution.  Its bus address is written to
210  * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
211  * the _next_ scb to be DMA-ed to the host adapter is read from the last
212  * SCB DMA-ed to the host adapter, we have to always stay one step
213  * ahead of the sequencer and keep one SCB already allocated.
214  */
asd_init_scbs(struct asd_ha_struct * asd_ha)215 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
216 {
217 	struct asd_seq_data *seq = &asd_ha->seq;
218 	int bitmap_bytes;
219 
220 	/* allocate the index array and bitmap */
221 	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
222 	asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
223 					     sizeof(void *), GFP_KERNEL);
224 	if (!asd_ha->seq.tc_index_array)
225 		return -ENOMEM;
226 
227 	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
228 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
229 	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
230 	if (!asd_ha->seq.tc_index_bitmap)
231 		return -ENOMEM;
232 
233 	spin_lock_init(&seq->tc_index_lock);
234 
235 	seq->next_scb.size = sizeof(struct scb);
236 	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
237 					     &seq->next_scb.dma_handle);
238 	if (!seq->next_scb.vaddr) {
239 		kfree(asd_ha->seq.tc_index_bitmap);
240 		kfree(asd_ha->seq.tc_index_array);
241 		asd_ha->seq.tc_index_bitmap = NULL;
242 		asd_ha->seq.tc_index_array = NULL;
243 		return -ENOMEM;
244 	}
245 
246 	seq->pending = 0;
247 	spin_lock_init(&seq->pend_q_lock);
248 	INIT_LIST_HEAD(&seq->pend_q);
249 
250 	return 0;
251 }
252 
asd_get_max_scb_ddb(struct asd_ha_struct * asd_ha)253 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
254 {
255 	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
256 	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
257 	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
258 		    asd_ha->hw_prof.max_scbs,
259 		    asd_ha->hw_prof.max_ddbs);
260 }
261 
262 /* ---------- Done List initialization ---------- */
263 
264 static void asd_dl_tasklet_handler(unsigned long);
265 
asd_init_dl(struct asd_ha_struct * asd_ha)266 static int asd_init_dl(struct asd_ha_struct *asd_ha)
267 {
268 	asd_ha->seq.actual_dl
269 		= asd_alloc_coherent(asd_ha,
270 			     ASD_DL_SIZE * sizeof(struct done_list_struct),
271 				     GFP_KERNEL);
272 	if (!asd_ha->seq.actual_dl)
273 		return -ENOMEM;
274 	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
275 	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
276 	asd_ha->seq.dl_next = 0;
277 	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
278 		     (unsigned long) asd_ha);
279 
280 	return 0;
281 }
282 
283 /* ---------- EDB and ESCB init ---------- */
284 
asd_alloc_edbs(struct asd_ha_struct * asd_ha,gfp_t gfp_flags)285 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
286 {
287 	struct asd_seq_data *seq = &asd_ha->seq;
288 	int i;
289 
290 	seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
291 	if (!seq->edb_arr)
292 		return -ENOMEM;
293 
294 	for (i = 0; i < seq->num_edbs; i++) {
295 		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
296 						     gfp_flags);
297 		if (!seq->edb_arr[i])
298 			goto Err_unroll;
299 		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
300 	}
301 
302 	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
303 
304 	return 0;
305 
306 Err_unroll:
307 	for (i-- ; i >= 0; i--)
308 		asd_free_coherent(asd_ha, seq->edb_arr[i]);
309 	kfree(seq->edb_arr);
310 	seq->edb_arr = NULL;
311 
312 	return -ENOMEM;
313 }
314 
asd_alloc_escbs(struct asd_ha_struct * asd_ha,gfp_t gfp_flags)315 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
316 			   gfp_t gfp_flags)
317 {
318 	struct asd_seq_data *seq = &asd_ha->seq;
319 	struct asd_ascb *escb;
320 	int i, escbs;
321 
322 	seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
323 				gfp_flags);
324 	if (!seq->escb_arr)
325 		return -ENOMEM;
326 
327 	escbs = seq->num_escbs;
328 	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
329 	if (!escb) {
330 		asd_printk("couldn't allocate list of escbs\n");
331 		goto Err;
332 	}
333 	seq->num_escbs -= escbs;  /* subtract what was not allocated */
334 	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
335 
336 	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
337 							       struct asd_ascb,
338 							       list)) {
339 		seq->escb_arr[i] = escb;
340 		escb->scb->header.opcode = EMPTY_SCB;
341 	}
342 
343 	return 0;
344 Err:
345 	kfree(seq->escb_arr);
346 	seq->escb_arr = NULL;
347 	return -ENOMEM;
348 
349 }
350 
asd_assign_edbs2escbs(struct asd_ha_struct * asd_ha)351 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
352 {
353 	struct asd_seq_data *seq = &asd_ha->seq;
354 	int i, k, z = 0;
355 
356 	for (i = 0; i < seq->num_escbs; i++) {
357 		struct asd_ascb *ascb = seq->escb_arr[i];
358 		struct empty_scb *escb = &ascb->scb->escb;
359 
360 		ascb->edb_index = z;
361 
362 		escb->num_valid = ASD_EDBS_PER_SCB;
363 
364 		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
365 			struct sg_el *eb = &escb->eb[k];
366 			struct asd_dma_tok *edb = seq->edb_arr[z++];
367 
368 			memset(eb, 0, sizeof(*eb));
369 			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
370 			eb->size = cpu_to_le32(((u32) edb->size));
371 		}
372 	}
373 }
374 
375 /**
376  * asd_init_escbs -- allocate and initialize empty scbs
377  * @asd_ha: pointer to host adapter structure
378  *
379  * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
380  * They transport sense data, etc.
381  */
asd_init_escbs(struct asd_ha_struct * asd_ha)382 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
383 {
384 	struct asd_seq_data *seq = &asd_ha->seq;
385 	int err = 0;
386 
387 	/* Allocate two empty data buffers (edb) per sequencer. */
388 	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
389 
390 	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
391 	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
392 
393 	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
394 	if (err) {
395 		asd_printk("couldn't allocate edbs\n");
396 		return err;
397 	}
398 
399 	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
400 	if (err) {
401 		asd_printk("couldn't allocate escbs\n");
402 		return err;
403 	}
404 
405 	asd_assign_edbs2escbs(asd_ha);
406 	/* In order to insure that normal SCBs do not overfill sequencer
407 	 * memory and leave no space for escbs (halting condition),
408 	 * we increment pending here by the number of escbs.  However,
409 	 * escbs are never pending.
410 	 */
411 	seq->pending   = seq->num_escbs;
412 	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
413 
414 	return 0;
415 }
416 
417 /* ---------- HW initialization ---------- */
418 
419 /**
420  * asd_chip_hardrst -- hard reset the chip
421  * @asd_ha: pointer to host adapter structure
422  *
423  * This takes 16 cycles and is synchronous to CFCLK, which runs
424  * at 200 MHz, so this should take at most 80 nanoseconds.
425  */
asd_chip_hardrst(struct asd_ha_struct * asd_ha)426 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
427 {
428 	int i;
429 	int count = 100;
430 	u32 reg;
431 
432 	for (i = 0 ; i < 4 ; i++) {
433 		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
434 	}
435 
436 	do {
437 		udelay(1);
438 		reg = asd_read_reg_dword(asd_ha, CHIMINT);
439 		if (reg & HARDRSTDET) {
440 			asd_write_reg_dword(asd_ha, CHIMINT,
441 					    HARDRSTDET|PORRSTDET);
442 			return 0;
443 		}
444 	} while (--count > 0);
445 
446 	return -ENODEV;
447 }
448 
449 /**
450  * asd_init_chip -- initialize the chip
451  * @asd_ha: pointer to host adapter structure
452  *
453  * Hard resets the chip, disables HA interrupts, downloads the sequnecer
454  * microcode and starts the sequencers.  The caller has to explicitly
455  * enable HA interrupts with asd_enable_ints(asd_ha).
456  */
asd_init_chip(struct asd_ha_struct * asd_ha)457 static int asd_init_chip(struct asd_ha_struct *asd_ha)
458 {
459 	int err;
460 
461 	err = asd_chip_hardrst(asd_ha);
462 	if (err) {
463 		asd_printk("couldn't hard reset %s\n",
464 			    pci_name(asd_ha->pcidev));
465 		goto out;
466 	}
467 
468 	asd_disable_ints(asd_ha);
469 
470 	err = asd_init_seqs(asd_ha);
471 	if (err) {
472 		asd_printk("couldn't init seqs for %s\n",
473 			   pci_name(asd_ha->pcidev));
474 		goto out;
475 	}
476 
477 	err = asd_start_seqs(asd_ha);
478 	if (err) {
479 		asd_printk("coudln't start seqs for %s\n",
480 			   pci_name(asd_ha->pcidev));
481 		goto out;
482 	}
483 out:
484 	return err;
485 }
486 
487 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
488 
489 static int max_devs = 0;
490 module_param_named(max_devs, max_devs, int, S_IRUGO);
491 MODULE_PARM_DESC(max_devs, "\n"
492 	"\tMaximum number of SAS devices to support (not LUs).\n"
493 	"\tDefault: 2176, Maximum: 65663.\n");
494 
495 static int max_cmnds = 0;
496 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
497 MODULE_PARM_DESC(max_cmnds, "\n"
498 	"\tMaximum number of commands queuable.\n"
499 	"\tDefault: 512, Maximum: 66047.\n");
500 
asd_extend_devctx_ocm(struct asd_ha_struct * asd_ha)501 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
502 {
503 	unsigned long dma_addr = OCM_BASE_ADDR;
504 	u32 d;
505 
506 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
507 	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
508 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
509 	d |= 4;
510 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
511 	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
512 }
513 
asd_extend_devctx(struct asd_ha_struct * asd_ha)514 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
515 {
516 	dma_addr_t dma_handle;
517 	unsigned long dma_addr;
518 	u32 d;
519 	int size;
520 
521 	asd_extend_devctx_ocm(asd_ha);
522 
523 	asd_ha->hw_prof.ddb_ext = NULL;
524 	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
525 		max_devs = asd_ha->hw_prof.max_ddbs;
526 		return 0;
527 	}
528 
529 	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
530 
531 	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
532 	if (!asd_ha->hw_prof.ddb_ext) {
533 		asd_printk("couldn't allocate memory for %d devices\n",
534 			   max_devs);
535 		max_devs = asd_ha->hw_prof.max_ddbs;
536 		return -ENOMEM;
537 	}
538 	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
539 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
540 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
541 	dma_handle = (dma_addr_t) dma_addr;
542 	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
543 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
544 	d &= ~4;
545 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
546 
547 	asd_ha->hw_prof.max_ddbs = max_devs;
548 
549 	return 0;
550 }
551 
asd_extend_cmdctx(struct asd_ha_struct * asd_ha)552 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
553 {
554 	dma_addr_t dma_handle;
555 	unsigned long dma_addr;
556 	u32 d;
557 	int size;
558 
559 	asd_ha->hw_prof.scb_ext = NULL;
560 	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
561 		max_cmnds = asd_ha->hw_prof.max_scbs;
562 		return 0;
563 	}
564 
565 	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
566 
567 	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
568 	if (!asd_ha->hw_prof.scb_ext) {
569 		asd_printk("couldn't allocate memory for %d commands\n",
570 			   max_cmnds);
571 		max_cmnds = asd_ha->hw_prof.max_scbs;
572 		return -ENOMEM;
573 	}
574 	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
575 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
576 	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
577 	dma_handle = (dma_addr_t) dma_addr;
578 	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
579 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
580 	d &= ~1;
581 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
582 
583 	asd_ha->hw_prof.max_scbs = max_cmnds;
584 
585 	return 0;
586 }
587 
588 /**
589  * asd_init_ctxmem -- initialize context memory
590  * asd_ha: pointer to host adapter structure
591  *
592  * This function sets the maximum number of SCBs and
593  * DDBs which can be used by the sequencer.  This is normally
594  * 512 and 128 respectively.  If support for more SCBs or more DDBs
595  * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
596  * initialized here to extend context memory to point to host memory,
597  * thus allowing unlimited support for SCBs and DDBs -- only limited
598  * by host memory.
599  */
asd_init_ctxmem(struct asd_ha_struct * asd_ha)600 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
601 {
602 	int bitmap_bytes;
603 
604 	asd_get_max_scb_ddb(asd_ha);
605 	asd_extend_devctx(asd_ha);
606 	asd_extend_cmdctx(asd_ha);
607 
608 	/* The kernel wants bitmaps to be unsigned long sized. */
609 	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
610 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
611 	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
612 	if (!asd_ha->hw_prof.ddb_bitmap)
613 		return -ENOMEM;
614 	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
615 
616 	return 0;
617 }
618 
asd_init_hw(struct asd_ha_struct * asd_ha)619 int asd_init_hw(struct asd_ha_struct *asd_ha)
620 {
621 	int err;
622 	u32 v;
623 
624 	err = asd_init_sw(asd_ha);
625 	if (err)
626 		return err;
627 
628 	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
629 	if (err) {
630 		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
631 			   pci_name(asd_ha->pcidev));
632 		return err;
633 	}
634 	pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
635 					v | SC_TMR_DIS);
636 	if (err) {
637 		asd_printk("couldn't disable split completion timer of %s\n",
638 			   pci_name(asd_ha->pcidev));
639 		return err;
640 	}
641 
642 	err = asd_read_ocm(asd_ha);
643 	if (err) {
644 		asd_printk("couldn't read ocm(%d)\n", err);
645 		/* While suspicios, it is not an error that we
646 		 * couldn't read the OCM. */
647 	}
648 
649 	err = asd_read_flash(asd_ha);
650 	if (err) {
651 		asd_printk("couldn't read flash(%d)\n", err);
652 		/* While suspicios, it is not an error that we
653 		 * couldn't read FLASH memory.
654 		 */
655 	}
656 
657 	asd_init_ctxmem(asd_ha);
658 
659 	if (asd_get_user_sas_addr(asd_ha)) {
660 		asd_printk("No SAS Address provided for %s\n",
661 			   pci_name(asd_ha->pcidev));
662 		err = -ENODEV;
663 		goto Out;
664 	}
665 
666 	asd_propagate_sas_addr(asd_ha);
667 
668 	err = asd_init_phys(asd_ha);
669 	if (err) {
670 		asd_printk("couldn't initialize phys for %s\n",
671 			    pci_name(asd_ha->pcidev));
672 		goto Out;
673 	}
674 
675 	asd_init_ports(asd_ha);
676 
677 	err = asd_init_scbs(asd_ha);
678 	if (err) {
679 		asd_printk("couldn't initialize scbs for %s\n",
680 			    pci_name(asd_ha->pcidev));
681 		goto Out;
682 	}
683 
684 	err = asd_init_dl(asd_ha);
685 	if (err) {
686 		asd_printk("couldn't initialize the done list:%d\n",
687 			    err);
688 		goto Out;
689 	}
690 
691 	err = asd_init_escbs(asd_ha);
692 	if (err) {
693 		asd_printk("couldn't initialize escbs\n");
694 		goto Out;
695 	}
696 
697 	err = asd_init_chip(asd_ha);
698 	if (err) {
699 		asd_printk("couldn't init the chip\n");
700 		goto Out;
701 	}
702 Out:
703 	return err;
704 }
705 
706 /* ---------- Chip reset ---------- */
707 
708 /**
709  * asd_chip_reset -- reset the host adapter, etc
710  * @asd_ha: pointer to host adapter structure of interest
711  *
712  * Called from the ISR.  Hard reset the chip.  Let everything
713  * timeout.  This should be no different than hot-unplugging the
714  * host adapter.  Once everything times out we'll init the chip with
715  * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
716  * XXX finish.
717  */
asd_chip_reset(struct asd_ha_struct * asd_ha)718 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
719 {
720 	struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
721 
722 	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
723 	asd_chip_hardrst(asd_ha);
724 	sas_ha->notify_ha_event(sas_ha, HAE_RESET);
725 }
726 
727 /* ---------- Done List Routines ---------- */
728 
asd_dl_tasklet_handler(unsigned long data)729 static void asd_dl_tasklet_handler(unsigned long data)
730 {
731 	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
732 	struct asd_seq_data *seq = &asd_ha->seq;
733 	unsigned long flags;
734 
735 	while (1) {
736 		struct done_list_struct *dl = &seq->dl[seq->dl_next];
737 		struct asd_ascb *ascb;
738 
739 		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
740 			break;
741 
742 		/* find the aSCB */
743 		spin_lock_irqsave(&seq->tc_index_lock, flags);
744 		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
745 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
746 		if (unlikely(!ascb)) {
747 			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
748 			goto next_1;
749 		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
750 			goto out;
751 		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
752 			goto next_1;
753 		}
754 		spin_lock_irqsave(&seq->pend_q_lock, flags);
755 		list_del_init(&ascb->list);
756 		seq->pending--;
757 		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
758 	out:
759 		ascb->tasklet_complete(ascb, dl);
760 
761 	next_1:
762 		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
763 		if (!seq->dl_next)
764 			seq->dl_toggle ^= DL_TOGGLE_MASK;
765 	}
766 }
767 
768 /* ---------- Interrupt Service Routines ---------- */
769 
770 /**
771  * asd_process_donelist_isr -- schedule processing of done list entries
772  * @asd_ha: pointer to host adapter structure
773  */
asd_process_donelist_isr(struct asd_ha_struct * asd_ha)774 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
775 {
776 	tasklet_schedule(&asd_ha->seq.dl_tasklet);
777 }
778 
779 /**
780  * asd_com_sas_isr -- process device communication interrupt (COMINT)
781  * @asd_ha: pointer to host adapter structure
782  */
asd_com_sas_isr(struct asd_ha_struct * asd_ha)783 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
784 {
785 	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
786 
787 	/* clear COMSTAT int */
788 	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
789 
790 	if (comstat & CSBUFPERR) {
791 		asd_printk("%s: command/status buffer dma parity error\n",
792 			   pci_name(asd_ha->pcidev));
793 	} else if (comstat & CSERR) {
794 		int i;
795 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
796 		dmaerr &= 0xFF;
797 		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
798 			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
799 			   pci_name(asd_ha->pcidev),
800 			   dmaerr,
801 			   asd_read_reg_dword(asd_ha, CSDMAADR),
802 			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
803 		asd_printk("CSBUFFER:\n");
804 		for (i = 0; i < 8; i++) {
805 			asd_printk("%08x %08x %08x %08x\n",
806 				   asd_read_reg_dword(asd_ha, CSBUFFER),
807 				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
808 				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
809 				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
810 		}
811 		asd_dump_seq_state(asd_ha, 0);
812 	} else if (comstat & OVLYERR) {
813 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
814 		dmaerr = (dmaerr >> 8) & 0xFF;
815 		asd_printk("%s: overlay dma error:0x%x\n",
816 			   pci_name(asd_ha->pcidev),
817 			   dmaerr);
818 	}
819 	asd_chip_reset(asd_ha);
820 }
821 
asd_arp2_err(struct asd_ha_struct * asd_ha,u32 dchstatus)822 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
823 {
824 	static const char *halt_code[256] = {
825 		"UNEXPECTED_INTERRUPT0",
826 		"UNEXPECTED_INTERRUPT1",
827 		"UNEXPECTED_INTERRUPT2",
828 		"UNEXPECTED_INTERRUPT3",
829 		"UNEXPECTED_INTERRUPT4",
830 		"UNEXPECTED_INTERRUPT5",
831 		"UNEXPECTED_INTERRUPT6",
832 		"UNEXPECTED_INTERRUPT7",
833 		"UNEXPECTED_INTERRUPT8",
834 		"UNEXPECTED_INTERRUPT9",
835 		"UNEXPECTED_INTERRUPT10",
836 		[11 ... 19] = "unknown[11,19]",
837 		"NO_FREE_SCB_AVAILABLE",
838 		"INVALID_SCB_OPCODE",
839 		"INVALID_MBX_OPCODE",
840 		"INVALID_ATA_STATE",
841 		"ATA_QUEUE_FULL",
842 		"ATA_TAG_TABLE_FAULT",
843 		"ATA_TAG_MASK_FAULT",
844 		"BAD_LINK_QUEUE_STATE",
845 		"DMA2CHIM_QUEUE_ERROR",
846 		"EMPTY_SCB_LIST_FULL",
847 		"unknown[30]",
848 		"IN_USE_SCB_ON_FREE_LIST",
849 		"BAD_OPEN_WAIT_STATE",
850 		"INVALID_STP_AFFILIATION",
851 		"unknown[34]",
852 		"EXEC_QUEUE_ERROR",
853 		"TOO_MANY_EMPTIES_NEEDED",
854 		"EMPTY_REQ_QUEUE_ERROR",
855 		"Q_MONIRTT_MGMT_ERROR",
856 		"TARGET_MODE_FLOW_ERROR",
857 		"DEVICE_QUEUE_NOT_FOUND",
858 		"START_IRTT_TIMER_ERROR",
859 		"ABORT_TASK_ILLEGAL_REQ",
860 		[43 ... 255] = "unknown[43,255]"
861 	};
862 
863 	if (dchstatus & CSEQINT) {
864 		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
865 
866 		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
867 			asd_printk("%s: CSEQ arp2int:0x%x\n",
868 				   pci_name(asd_ha->pcidev),
869 				   arp2int);
870 		} else if (arp2int & ARP2HALTC)
871 			asd_printk("%s: CSEQ halted: %s\n",
872 				   pci_name(asd_ha->pcidev),
873 				   halt_code[(arp2int>>16)&0xFF]);
874 		else
875 			asd_printk("%s: CARP2INT:0x%x\n",
876 				   pci_name(asd_ha->pcidev),
877 				   arp2int);
878 	}
879 	if (dchstatus & LSEQINT_MASK) {
880 		int lseq;
881 		u8  lseq_mask = dchstatus & LSEQINT_MASK;
882 
883 		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
884 			u32 arp2int = asd_read_reg_dword(asd_ha,
885 							 LmARP2INT(lseq));
886 			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
887 				       | ARP2CIOPERR)) {
888 				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
889 					   pci_name(asd_ha->pcidev),
890 					   lseq, arp2int);
891 				/* XXX we should only do lseq reset */
892 			} else if (arp2int & ARP2HALTC)
893 				asd_printk("%s: LSEQ%d halted: %s\n",
894 					   pci_name(asd_ha->pcidev),
895 					   lseq,halt_code[(arp2int>>16)&0xFF]);
896 			else
897 				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
898 					   pci_name(asd_ha->pcidev), lseq,
899 					   arp2int);
900 		}
901 	}
902 	asd_chip_reset(asd_ha);
903 }
904 
905 /**
906  * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
907  * @asd_ha: pointer to host adapter structure
908  */
asd_dch_sas_isr(struct asd_ha_struct * asd_ha)909 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
910 {
911 	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
912 
913 	if (dchstatus & CFIFTOERR) {
914 		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
915 		asd_chip_reset(asd_ha);
916 	} else
917 		asd_arp2_err(asd_ha, dchstatus);
918 }
919 
920 /**
921  * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
922  * @asd_ha: pointer to host adapter structure
923  */
asd_rbi_exsi_isr(struct asd_ha_struct * asd_ha)924 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
925 {
926 	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
927 
928 	if (!(stat0r & ASIERR)) {
929 		asd_printk("hmm, EXSI interrupted but no error?\n");
930 		return;
931 	}
932 
933 	if (stat0r & ASIFMTERR) {
934 		asd_printk("ASI SEEPROM format error for %s\n",
935 			   pci_name(asd_ha->pcidev));
936 	} else if (stat0r & ASISEECHKERR) {
937 		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
938 		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
939 			   stat1r & CHECKSUM_MASK,
940 			   pci_name(asd_ha->pcidev));
941 	} else {
942 		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
943 
944 		if (!(statr & CPI2ASIMSTERR_MASK)) {
945 			ASD_DPRINTK("hmm, ASIERR?\n");
946 			return;
947 		} else {
948 			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
949 			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
950 
951 			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
952 				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
953 				   "master id: 0x%x, master err: 0x%x\n",
954 				   pci_name(asd_ha->pcidev),
955 				   addr, data,
956 				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
957 				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
958 				   (statr & CPI2ASITARGERR_MASK) >> 8,
959 				   (statr & CPI2ASITARGMID_MASK) >> 4,
960 				   (statr & CPI2ASIMSTERR_MASK));
961 		}
962 	}
963 	asd_chip_reset(asd_ha);
964 }
965 
966 /**
967  * asd_hst_pcix_isr -- process host interface interrupts
968  * @asd_ha: pointer to host adapter structure
969  *
970  * Asserted on PCIX errors: target abort, etc.
971  */
asd_hst_pcix_isr(struct asd_ha_struct * asd_ha)972 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
973 {
974 	u16 status;
975 	u32 pcix_status;
976 	u32 ecc_status;
977 
978 	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
979 	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
980 	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
981 
982 	if (status & PCI_STATUS_DETECTED_PARITY)
983 		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
984 	else if (status & PCI_STATUS_REC_MASTER_ABORT)
985 		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
986 	else if (status & PCI_STATUS_REC_TARGET_ABORT)
987 		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
988 	else if (status & PCI_STATUS_PARITY)
989 		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
990 	else if (pcix_status & RCV_SCE) {
991 		asd_printk("received split completion error for %s\n",
992 			   pci_name(asd_ha->pcidev));
993 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
994 		/* XXX: Abort task? */
995 		return;
996 	} else if (pcix_status & UNEXP_SC) {
997 		asd_printk("unexpected split completion for %s\n",
998 			   pci_name(asd_ha->pcidev));
999 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
1000 		/* ignore */
1001 		return;
1002 	} else if (pcix_status & SC_DISCARD)
1003 		asd_printk("split completion discarded for %s\n",
1004 			   pci_name(asd_ha->pcidev));
1005 	else if (ecc_status & UNCOR_ECCERR)
1006 		asd_printk("uncorrectable ECC error for %s\n",
1007 			   pci_name(asd_ha->pcidev));
1008 	asd_chip_reset(asd_ha);
1009 }
1010 
1011 /**
1012  * asd_hw_isr -- host adapter interrupt service routine
1013  * @irq: ignored
1014  * @dev_id: pointer to host adapter structure
1015  *
1016  * The ISR processes done list entries and level 3 error handling.
1017  */
asd_hw_isr(int irq,void * dev_id)1018 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1019 {
1020 	struct asd_ha_struct *asd_ha = dev_id;
1021 	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1022 
1023 	if (!chimint)
1024 		return IRQ_NONE;
1025 
1026 	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1027 	(void) asd_read_reg_dword(asd_ha, CHIMINT);
1028 
1029 	if (chimint & DLAVAIL)
1030 		asd_process_donelist_isr(asd_ha);
1031 	if (chimint & COMINT)
1032 		asd_com_sas_isr(asd_ha);
1033 	if (chimint & DEVINT)
1034 		asd_dch_sas_isr(asd_ha);
1035 	if (chimint & INITERR)
1036 		asd_rbi_exsi_isr(asd_ha);
1037 	if (chimint & HOSTERR)
1038 		asd_hst_pcix_isr(asd_ha);
1039 
1040 	return IRQ_HANDLED;
1041 }
1042 
1043 /* ---------- SCB handling ---------- */
1044 
asd_ascb_alloc(struct asd_ha_struct * asd_ha,gfp_t gfp_flags)1045 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1046 				       gfp_t gfp_flags)
1047 {
1048 	extern struct kmem_cache *asd_ascb_cache;
1049 	struct asd_seq_data *seq = &asd_ha->seq;
1050 	struct asd_ascb *ascb;
1051 	unsigned long flags;
1052 
1053 	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1054 
1055 	if (ascb) {
1056 		ascb->dma_scb.size = sizeof(struct scb);
1057 		ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1058 						     gfp_flags,
1059 						    &ascb->dma_scb.dma_handle);
1060 		if (!ascb->dma_scb.vaddr) {
1061 			kmem_cache_free(asd_ascb_cache, ascb);
1062 			return NULL;
1063 		}
1064 		memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1065 		asd_init_ascb(asd_ha, ascb);
1066 
1067 		spin_lock_irqsave(&seq->tc_index_lock, flags);
1068 		ascb->tc_index = asd_tc_index_get(seq, ascb);
1069 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1070 		if (ascb->tc_index == -1)
1071 			goto undo;
1072 
1073 		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1074 	}
1075 
1076 	return ascb;
1077 undo:
1078 	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1079 		      ascb->dma_scb.dma_handle);
1080 	kmem_cache_free(asd_ascb_cache, ascb);
1081 	ASD_DPRINTK("no index for ascb\n");
1082 	return NULL;
1083 }
1084 
1085 /**
1086  * asd_ascb_alloc_list -- allocate a list of aSCBs
1087  * @asd_ha: pointer to host adapter structure
1088  * @num: pointer to integer number of aSCBs
1089  * @gfp_flags: GFP_ flags.
1090  *
1091  * This is the only function which is used to allocate aSCBs.
1092  * It can allocate one or many. If more than one, then they form
1093  * a linked list in two ways: by their list field of the ascb struct
1094  * and by the next_scb field of the scb_header.
1095  *
1096  * Returns NULL if no memory was available, else pointer to a list
1097  * of ascbs.  When this function returns, @num would be the number
1098  * of SCBs which were not able to be allocated, 0 if all requested
1099  * were able to be allocated.
1100  */
asd_ascb_alloc_list(struct asd_ha_struct * asd_ha,int * num,gfp_t gfp_flags)1101 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1102 				     *asd_ha, int *num,
1103 				     gfp_t gfp_flags)
1104 {
1105 	struct asd_ascb *first = NULL;
1106 
1107 	for ( ; *num > 0; --*num) {
1108 		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1109 
1110 		if (!ascb)
1111 			break;
1112 		else if (!first)
1113 			first = ascb;
1114 		else {
1115 			struct asd_ascb *last = list_entry(first->list.prev,
1116 							   struct asd_ascb,
1117 							   list);
1118 			list_add_tail(&ascb->list, &first->list);
1119 			last->scb->header.next_scb =
1120 				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1121 		}
1122 	}
1123 
1124 	return first;
1125 }
1126 
1127 /**
1128  * asd_swap_head_scb -- swap the head scb
1129  * @asd_ha: pointer to host adapter structure
1130  * @ascb: pointer to the head of an ascb list
1131  *
1132  * The sequencer knows the DMA address of the next SCB to be DMAed to
1133  * the host adapter, from initialization or from the last list DMAed.
1134  * seq->next_scb keeps the address of this SCB.  The sequencer will
1135  * DMA to the host adapter this list of SCBs.  But the head (first
1136  * element) of this list is not known to the sequencer.  Here we swap
1137  * the head of the list with the known SCB (memcpy()).
1138  * Only one memcpy() is required per list so it is in our interest
1139  * to keep the list of SCB as long as possible so that the ratio
1140  * of number of memcpy calls to the number of SCB DMA-ed is as small
1141  * as possible.
1142  *
1143  * LOCKING: called with the pending list lock held.
1144  */
asd_swap_head_scb(struct asd_ha_struct * asd_ha,struct asd_ascb * ascb)1145 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1146 			      struct asd_ascb *ascb)
1147 {
1148 	struct asd_seq_data *seq = &asd_ha->seq;
1149 	struct asd_ascb *last = list_entry(ascb->list.prev,
1150 					   struct asd_ascb,
1151 					   list);
1152 	struct asd_dma_tok t = ascb->dma_scb;
1153 
1154 	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1155 	ascb->dma_scb = seq->next_scb;
1156 	ascb->scb = ascb->dma_scb.vaddr;
1157 	seq->next_scb = t;
1158 	last->scb->header.next_scb =
1159 		cpu_to_le64(((u64)seq->next_scb.dma_handle));
1160 }
1161 
1162 /**
1163  * asd_start_timers -- (add and) start timers of SCBs
1164  * @list: pointer to struct list_head of the scbs
1165  * @to: timeout in jiffies
1166  *
1167  * If an SCB in the @list has no timer function, assign the default
1168  * one,  then start the timer of the SCB.  This function is
1169  * intended to be called from asd_post_ascb_list(), just prior to
1170  * posting the SCBs to the sequencer.
1171  */
asd_start_scb_timers(struct list_head * list)1172 static void asd_start_scb_timers(struct list_head *list)
1173 {
1174 	struct asd_ascb *ascb;
1175 	list_for_each_entry(ascb, list, list) {
1176 		if (!ascb->uldd_timer) {
1177 			ascb->timer.data = (unsigned long) ascb;
1178 			ascb->timer.function = asd_ascb_timedout;
1179 			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1180 			add_timer(&ascb->timer);
1181 		}
1182 	}
1183 }
1184 
1185 /**
1186  * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1187  * @asd_ha: pointer to a host adapter structure
1188  * @ascb: pointer to the first aSCB in the list
1189  * @num: number of aSCBs in the list (to be posted)
1190  *
1191  * See queueing comment in asd_post_escb_list().
1192  *
1193  * Additional note on queuing: In order to minimize the ratio of memcpy()
1194  * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1195  * in one go.
1196  * Two cases are possible:
1197  *    A) can_queue >= num,
1198  *    B) can_queue < num.
1199  * Case A: we can send the whole batch at once.  Increment "pending"
1200  * in the beginning of this function, when it is checked, in order to
1201  * eliminate races when this function is called by multiple processes.
1202  * Case B: should never happen if the managing layer considers
1203  * lldd_queue_size.
1204  */
asd_post_ascb_list(struct asd_ha_struct * asd_ha,struct asd_ascb * ascb,int num)1205 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1206 		       int num)
1207 {
1208 	unsigned long flags;
1209 	LIST_HEAD(list);
1210 	int can_queue;
1211 
1212 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1213 	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1214 	if (can_queue >= num)
1215 		asd_ha->seq.pending += num;
1216 	else
1217 		can_queue = 0;
1218 
1219 	if (!can_queue) {
1220 		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1221 		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1222 		return -SAS_QUEUE_FULL;
1223 	}
1224 
1225 	asd_swap_head_scb(asd_ha, ascb);
1226 
1227 	__list_add(&list, ascb->list.prev, &ascb->list);
1228 
1229 	asd_start_scb_timers(&list);
1230 
1231 	asd_ha->seq.scbpro += num;
1232 	list_splice_init(&list, asd_ha->seq.pend_q.prev);
1233 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1234 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1235 
1236 	return 0;
1237 }
1238 
1239 /**
1240  * asd_post_escb_list -- post a list of 1 or more empty scb
1241  * @asd_ha: pointer to a host adapter structure
1242  * @ascb: pointer to the first empty SCB in the list
1243  * @num: number of aSCBs in the list (to be posted)
1244  *
1245  * This is essentially the same as asd_post_ascb_list, but we do not
1246  * increment pending, add those to the pending list or get indexes.
1247  * See asd_init_escbs() and asd_init_post_escbs().
1248  *
1249  * Since sending a list of ascbs is a superset of sending a single
1250  * ascb, this function exists to generalize this.  More specifically,
1251  * when sending a list of those, we want to do only a _single_
1252  * memcpy() at swap head, as opposed to for each ascb sent (in the
1253  * case of sending them one by one).  That is, we want to minimize the
1254  * ratio of memcpy() operations to the number of ascbs sent.  The same
1255  * logic applies to asd_post_ascb_list().
1256  */
asd_post_escb_list(struct asd_ha_struct * asd_ha,struct asd_ascb * ascb,int num)1257 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1258 		       int num)
1259 {
1260 	unsigned long flags;
1261 
1262 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1263 	asd_swap_head_scb(asd_ha, ascb);
1264 	asd_ha->seq.scbpro += num;
1265 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1266 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1267 
1268 	return 0;
1269 }
1270 
1271 /* ---------- LED ---------- */
1272 
1273 /**
1274  * asd_turn_led -- turn on/off an LED
1275  * @asd_ha: pointer to host adapter structure
1276  * @phy_id: the PHY id whose LED we want to manupulate
1277  * @op: 1 to turn on, 0 to turn off
1278  */
asd_turn_led(struct asd_ha_struct * asd_ha,int phy_id,int op)1279 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1280 {
1281 	if (phy_id < ASD_MAX_PHYS) {
1282 		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1283 		if (op)
1284 			v |= LEDPOL;
1285 		else
1286 			v &= ~LEDPOL;
1287 		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1288 	}
1289 }
1290 
1291 /**
1292  * asd_control_led -- enable/disable an LED on the board
1293  * @asd_ha: pointer to host adapter structure
1294  * @phy_id: integer, the phy id
1295  * @op: integer, 1 to enable, 0 to disable the LED
1296  *
1297  * First we output enable the LED, then we set the source
1298  * to be an external module.
1299  */
asd_control_led(struct asd_ha_struct * asd_ha,int phy_id,int op)1300 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1301 {
1302 	if (phy_id < ASD_MAX_PHYS) {
1303 		u32 v;
1304 
1305 		v = asd_read_reg_dword(asd_ha, GPIOOER);
1306 		if (op)
1307 			v |= (1 << phy_id);
1308 		else
1309 			v &= ~(1 << phy_id);
1310 		asd_write_reg_dword(asd_ha, GPIOOER, v);
1311 
1312 		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1313 		if (op)
1314 			v |= (1 << phy_id);
1315 		else
1316 			v &= ~(1 << phy_id);
1317 		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1318 	}
1319 }
1320 
1321 /* ---------- PHY enable ---------- */
1322 
asd_enable_phy(struct asd_ha_struct * asd_ha,int phy_id)1323 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1324 {
1325 	struct asd_phy *phy = &asd_ha->phys[phy_id];
1326 
1327 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1328 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1329 			   HOTPLUG_DELAY_TIMEOUT);
1330 
1331 	/* Get defaults from manuf. sector */
1332 	/* XXX we need defaults for those in case MS is broken. */
1333 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1334 			   phy->phy_desc->phy_control_0);
1335 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1336 			   phy->phy_desc->phy_control_1);
1337 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1338 			   phy->phy_desc->phy_control_2);
1339 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1340 			   phy->phy_desc->phy_control_3);
1341 
1342 	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1343 			    ASD_COMINIT_TIMEOUT);
1344 
1345 	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1346 			   phy->id_frm_tok->dma_handle);
1347 
1348 	asd_control_led(asd_ha, phy_id, 1);
1349 
1350 	return 0;
1351 }
1352 
asd_enable_phys(struct asd_ha_struct * asd_ha,const u8 phy_mask)1353 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1354 {
1355 	u8  phy_m;
1356 	u8  i;
1357 	int num = 0, k;
1358 	struct asd_ascb *ascb;
1359 	struct asd_ascb *ascb_list;
1360 
1361 	if (!phy_mask) {
1362 		asd_printk("%s called with phy_mask of 0!?\n", __func__);
1363 		return 0;
1364 	}
1365 
1366 	for_each_phy(phy_mask, phy_m, i) {
1367 		num++;
1368 		asd_enable_phy(asd_ha, i);
1369 	}
1370 
1371 	k = num;
1372 	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1373 	if (!ascb_list) {
1374 		asd_printk("no memory for control phy ascb list\n");
1375 		return -ENOMEM;
1376 	}
1377 	num -= k;
1378 
1379 	ascb = ascb_list;
1380 	for_each_phy(phy_mask, phy_m, i) {
1381 		asd_build_control_phy(ascb, i, ENABLE_PHY);
1382 		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1383 	}
1384 	ASD_DPRINTK("posting %d control phy scbs\n", num);
1385 	k = asd_post_ascb_list(asd_ha, ascb_list, num);
1386 	if (k)
1387 		asd_ascb_free_list(ascb_list);
1388 
1389 	return k;
1390 }
1391