1 /*
2 * Aic94xx SAS/SATA driver access to shared data structures and memory
3 * maps.
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 *
10 * This file is part of the aic94xx driver.
11 *
12 * The aic94xx driver is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; version 2 of the
15 * License.
16 *
17 * The aic94xx driver is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with the aic94xx driver; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 *
26 */
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30
31 #include "aic94xx.h"
32 #include "aic94xx_reg.h"
33 #include "aic94xx_sds.h"
34
35 /* ---------- OCM stuff ---------- */
36
37 struct asd_ocm_dir_ent {
38 u8 type;
39 u8 offs[3];
40 u8 _r1;
41 u8 size[3];
42 } __attribute__ ((packed));
43
44 struct asd_ocm_dir {
45 char sig[2];
46 u8 _r1[2];
47 u8 major; /* 0 */
48 u8 minor; /* 0 */
49 u8 _r2;
50 u8 num_de;
51 struct asd_ocm_dir_ent entry[15];
52 } __attribute__ ((packed));
53
54 #define OCM_DE_OCM_DIR 0x00
55 #define OCM_DE_WIN_DRVR 0x01
56 #define OCM_DE_BIOS_CHIM 0x02
57 #define OCM_DE_RAID_ENGN 0x03
58 #define OCM_DE_BIOS_INTL 0x04
59 #define OCM_DE_BIOS_CHIM_OSM 0x05
60 #define OCM_DE_BIOS_CHIM_DYNAMIC 0x06
61 #define OCM_DE_ADDC2C_RES0 0x07
62 #define OCM_DE_ADDC2C_RES1 0x08
63 #define OCM_DE_ADDC2C_RES2 0x09
64 #define OCM_DE_ADDC2C_RES3 0x0A
65
66 #define OCM_INIT_DIR_ENTRIES 5
67 /***************************************************************************
68 * OCM directory default
69 ***************************************************************************/
70 static struct asd_ocm_dir OCMDirInit =
71 {
72 .sig = {0x4D, 0x4F}, /* signature */
73 .num_de = OCM_INIT_DIR_ENTRIES, /* no. of directory entries */
74 };
75
76 /***************************************************************************
77 * OCM directory Entries default
78 ***************************************************************************/
79 static struct asd_ocm_dir_ent OCMDirEntriesInit[OCM_INIT_DIR_ENTRIES] =
80 {
81 {
82 .type = (OCM_DE_ADDC2C_RES0), /* Entry type */
83 .offs = {128}, /* Offset */
84 .size = {0, 4}, /* size */
85 },
86 {
87 .type = (OCM_DE_ADDC2C_RES1), /* Entry type */
88 .offs = {128, 4}, /* Offset */
89 .size = {0, 4}, /* size */
90 },
91 {
92 .type = (OCM_DE_ADDC2C_RES2), /* Entry type */
93 .offs = {128, 8}, /* Offset */
94 .size = {0, 4}, /* size */
95 },
96 {
97 .type = (OCM_DE_ADDC2C_RES3), /* Entry type */
98 .offs = {128, 12}, /* Offset */
99 .size = {0, 4}, /* size */
100 },
101 {
102 .type = (OCM_DE_WIN_DRVR), /* Entry type */
103 .offs = {128, 16}, /* Offset */
104 .size = {128, 235, 1}, /* size */
105 },
106 };
107
108 struct asd_bios_chim_struct {
109 char sig[4];
110 u8 major; /* 1 */
111 u8 minor; /* 0 */
112 u8 bios_major;
113 u8 bios_minor;
114 __le32 bios_build;
115 u8 flags;
116 u8 pci_slot;
117 __le16 ue_num;
118 __le16 ue_size;
119 u8 _r[14];
120 /* The unit element array is right here.
121 */
122 } __attribute__ ((packed));
123
124 /**
125 * asd_read_ocm_seg - read an on chip memory (OCM) segment
126 * @asd_ha: pointer to the host adapter structure
127 * @buffer: where to write the read data
128 * @offs: offset into OCM where to read from
129 * @size: how many bytes to read
130 *
131 * Return the number of bytes not read. Return 0 on success.
132 */
asd_read_ocm_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)133 static int asd_read_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
134 u32 offs, int size)
135 {
136 u8 *p = buffer;
137 if (unlikely(asd_ha->iospace))
138 asd_read_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
139 else {
140 for ( ; size > 0; size--, offs++, p++)
141 *p = asd_read_ocm_byte(asd_ha, offs);
142 }
143 return size;
144 }
145
asd_read_ocm_dir(struct asd_ha_struct * asd_ha,struct asd_ocm_dir * dir,u32 offs)146 static int asd_read_ocm_dir(struct asd_ha_struct *asd_ha,
147 struct asd_ocm_dir *dir, u32 offs)
148 {
149 int err = asd_read_ocm_seg(asd_ha, dir, offs, sizeof(*dir));
150 if (err) {
151 ASD_DPRINTK("couldn't read ocm segment\n");
152 return err;
153 }
154
155 if (dir->sig[0] != 'M' || dir->sig[1] != 'O') {
156 ASD_DPRINTK("no valid dir signature(%c%c) at start of OCM\n",
157 dir->sig[0], dir->sig[1]);
158 return -ENOENT;
159 }
160 if (dir->major != 0) {
161 asd_printk("unsupported major version of ocm dir:0x%x\n",
162 dir->major);
163 return -ENOENT;
164 }
165 dir->num_de &= 0xf;
166 return 0;
167 }
168
169 /**
170 * asd_write_ocm_seg - write an on chip memory (OCM) segment
171 * @asd_ha: pointer to the host adapter structure
172 * @buffer: where to read the write data
173 * @offs: offset into OCM to write to
174 * @size: how many bytes to write
175 *
176 * Return the number of bytes not written. Return 0 on success.
177 */
asd_write_ocm_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)178 static void asd_write_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
179 u32 offs, int size)
180 {
181 u8 *p = buffer;
182 if (unlikely(asd_ha->iospace))
183 asd_write_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
184 else {
185 for ( ; size > 0; size--, offs++, p++)
186 asd_write_ocm_byte(asd_ha, offs, *p);
187 }
188 return;
189 }
190
191 #define THREE_TO_NUM(X) ((X)[0] | ((X)[1] << 8) | ((X)[2] << 16))
192
asd_find_dir_entry(struct asd_ocm_dir * dir,u8 type,u32 * offs,u32 * size)193 static int asd_find_dir_entry(struct asd_ocm_dir *dir, u8 type,
194 u32 *offs, u32 *size)
195 {
196 int i;
197 struct asd_ocm_dir_ent *ent;
198
199 for (i = 0; i < dir->num_de; i++) {
200 if (dir->entry[i].type == type)
201 break;
202 }
203 if (i >= dir->num_de)
204 return -ENOENT;
205 ent = &dir->entry[i];
206 *offs = (u32) THREE_TO_NUM(ent->offs);
207 *size = (u32) THREE_TO_NUM(ent->size);
208 return 0;
209 }
210
211 #define OCM_BIOS_CHIM_DE 2
212 #define BC_BIOS_PRESENT 1
213
asd_get_bios_chim(struct asd_ha_struct * asd_ha,struct asd_ocm_dir * dir)214 static int asd_get_bios_chim(struct asd_ha_struct *asd_ha,
215 struct asd_ocm_dir *dir)
216 {
217 int err;
218 struct asd_bios_chim_struct *bc_struct;
219 u32 offs, size;
220
221 err = asd_find_dir_entry(dir, OCM_BIOS_CHIM_DE, &offs, &size);
222 if (err) {
223 ASD_DPRINTK("couldn't find BIOS_CHIM dir ent\n");
224 goto out;
225 }
226 err = -ENOMEM;
227 bc_struct = kmalloc(sizeof(*bc_struct), GFP_KERNEL);
228 if (!bc_struct) {
229 asd_printk("no memory for bios_chim struct\n");
230 goto out;
231 }
232 err = asd_read_ocm_seg(asd_ha, (void *)bc_struct, offs,
233 sizeof(*bc_struct));
234 if (err) {
235 ASD_DPRINTK("couldn't read ocm segment\n");
236 goto out2;
237 }
238 if (strncmp(bc_struct->sig, "SOIB", 4)
239 && strncmp(bc_struct->sig, "IPSA", 4)) {
240 ASD_DPRINTK("BIOS_CHIM entry has no valid sig(%c%c%c%c)\n",
241 bc_struct->sig[0], bc_struct->sig[1],
242 bc_struct->sig[2], bc_struct->sig[3]);
243 err = -ENOENT;
244 goto out2;
245 }
246 if (bc_struct->major != 1) {
247 asd_printk("BIOS_CHIM unsupported major version:0x%x\n",
248 bc_struct->major);
249 err = -ENOENT;
250 goto out2;
251 }
252 if (bc_struct->flags & BC_BIOS_PRESENT) {
253 asd_ha->hw_prof.bios.present = 1;
254 asd_ha->hw_prof.bios.maj = bc_struct->bios_major;
255 asd_ha->hw_prof.bios.min = bc_struct->bios_minor;
256 asd_ha->hw_prof.bios.bld = le32_to_cpu(bc_struct->bios_build);
257 ASD_DPRINTK("BIOS present (%d,%d), %d\n",
258 asd_ha->hw_prof.bios.maj,
259 asd_ha->hw_prof.bios.min,
260 asd_ha->hw_prof.bios.bld);
261 }
262 asd_ha->hw_prof.ue.num = le16_to_cpu(bc_struct->ue_num);
263 asd_ha->hw_prof.ue.size= le16_to_cpu(bc_struct->ue_size);
264 ASD_DPRINTK("ue num:%d, ue size:%d\n", asd_ha->hw_prof.ue.num,
265 asd_ha->hw_prof.ue.size);
266 size = asd_ha->hw_prof.ue.num * asd_ha->hw_prof.ue.size;
267 if (size > 0) {
268 err = -ENOMEM;
269 asd_ha->hw_prof.ue.area = kmalloc(size, GFP_KERNEL);
270 if (!asd_ha->hw_prof.ue.area)
271 goto out2;
272 err = asd_read_ocm_seg(asd_ha, (void *)asd_ha->hw_prof.ue.area,
273 offs + sizeof(*bc_struct), size);
274 if (err) {
275 kfree(asd_ha->hw_prof.ue.area);
276 asd_ha->hw_prof.ue.area = NULL;
277 asd_ha->hw_prof.ue.num = 0;
278 asd_ha->hw_prof.ue.size = 0;
279 ASD_DPRINTK("couldn't read ue entries(%d)\n", err);
280 }
281 }
282 out2:
283 kfree(bc_struct);
284 out:
285 return err;
286 }
287
288 static void
asd_hwi_initialize_ocm_dir(struct asd_ha_struct * asd_ha)289 asd_hwi_initialize_ocm_dir (struct asd_ha_struct *asd_ha)
290 {
291 int i;
292
293 /* Zero OCM */
294 for (i = 0; i < OCM_MAX_SIZE; i += 4)
295 asd_write_ocm_dword(asd_ha, i, 0);
296
297 /* Write Dir */
298 asd_write_ocm_seg(asd_ha, &OCMDirInit, 0,
299 sizeof(struct asd_ocm_dir));
300
301 /* Write Dir Entries */
302 for (i = 0; i < OCM_INIT_DIR_ENTRIES; i++)
303 asd_write_ocm_seg(asd_ha, &OCMDirEntriesInit[i],
304 sizeof(struct asd_ocm_dir) +
305 (i * sizeof(struct asd_ocm_dir_ent))
306 , sizeof(struct asd_ocm_dir_ent));
307
308 }
309
310 static int
asd_hwi_check_ocm_access(struct asd_ha_struct * asd_ha)311 asd_hwi_check_ocm_access (struct asd_ha_struct *asd_ha)
312 {
313 struct pci_dev *pcidev = asd_ha->pcidev;
314 u32 reg;
315 int err = 0;
316 u32 v;
317
318 /* check if OCM has been initialized by BIOS */
319 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
320
321 if (!(reg & OCMINITIALIZED)) {
322 err = pci_read_config_dword(pcidev, PCIC_INTRPT_STAT, &v);
323 if (err) {
324 asd_printk("couldn't access PCIC_INTRPT_STAT of %s\n",
325 pci_name(pcidev));
326 goto out;
327 }
328
329 printk(KERN_INFO "OCM is not initialized by BIOS,"
330 "reinitialize it and ignore it, current IntrptStatus"
331 "is 0x%x\n", v);
332
333 if (v)
334 err = pci_write_config_dword(pcidev,
335 PCIC_INTRPT_STAT, v);
336 if (err) {
337 asd_printk("couldn't write PCIC_INTRPT_STAT of %s\n",
338 pci_name(pcidev));
339 goto out;
340 }
341
342 asd_hwi_initialize_ocm_dir(asd_ha);
343
344 }
345 out:
346 return err;
347 }
348
349 /**
350 * asd_read_ocm - read on chip memory (OCM)
351 * @asd_ha: pointer to the host adapter structure
352 */
asd_read_ocm(struct asd_ha_struct * asd_ha)353 int asd_read_ocm(struct asd_ha_struct *asd_ha)
354 {
355 int err;
356 struct asd_ocm_dir *dir;
357
358 if (asd_hwi_check_ocm_access(asd_ha))
359 return -1;
360
361 dir = kmalloc(sizeof(*dir), GFP_KERNEL);
362 if (!dir) {
363 asd_printk("no memory for ocm dir\n");
364 return -ENOMEM;
365 }
366
367 err = asd_read_ocm_dir(asd_ha, dir, 0);
368 if (err)
369 goto out;
370
371 err = asd_get_bios_chim(asd_ha, dir);
372 out:
373 kfree(dir);
374 return err;
375 }
376
377 /* ---------- FLASH stuff ---------- */
378
379 #define FLASH_RESET 0xF0
380
381 #define ASD_FLASH_SIZE 0x200000
382 #define FLASH_DIR_COOKIE "*** ADAPTEC FLASH DIRECTORY *** "
383 #define FLASH_NEXT_ENTRY_OFFS 0x2000
384 #define FLASH_MAX_DIR_ENTRIES 32
385
386 #define FLASH_DE_TYPE_MASK 0x3FFFFFFF
387 #define FLASH_DE_MS 0x120
388 #define FLASH_DE_CTRL_A_USER 0xE0
389
390 struct asd_flash_de {
391 __le32 type;
392 __le32 offs;
393 __le32 pad_size;
394 __le32 image_size;
395 __le32 chksum;
396 u8 _r[12];
397 u8 version[32];
398 } __attribute__ ((packed));
399
400 struct asd_flash_dir {
401 u8 cookie[32];
402 __le32 rev; /* 2 */
403 __le32 chksum;
404 __le32 chksum_antidote;
405 __le32 bld;
406 u8 bld_id[32]; /* build id data */
407 u8 ver_data[32]; /* date and time of build */
408 __le32 ae_mask;
409 __le32 v_mask;
410 __le32 oc_mask;
411 u8 _r[20];
412 struct asd_flash_de dir_entry[FLASH_MAX_DIR_ENTRIES];
413 } __attribute__ ((packed));
414
415 struct asd_manuf_sec {
416 char sig[2]; /* 'S', 'M' */
417 u16 offs_next;
418 u8 maj; /* 0 */
419 u8 min; /* 0 */
420 u16 chksum;
421 u16 size;
422 u8 _r[6];
423 u8 sas_addr[SAS_ADDR_SIZE];
424 u8 pcba_sn[ASD_PCBA_SN_SIZE];
425 /* Here start the other segments */
426 u8 linked_list[0];
427 } __attribute__ ((packed));
428
429 struct asd_manuf_phy_desc {
430 u8 state; /* low 4 bits */
431 #define MS_PHY_STATE_ENABLED 0
432 #define MS_PHY_STATE_REPORTED 1
433 #define MS_PHY_STATE_HIDDEN 2
434 u8 phy_id;
435 u16 _r;
436 u8 phy_control_0; /* mode 5 reg 0x160 */
437 u8 phy_control_1; /* mode 5 reg 0x161 */
438 u8 phy_control_2; /* mode 5 reg 0x162 */
439 u8 phy_control_3; /* mode 5 reg 0x163 */
440 } __attribute__ ((packed));
441
442 struct asd_manuf_phy_param {
443 char sig[2]; /* 'P', 'M' */
444 u16 next;
445 u8 maj; /* 0 */
446 u8 min; /* 2 */
447 u8 num_phy_desc; /* 8 */
448 u8 phy_desc_size; /* 8 */
449 u8 _r[3];
450 u8 usage_model_id;
451 u32 _r2;
452 struct asd_manuf_phy_desc phy_desc[ASD_MAX_PHYS];
453 } __attribute__ ((packed));
454
455 #if 0
456 static const char *asd_sb_type[] = {
457 "unknown",
458 "SGPIO",
459 [2 ... 0x7F] = "unknown",
460 [0x80] = "ADPT_I2C",
461 [0x81 ... 0xFF] = "VENDOR_UNIQUExx"
462 };
463 #endif
464
465 struct asd_ms_sb_desc {
466 u8 type;
467 u8 node_desc_index;
468 u8 conn_desc_index;
469 u8 _recvd[0];
470 } __attribute__ ((packed));
471
472 #if 0
473 static const char *asd_conn_type[] = {
474 [0 ... 7] = "unknown",
475 "SFF8470",
476 "SFF8482",
477 "SFF8484",
478 [0x80] = "PCIX_DAUGHTER0",
479 [0x81] = "SAS_DAUGHTER0",
480 [0x82 ... 0xFF] = "VENDOR_UNIQUExx"
481 };
482
483 static const char *asd_conn_location[] = {
484 "unknown",
485 "internal",
486 "external",
487 "board_to_board",
488 };
489 #endif
490
491 struct asd_ms_conn_desc {
492 u8 type;
493 u8 location;
494 u8 num_sideband_desc;
495 u8 size_sideband_desc;
496 u32 _resvd;
497 u8 name[16];
498 struct asd_ms_sb_desc sb_desc[0];
499 } __attribute__ ((packed));
500
501 struct asd_nd_phy_desc {
502 u8 vp_attch_type;
503 u8 attch_specific[0];
504 } __attribute__ ((packed));
505
506 #if 0
507 static const char *asd_node_type[] = {
508 "IOP",
509 "IO_CONTROLLER",
510 "EXPANDER",
511 "PORT_MULTIPLIER",
512 "PORT_MULTIPLEXER",
513 "MULTI_DROP_I2C_BUS",
514 };
515 #endif
516
517 struct asd_ms_node_desc {
518 u8 type;
519 u8 num_phy_desc;
520 u8 size_phy_desc;
521 u8 _resvd;
522 u8 name[16];
523 struct asd_nd_phy_desc phy_desc[0];
524 } __attribute__ ((packed));
525
526 struct asd_ms_conn_map {
527 char sig[2]; /* 'M', 'C' */
528 __le16 next;
529 u8 maj; /* 0 */
530 u8 min; /* 0 */
531 __le16 cm_size; /* size of this struct */
532 u8 num_conn;
533 u8 conn_size;
534 u8 num_nodes;
535 u8 usage_model_id;
536 u32 _resvd;
537 struct asd_ms_conn_desc conn_desc[0];
538 struct asd_ms_node_desc node_desc[0];
539 } __attribute__ ((packed));
540
541 struct asd_ctrla_phy_entry {
542 u8 sas_addr[SAS_ADDR_SIZE];
543 u8 sas_link_rates; /* max in hi bits, min in low bits */
544 u8 flags;
545 u8 sata_link_rates;
546 u8 _r[5];
547 } __attribute__ ((packed));
548
549 struct asd_ctrla_phy_settings {
550 u8 id0; /* P'h'y */
551 u8 _r;
552 u16 next;
553 u8 num_phys; /* number of PHYs in the PCI function */
554 u8 _r2[3];
555 struct asd_ctrla_phy_entry phy_ent[ASD_MAX_PHYS];
556 } __attribute__ ((packed));
557
558 struct asd_ll_el {
559 u8 id0;
560 u8 id1;
561 __le16 next;
562 u8 something_here[0];
563 } __attribute__ ((packed));
564
asd_poll_flash(struct asd_ha_struct * asd_ha)565 static int asd_poll_flash(struct asd_ha_struct *asd_ha)
566 {
567 int c;
568 u8 d;
569
570 for (c = 5000; c > 0; c--) {
571 d = asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
572 d ^= asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
573 if (!d)
574 return 0;
575 udelay(5);
576 }
577 return -ENOENT;
578 }
579
asd_reset_flash(struct asd_ha_struct * asd_ha)580 static int asd_reset_flash(struct asd_ha_struct *asd_ha)
581 {
582 int err;
583
584 err = asd_poll_flash(asd_ha);
585 if (err)
586 return err;
587 asd_write_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar, FLASH_RESET);
588 err = asd_poll_flash(asd_ha);
589
590 return err;
591 }
592
asd_read_flash_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)593 static int asd_read_flash_seg(struct asd_ha_struct *asd_ha,
594 void *buffer, u32 offs, int size)
595 {
596 asd_read_reg_string(asd_ha, buffer, asd_ha->hw_prof.flash.bar+offs,
597 size);
598 return 0;
599 }
600
601 /**
602 * asd_find_flash_dir - finds and reads the flash directory
603 * @asd_ha: pointer to the host adapter structure
604 * @flash_dir: pointer to flash directory structure
605 *
606 * If found, the flash directory segment will be copied to
607 * @flash_dir. Return 1 if found, 0 if not.
608 */
asd_find_flash_dir(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)609 static int asd_find_flash_dir(struct asd_ha_struct *asd_ha,
610 struct asd_flash_dir *flash_dir)
611 {
612 u32 v;
613 for (v = 0; v < ASD_FLASH_SIZE; v += FLASH_NEXT_ENTRY_OFFS) {
614 asd_read_flash_seg(asd_ha, flash_dir, v,
615 sizeof(FLASH_DIR_COOKIE)-1);
616 if (memcmp(flash_dir->cookie, FLASH_DIR_COOKIE,
617 sizeof(FLASH_DIR_COOKIE)-1) == 0) {
618 asd_ha->hw_prof.flash.dir_offs = v;
619 asd_read_flash_seg(asd_ha, flash_dir, v,
620 sizeof(*flash_dir));
621 return 1;
622 }
623 }
624 return 0;
625 }
626
asd_flash_getid(struct asd_ha_struct * asd_ha)627 static int asd_flash_getid(struct asd_ha_struct *asd_ha)
628 {
629 int err = 0;
630 u32 reg;
631
632 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
633
634 if (pci_read_config_dword(asd_ha->pcidev, PCI_CONF_FLSH_BAR,
635 &asd_ha->hw_prof.flash.bar)) {
636 asd_printk("couldn't read PCI_CONF_FLSH_BAR of %s\n",
637 pci_name(asd_ha->pcidev));
638 return -ENOENT;
639 }
640 asd_ha->hw_prof.flash.present = 1;
641 asd_ha->hw_prof.flash.wide = reg & FLASHW ? 1 : 0;
642 err = asd_reset_flash(asd_ha);
643 if (err) {
644 ASD_DPRINTK("couldn't reset flash(%d)\n", err);
645 return err;
646 }
647 return 0;
648 }
649
asd_calc_flash_chksum(u16 * p,int size)650 static u16 asd_calc_flash_chksum(u16 *p, int size)
651 {
652 u16 chksum = 0;
653
654 while (size-- > 0)
655 chksum += *p++;
656
657 return chksum;
658 }
659
660
asd_find_flash_de(struct asd_flash_dir * flash_dir,u32 entry_type,u32 * offs,u32 * size)661 static int asd_find_flash_de(struct asd_flash_dir *flash_dir, u32 entry_type,
662 u32 *offs, u32 *size)
663 {
664 int i;
665 struct asd_flash_de *de;
666
667 for (i = 0; i < FLASH_MAX_DIR_ENTRIES; i++) {
668 u32 type = le32_to_cpu(flash_dir->dir_entry[i].type);
669
670 type &= FLASH_DE_TYPE_MASK;
671 if (type == entry_type)
672 break;
673 }
674 if (i >= FLASH_MAX_DIR_ENTRIES)
675 return -ENOENT;
676 de = &flash_dir->dir_entry[i];
677 *offs = le32_to_cpu(de->offs);
678 *size = le32_to_cpu(de->pad_size);
679 return 0;
680 }
681
asd_validate_ms(struct asd_manuf_sec * ms)682 static int asd_validate_ms(struct asd_manuf_sec *ms)
683 {
684 if (ms->sig[0] != 'S' || ms->sig[1] != 'M') {
685 ASD_DPRINTK("manuf sec: no valid sig(%c%c)\n",
686 ms->sig[0], ms->sig[1]);
687 return -ENOENT;
688 }
689 if (ms->maj != 0) {
690 asd_printk("unsupported manuf. sector. major version:%x\n",
691 ms->maj);
692 return -ENOENT;
693 }
694 ms->offs_next = le16_to_cpu((__force __le16) ms->offs_next);
695 ms->chksum = le16_to_cpu((__force __le16) ms->chksum);
696 ms->size = le16_to_cpu((__force __le16) ms->size);
697
698 if (asd_calc_flash_chksum((u16 *)ms, ms->size/2)) {
699 asd_printk("failed manuf sector checksum\n");
700 }
701
702 return 0;
703 }
704
asd_ms_get_sas_addr(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * ms)705 static int asd_ms_get_sas_addr(struct asd_ha_struct *asd_ha,
706 struct asd_manuf_sec *ms)
707 {
708 memcpy(asd_ha->hw_prof.sas_addr, ms->sas_addr, SAS_ADDR_SIZE);
709 return 0;
710 }
711
asd_ms_get_pcba_sn(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * ms)712 static int asd_ms_get_pcba_sn(struct asd_ha_struct *asd_ha,
713 struct asd_manuf_sec *ms)
714 {
715 memcpy(asd_ha->hw_prof.pcba_sn, ms->pcba_sn, ASD_PCBA_SN_SIZE);
716 asd_ha->hw_prof.pcba_sn[ASD_PCBA_SN_SIZE] = '\0';
717 return 0;
718 }
719
720 /**
721 * asd_find_ll_by_id - find a linked list entry by its id
722 * @start: void pointer to the first element in the linked list
723 * @id0: the first byte of the id (offs 0)
724 * @id1: the second byte of the id (offs 1)
725 *
726 * @start has to be the _base_ element start, since the
727 * linked list entries's offset is from this pointer.
728 * Some linked list entries use only the first id, in which case
729 * you can pass 0xFF for the second.
730 */
asd_find_ll_by_id(void * const start,const u8 id0,const u8 id1)731 static void *asd_find_ll_by_id(void * const start, const u8 id0, const u8 id1)
732 {
733 struct asd_ll_el *el = start;
734
735 do {
736 switch (id1) {
737 default:
738 if (el->id1 == id1)
739 case 0xFF:
740 if (el->id0 == id0)
741 return el;
742 }
743 el = start + le16_to_cpu(el->next);
744 } while (el != start);
745
746 return NULL;
747 }
748
749 /**
750 * asd_ms_get_phy_params - get phy parameters from the manufacturing sector
751 * @asd_ha: pointer to the host adapter structure
752 * @manuf_sec: pointer to the manufacturing sector
753 *
754 * The manufacturing sector contans also the linked list of sub-segments,
755 * since when it was read, its size was taken from the flash directory,
756 * not from the structure size.
757 *
758 * HIDDEN phys do not count in the total count. REPORTED phys cannot
759 * be enabled but are reported and counted towards the total.
760 * ENABLED phys are enabled by default and count towards the total.
761 * The absolute total phy number is ASD_MAX_PHYS. hw_prof->num_phys
762 * merely specifies the number of phys the host adapter decided to
763 * report. E.g., it is possible for phys 0, 1 and 2 to be HIDDEN,
764 * phys 3, 4 and 5 to be REPORTED and phys 6 and 7 to be ENABLED.
765 * In this case ASD_MAX_PHYS is 8, hw_prof->num_phys is 5, and only 2
766 * are actually enabled (enabled by default, max number of phys
767 * enableable in this case).
768 */
asd_ms_get_phy_params(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * manuf_sec)769 static int asd_ms_get_phy_params(struct asd_ha_struct *asd_ha,
770 struct asd_manuf_sec *manuf_sec)
771 {
772 int i;
773 int en_phys = 0;
774 int rep_phys = 0;
775 struct asd_manuf_phy_param *phy_param;
776 struct asd_manuf_phy_param dflt_phy_param;
777
778 phy_param = asd_find_ll_by_id(manuf_sec, 'P', 'M');
779 if (!phy_param) {
780 ASD_DPRINTK("ms: no phy parameters found\n");
781 ASD_DPRINTK("ms: Creating default phy parameters\n");
782 dflt_phy_param.sig[0] = 'P';
783 dflt_phy_param.sig[1] = 'M';
784 dflt_phy_param.maj = 0;
785 dflt_phy_param.min = 2;
786 dflt_phy_param.num_phy_desc = 8;
787 dflt_phy_param.phy_desc_size = sizeof(struct asd_manuf_phy_desc);
788 for (i =0; i < ASD_MAX_PHYS; i++) {
789 dflt_phy_param.phy_desc[i].state = 0;
790 dflt_phy_param.phy_desc[i].phy_id = i;
791 dflt_phy_param.phy_desc[i].phy_control_0 = 0xf6;
792 dflt_phy_param.phy_desc[i].phy_control_1 = 0x10;
793 dflt_phy_param.phy_desc[i].phy_control_2 = 0x43;
794 dflt_phy_param.phy_desc[i].phy_control_3 = 0xeb;
795 }
796
797 phy_param = &dflt_phy_param;
798
799 }
800
801 if (phy_param->maj != 0) {
802 asd_printk("unsupported manuf. phy param major version:0x%x\n",
803 phy_param->maj);
804 return -ENOENT;
805 }
806
807 ASD_DPRINTK("ms: num_phy_desc: %d\n", phy_param->num_phy_desc);
808 asd_ha->hw_prof.enabled_phys = 0;
809 for (i = 0; i < phy_param->num_phy_desc; i++) {
810 struct asd_manuf_phy_desc *pd = &phy_param->phy_desc[i];
811 switch (pd->state & 0xF) {
812 case MS_PHY_STATE_HIDDEN:
813 ASD_DPRINTK("ms: phy%d: HIDDEN\n", i);
814 continue;
815 case MS_PHY_STATE_REPORTED:
816 ASD_DPRINTK("ms: phy%d: REPORTED\n", i);
817 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
818 rep_phys++;
819 continue;
820 case MS_PHY_STATE_ENABLED:
821 ASD_DPRINTK("ms: phy%d: ENABLED\n", i);
822 asd_ha->hw_prof.enabled_phys |= (1 << i);
823 en_phys++;
824 break;
825 }
826 asd_ha->hw_prof.phy_desc[i].phy_control_0 = pd->phy_control_0;
827 asd_ha->hw_prof.phy_desc[i].phy_control_1 = pd->phy_control_1;
828 asd_ha->hw_prof.phy_desc[i].phy_control_2 = pd->phy_control_2;
829 asd_ha->hw_prof.phy_desc[i].phy_control_3 = pd->phy_control_3;
830 }
831 asd_ha->hw_prof.max_phys = rep_phys + en_phys;
832 asd_ha->hw_prof.num_phys = en_phys;
833 ASD_DPRINTK("ms: max_phys:0x%x, num_phys:0x%x\n",
834 asd_ha->hw_prof.max_phys, asd_ha->hw_prof.num_phys);
835 ASD_DPRINTK("ms: enabled_phys:0x%x\n", asd_ha->hw_prof.enabled_phys);
836 return 0;
837 }
838
asd_ms_get_connector_map(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * manuf_sec)839 static int asd_ms_get_connector_map(struct asd_ha_struct *asd_ha,
840 struct asd_manuf_sec *manuf_sec)
841 {
842 struct asd_ms_conn_map *cm;
843
844 cm = asd_find_ll_by_id(manuf_sec, 'M', 'C');
845 if (!cm) {
846 ASD_DPRINTK("ms: no connector map found\n");
847 return 0;
848 }
849
850 if (cm->maj != 0) {
851 ASD_DPRINTK("ms: unsupported: connector map major version 0x%x"
852 "\n", cm->maj);
853 return -ENOENT;
854 }
855
856 /* XXX */
857
858 return 0;
859 }
860
861
862 /**
863 * asd_process_ms - find and extract information from the manufacturing sector
864 * @asd_ha: pointer to the host adapter structure
865 * @flash_dir: pointer to the flash directory
866 */
asd_process_ms(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)867 static int asd_process_ms(struct asd_ha_struct *asd_ha,
868 struct asd_flash_dir *flash_dir)
869 {
870 int err;
871 struct asd_manuf_sec *manuf_sec;
872 u32 offs, size;
873
874 err = asd_find_flash_de(flash_dir, FLASH_DE_MS, &offs, &size);
875 if (err) {
876 ASD_DPRINTK("Couldn't find the manuf. sector\n");
877 goto out;
878 }
879
880 if (size == 0)
881 goto out;
882
883 err = -ENOMEM;
884 manuf_sec = kmalloc(size, GFP_KERNEL);
885 if (!manuf_sec) {
886 ASD_DPRINTK("no mem for manuf sector\n");
887 goto out;
888 }
889
890 err = asd_read_flash_seg(asd_ha, (void *)manuf_sec, offs, size);
891 if (err) {
892 ASD_DPRINTK("couldn't read manuf sector at 0x%x, size 0x%x\n",
893 offs, size);
894 goto out2;
895 }
896
897 err = asd_validate_ms(manuf_sec);
898 if (err) {
899 ASD_DPRINTK("couldn't validate manuf sector\n");
900 goto out2;
901 }
902
903 err = asd_ms_get_sas_addr(asd_ha, manuf_sec);
904 if (err) {
905 ASD_DPRINTK("couldn't read the SAS_ADDR\n");
906 goto out2;
907 }
908 ASD_DPRINTK("manuf sect SAS_ADDR %llx\n",
909 SAS_ADDR(asd_ha->hw_prof.sas_addr));
910
911 err = asd_ms_get_pcba_sn(asd_ha, manuf_sec);
912 if (err) {
913 ASD_DPRINTK("couldn't read the PCBA SN\n");
914 goto out2;
915 }
916 ASD_DPRINTK("manuf sect PCBA SN %s\n", asd_ha->hw_prof.pcba_sn);
917
918 err = asd_ms_get_phy_params(asd_ha, manuf_sec);
919 if (err) {
920 ASD_DPRINTK("ms: couldn't get phy parameters\n");
921 goto out2;
922 }
923
924 err = asd_ms_get_connector_map(asd_ha, manuf_sec);
925 if (err) {
926 ASD_DPRINTK("ms: couldn't get connector map\n");
927 goto out2;
928 }
929
930 out2:
931 kfree(manuf_sec);
932 out:
933 return err;
934 }
935
asd_process_ctrla_phy_settings(struct asd_ha_struct * asd_ha,struct asd_ctrla_phy_settings * ps)936 static int asd_process_ctrla_phy_settings(struct asd_ha_struct *asd_ha,
937 struct asd_ctrla_phy_settings *ps)
938 {
939 int i;
940 for (i = 0; i < ps->num_phys; i++) {
941 struct asd_ctrla_phy_entry *pe = &ps->phy_ent[i];
942
943 if (!PHY_ENABLED(asd_ha, i))
944 continue;
945 if (*(u64 *)pe->sas_addr == 0) {
946 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
947 continue;
948 }
949 /* This is the SAS address which should be sent in IDENTIFY. */
950 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, pe->sas_addr,
951 SAS_ADDR_SIZE);
952 asd_ha->hw_prof.phy_desc[i].max_sas_lrate =
953 (pe->sas_link_rates & 0xF0) >> 4;
954 asd_ha->hw_prof.phy_desc[i].min_sas_lrate =
955 (pe->sas_link_rates & 0x0F);
956 asd_ha->hw_prof.phy_desc[i].max_sata_lrate =
957 (pe->sata_link_rates & 0xF0) >> 4;
958 asd_ha->hw_prof.phy_desc[i].min_sata_lrate =
959 (pe->sata_link_rates & 0x0F);
960 asd_ha->hw_prof.phy_desc[i].flags = pe->flags;
961 ASD_DPRINTK("ctrla: phy%d: sas_addr: %llx, sas rate:0x%x-0x%x,"
962 " sata rate:0x%x-0x%x, flags:0x%x\n",
963 i,
964 SAS_ADDR(asd_ha->hw_prof.phy_desc[i].sas_addr),
965 asd_ha->hw_prof.phy_desc[i].max_sas_lrate,
966 asd_ha->hw_prof.phy_desc[i].min_sas_lrate,
967 asd_ha->hw_prof.phy_desc[i].max_sata_lrate,
968 asd_ha->hw_prof.phy_desc[i].min_sata_lrate,
969 asd_ha->hw_prof.phy_desc[i].flags);
970 }
971
972 return 0;
973 }
974
975 /**
976 * asd_process_ctrl_a_user - process CTRL-A user settings
977 * @asd_ha: pointer to the host adapter structure
978 * @flash_dir: pointer to the flash directory
979 */
asd_process_ctrl_a_user(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)980 static int asd_process_ctrl_a_user(struct asd_ha_struct *asd_ha,
981 struct asd_flash_dir *flash_dir)
982 {
983 int err, i;
984 u32 offs, size;
985 struct asd_ll_el *el;
986 struct asd_ctrla_phy_settings *ps;
987 struct asd_ctrla_phy_settings dflt_ps;
988
989 err = asd_find_flash_de(flash_dir, FLASH_DE_CTRL_A_USER, &offs, &size);
990 if (err) {
991 ASD_DPRINTK("couldn't find CTRL-A user settings section\n");
992 ASD_DPRINTK("Creating default CTRL-A user settings section\n");
993
994 dflt_ps.id0 = 'h';
995 dflt_ps.num_phys = 8;
996 for (i =0; i < ASD_MAX_PHYS; i++) {
997 memcpy(dflt_ps.phy_ent[i].sas_addr,
998 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
999 dflt_ps.phy_ent[i].sas_link_rates = 0x98;
1000 dflt_ps.phy_ent[i].flags = 0x0;
1001 dflt_ps.phy_ent[i].sata_link_rates = 0x0;
1002 }
1003
1004 size = sizeof(struct asd_ctrla_phy_settings);
1005 ps = &dflt_ps;
1006 }
1007
1008 if (size == 0)
1009 goto out;
1010
1011 err = -ENOMEM;
1012 el = kmalloc(size, GFP_KERNEL);
1013 if (!el) {
1014 ASD_DPRINTK("no mem for ctrla user settings section\n");
1015 goto out;
1016 }
1017
1018 err = asd_read_flash_seg(asd_ha, (void *)el, offs, size);
1019 if (err) {
1020 ASD_DPRINTK("couldn't read ctrla phy settings section\n");
1021 goto out2;
1022 }
1023
1024 err = -ENOENT;
1025 ps = asd_find_ll_by_id(el, 'h', 0xFF);
1026 if (!ps) {
1027 ASD_DPRINTK("couldn't find ctrla phy settings struct\n");
1028 goto out2;
1029 }
1030
1031 err = asd_process_ctrla_phy_settings(asd_ha, ps);
1032 if (err) {
1033 ASD_DPRINTK("couldn't process ctrla phy settings\n");
1034 goto out2;
1035 }
1036 out2:
1037 kfree(el);
1038 out:
1039 return err;
1040 }
1041
1042 /**
1043 * asd_read_flash - read flash memory
1044 * @asd_ha: pointer to the host adapter structure
1045 */
asd_read_flash(struct asd_ha_struct * asd_ha)1046 int asd_read_flash(struct asd_ha_struct *asd_ha)
1047 {
1048 int err;
1049 struct asd_flash_dir *flash_dir;
1050
1051 err = asd_flash_getid(asd_ha);
1052 if (err)
1053 return err;
1054
1055 flash_dir = kmalloc(sizeof(*flash_dir), GFP_KERNEL);
1056 if (!flash_dir)
1057 return -ENOMEM;
1058
1059 err = -ENOENT;
1060 if (!asd_find_flash_dir(asd_ha, flash_dir)) {
1061 ASD_DPRINTK("couldn't find flash directory\n");
1062 goto out;
1063 }
1064
1065 if (le32_to_cpu(flash_dir->rev) != 2) {
1066 asd_printk("unsupported flash dir version:0x%x\n",
1067 le32_to_cpu(flash_dir->rev));
1068 goto out;
1069 }
1070
1071 err = asd_process_ms(asd_ha, flash_dir);
1072 if (err) {
1073 ASD_DPRINTK("couldn't process manuf sector settings\n");
1074 goto out;
1075 }
1076
1077 err = asd_process_ctrl_a_user(asd_ha, flash_dir);
1078 if (err) {
1079 ASD_DPRINTK("couldn't process CTRL-A user settings\n");
1080 goto out;
1081 }
1082
1083 out:
1084 kfree(flash_dir);
1085 return err;
1086 }
1087
1088 /**
1089 * asd_verify_flash_seg - verify data with flash memory
1090 * @asd_ha: pointer to the host adapter structure
1091 * @src: pointer to the source data to be verified
1092 * @dest_offset: offset from flash memory
1093 * @bytes_to_verify: total bytes to verify
1094 */
asd_verify_flash_seg(struct asd_ha_struct * asd_ha,const void * src,u32 dest_offset,u32 bytes_to_verify)1095 int asd_verify_flash_seg(struct asd_ha_struct *asd_ha,
1096 const void *src, u32 dest_offset, u32 bytes_to_verify)
1097 {
1098 const u8 *src_buf;
1099 u8 flash_char;
1100 int err;
1101 u32 nv_offset, reg, i;
1102
1103 reg = asd_ha->hw_prof.flash.bar;
1104 src_buf = NULL;
1105
1106 err = FLASH_OK;
1107 nv_offset = dest_offset;
1108 src_buf = (const u8 *)src;
1109 for (i = 0; i < bytes_to_verify; i++) {
1110 flash_char = asd_read_reg_byte(asd_ha, reg + nv_offset + i);
1111 if (flash_char != src_buf[i]) {
1112 err = FAIL_VERIFY;
1113 break;
1114 }
1115 }
1116 return err;
1117 }
1118
1119 /**
1120 * asd_write_flash_seg - write data into flash memory
1121 * @asd_ha: pointer to the host adapter structure
1122 * @src: pointer to the source data to be written
1123 * @dest_offset: offset from flash memory
1124 * @bytes_to_write: total bytes to write
1125 */
asd_write_flash_seg(struct asd_ha_struct * asd_ha,const void * src,u32 dest_offset,u32 bytes_to_write)1126 int asd_write_flash_seg(struct asd_ha_struct *asd_ha,
1127 const void *src, u32 dest_offset, u32 bytes_to_write)
1128 {
1129 const u8 *src_buf;
1130 u32 nv_offset, reg, i;
1131 int err;
1132
1133 reg = asd_ha->hw_prof.flash.bar;
1134 src_buf = NULL;
1135
1136 err = asd_check_flash_type(asd_ha);
1137 if (err) {
1138 ASD_DPRINTK("couldn't find the type of flash. err=%d\n", err);
1139 return err;
1140 }
1141
1142 nv_offset = dest_offset;
1143 err = asd_erase_nv_sector(asd_ha, nv_offset, bytes_to_write);
1144 if (err) {
1145 ASD_DPRINTK("Erase failed at offset:0x%x\n",
1146 nv_offset);
1147 return err;
1148 }
1149
1150 err = asd_reset_flash(asd_ha);
1151 if (err) {
1152 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1153 return err;
1154 }
1155
1156 src_buf = (const u8 *)src;
1157 for (i = 0; i < bytes_to_write; i++) {
1158 /* Setup program command sequence */
1159 switch (asd_ha->hw_prof.flash.method) {
1160 case FLASH_METHOD_A:
1161 {
1162 asd_write_reg_byte(asd_ha,
1163 (reg + 0xAAA), 0xAA);
1164 asd_write_reg_byte(asd_ha,
1165 (reg + 0x555), 0x55);
1166 asd_write_reg_byte(asd_ha,
1167 (reg + 0xAAA), 0xA0);
1168 asd_write_reg_byte(asd_ha,
1169 (reg + nv_offset + i),
1170 (*(src_buf + i)));
1171 break;
1172 }
1173 case FLASH_METHOD_B:
1174 {
1175 asd_write_reg_byte(asd_ha,
1176 (reg + 0x555), 0xAA);
1177 asd_write_reg_byte(asd_ha,
1178 (reg + 0x2AA), 0x55);
1179 asd_write_reg_byte(asd_ha,
1180 (reg + 0x555), 0xA0);
1181 asd_write_reg_byte(asd_ha,
1182 (reg + nv_offset + i),
1183 (*(src_buf + i)));
1184 break;
1185 }
1186 default:
1187 break;
1188 }
1189 if (asd_chk_write_status(asd_ha,
1190 (nv_offset + i), 0) != 0) {
1191 ASD_DPRINTK("aicx: Write failed at offset:0x%x\n",
1192 reg + nv_offset + i);
1193 return FAIL_WRITE_FLASH;
1194 }
1195 }
1196
1197 err = asd_reset_flash(asd_ha);
1198 if (err) {
1199 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1200 return err;
1201 }
1202 return 0;
1203 }
1204
asd_chk_write_status(struct asd_ha_struct * asd_ha,u32 sector_addr,u8 erase_flag)1205 int asd_chk_write_status(struct asd_ha_struct *asd_ha,
1206 u32 sector_addr, u8 erase_flag)
1207 {
1208 u32 reg;
1209 u32 loop_cnt;
1210 u8 nv_data1, nv_data2;
1211 u8 toggle_bit1;
1212
1213 /*
1214 * Read from DQ2 requires sector address
1215 * while it's dont care for DQ6
1216 */
1217 reg = asd_ha->hw_prof.flash.bar;
1218
1219 for (loop_cnt = 0; loop_cnt < 50000; loop_cnt++) {
1220 nv_data1 = asd_read_reg_byte(asd_ha, reg);
1221 nv_data2 = asd_read_reg_byte(asd_ha, reg);
1222
1223 toggle_bit1 = ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1224 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1225
1226 if (toggle_bit1 == 0) {
1227 return 0;
1228 } else {
1229 if (nv_data2 & FLASH_STATUS_BIT_MASK_DQ5) {
1230 nv_data1 = asd_read_reg_byte(asd_ha,
1231 reg);
1232 nv_data2 = asd_read_reg_byte(asd_ha,
1233 reg);
1234 toggle_bit1 =
1235 ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1236 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1237
1238 if (toggle_bit1 == 0)
1239 return 0;
1240 }
1241 }
1242
1243 /*
1244 * ERASE is a sector-by-sector operation and requires
1245 * more time to finish while WRITE is byte-byte-byte
1246 * operation and takes lesser time to finish.
1247 *
1248 * For some strange reason a reduced ERASE delay gives different
1249 * behaviour across different spirit boards. Hence we set
1250 * a optimum balance of 50mus for ERASE which works well
1251 * across all boards.
1252 */
1253 if (erase_flag) {
1254 udelay(FLASH_STATUS_ERASE_DELAY_COUNT);
1255 } else {
1256 udelay(FLASH_STATUS_WRITE_DELAY_COUNT);
1257 }
1258 }
1259 return -1;
1260 }
1261
1262 /**
1263 * asd_hwi_erase_nv_sector - Erase the flash memory sectors.
1264 * @asd_ha: pointer to the host adapter structure
1265 * @flash_addr: pointer to offset from flash memory
1266 * @size: total bytes to erase.
1267 */
asd_erase_nv_sector(struct asd_ha_struct * asd_ha,u32 flash_addr,u32 size)1268 int asd_erase_nv_sector(struct asd_ha_struct *asd_ha, u32 flash_addr, u32 size)
1269 {
1270 u32 reg;
1271 u32 sector_addr;
1272
1273 reg = asd_ha->hw_prof.flash.bar;
1274
1275 /* sector staring address */
1276 sector_addr = flash_addr & FLASH_SECTOR_SIZE_MASK;
1277
1278 /*
1279 * Erasing an flash sector needs to be done in six consecutive
1280 * write cyles.
1281 */
1282 while (sector_addr < flash_addr+size) {
1283 switch (asd_ha->hw_prof.flash.method) {
1284 case FLASH_METHOD_A:
1285 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1286 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1287 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0x80);
1288 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1289 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1290 asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1291 break;
1292 case FLASH_METHOD_B:
1293 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1294 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1295 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x80);
1296 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1297 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1298 asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1299 break;
1300 default:
1301 break;
1302 }
1303
1304 if (asd_chk_write_status(asd_ha, sector_addr, 1) != 0)
1305 return FAIL_ERASE_FLASH;
1306
1307 sector_addr += FLASH_SECTOR_SIZE;
1308 }
1309
1310 return 0;
1311 }
1312
asd_check_flash_type(struct asd_ha_struct * asd_ha)1313 int asd_check_flash_type(struct asd_ha_struct *asd_ha)
1314 {
1315 u8 manuf_id;
1316 u8 dev_id;
1317 u8 sec_prot;
1318 u32 inc;
1319 u32 reg;
1320 int err;
1321
1322 /* get Flash memory base address */
1323 reg = asd_ha->hw_prof.flash.bar;
1324
1325 /* Determine flash info */
1326 err = asd_reset_flash(asd_ha);
1327 if (err) {
1328 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1329 return err;
1330 }
1331
1332 asd_ha->hw_prof.flash.method = FLASH_METHOD_UNKNOWN;
1333 asd_ha->hw_prof.flash.manuf = FLASH_MANUF_ID_UNKNOWN;
1334 asd_ha->hw_prof.flash.dev_id = FLASH_DEV_ID_UNKNOWN;
1335
1336 /* Get flash info. This would most likely be AMD Am29LV family flash.
1337 * First try the sequence for word mode. It is the same as for
1338 * 008B (byte mode only), 160B (word mode) and 800D (word mode).
1339 */
1340 inc = asd_ha->hw_prof.flash.wide ? 2 : 1;
1341 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0xAA);
1342 asd_write_reg_byte(asd_ha, reg + 0x555, 0x55);
1343 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0x90);
1344 manuf_id = asd_read_reg_byte(asd_ha, reg);
1345 dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1346 sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1347 /* Get out of autoselect mode. */
1348 err = asd_reset_flash(asd_ha);
1349 if (err) {
1350 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1351 return err;
1352 }
1353 ASD_DPRINTK("Flash MethodA manuf_id(0x%x) dev_id(0x%x) "
1354 "sec_prot(0x%x)\n", manuf_id, dev_id, sec_prot);
1355 err = asd_reset_flash(asd_ha);
1356 if (err != 0)
1357 return err;
1358
1359 switch (manuf_id) {
1360 case FLASH_MANUF_ID_AMD:
1361 switch (sec_prot) {
1362 case FLASH_DEV_ID_AM29LV800DT:
1363 case FLASH_DEV_ID_AM29LV640MT:
1364 case FLASH_DEV_ID_AM29F800B:
1365 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1366 break;
1367 default:
1368 break;
1369 }
1370 break;
1371 case FLASH_MANUF_ID_ST:
1372 switch (sec_prot) {
1373 case FLASH_DEV_ID_STM29W800DT:
1374 case FLASH_DEV_ID_STM29LV640:
1375 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1376 break;
1377 default:
1378 break;
1379 }
1380 break;
1381 case FLASH_MANUF_ID_FUJITSU:
1382 switch (sec_prot) {
1383 case FLASH_DEV_ID_MBM29LV800TE:
1384 case FLASH_DEV_ID_MBM29DL800TA:
1385 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1386 break;
1387 }
1388 break;
1389 case FLASH_MANUF_ID_MACRONIX:
1390 switch (sec_prot) {
1391 case FLASH_DEV_ID_MX29LV800BT:
1392 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1393 break;
1394 }
1395 break;
1396 }
1397
1398 if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN) {
1399 err = asd_reset_flash(asd_ha);
1400 if (err) {
1401 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1402 return err;
1403 }
1404
1405 /* Issue Unlock sequence for AM29LV008BT */
1406 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1407 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1408 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x90);
1409 manuf_id = asd_read_reg_byte(asd_ha, reg);
1410 dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1411 sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1412
1413 ASD_DPRINTK("Flash MethodB manuf_id(0x%x) dev_id(0x%x) sec_prot"
1414 "(0x%x)\n", manuf_id, dev_id, sec_prot);
1415
1416 err = asd_reset_flash(asd_ha);
1417 if (err != 0) {
1418 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1419 return err;
1420 }
1421
1422 switch (manuf_id) {
1423 case FLASH_MANUF_ID_AMD:
1424 switch (dev_id) {
1425 case FLASH_DEV_ID_AM29LV008BT:
1426 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1427 break;
1428 default:
1429 break;
1430 }
1431 break;
1432 case FLASH_MANUF_ID_ST:
1433 switch (dev_id) {
1434 case FLASH_DEV_ID_STM29008:
1435 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1436 break;
1437 default:
1438 break;
1439 }
1440 break;
1441 case FLASH_MANUF_ID_FUJITSU:
1442 switch (dev_id) {
1443 case FLASH_DEV_ID_MBM29LV008TA:
1444 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1445 break;
1446 }
1447 break;
1448 case FLASH_MANUF_ID_INTEL:
1449 switch (dev_id) {
1450 case FLASH_DEV_ID_I28LV00TAT:
1451 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1452 break;
1453 }
1454 break;
1455 case FLASH_MANUF_ID_MACRONIX:
1456 switch (dev_id) {
1457 case FLASH_DEV_ID_I28LV00TAT:
1458 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1459 break;
1460 }
1461 break;
1462 default:
1463 return FAIL_FIND_FLASH_ID;
1464 }
1465 }
1466
1467 if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN)
1468 return FAIL_FIND_FLASH_ID;
1469
1470 asd_ha->hw_prof.flash.manuf = manuf_id;
1471 asd_ha->hw_prof.flash.dev_id = dev_id;
1472 asd_ha->hw_prof.flash.sec_prot = sec_prot;
1473 return 0;
1474 }
1475