• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
66 
67 #include "libata.h"
68 
69 
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
72 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
73 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
74 
75 const struct ata_port_operations ata_base_port_ops = {
76 	.prereset		= ata_std_prereset,
77 	.postreset		= ata_std_postreset,
78 	.error_handler		= ata_std_error_handler,
79 };
80 
81 const struct ata_port_operations sata_port_ops = {
82 	.inherits		= &ata_base_port_ops,
83 
84 	.qc_defer		= ata_std_qc_defer,
85 	.hardreset		= sata_std_hardreset,
86 };
87 
88 static unsigned int ata_dev_init_params(struct ata_device *dev,
89 					u16 heads, u16 sectors);
90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
91 static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 					u8 enable, u8 feature);
93 static void ata_dev_xfermask(struct ata_device *dev);
94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 
96 unsigned int ata_print_id = 1;
97 static struct workqueue_struct *ata_wq;
98 
99 struct workqueue_struct *ata_aux_wq;
100 
101 struct ata_force_param {
102 	const char	*name;
103 	unsigned int	cbl;
104 	int		spd_limit;
105 	unsigned long	xfer_mask;
106 	unsigned int	horkage_on;
107 	unsigned int	horkage_off;
108 	unsigned int	lflags;
109 };
110 
111 struct ata_force_ent {
112 	int			port;
113 	int			device;
114 	struct ata_force_param	param;
115 };
116 
117 static struct ata_force_ent *ata_force_tbl;
118 static int ata_force_tbl_size;
119 
120 static char ata_force_param_buf[PAGE_SIZE] __initdata;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 
125 static int atapi_enabled = 1;
126 module_param(atapi_enabled, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 
129 static int atapi_dmadir = 0;
130 module_param(atapi_dmadir, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 
133 int atapi_passthru16 = 1;
134 module_param(atapi_passthru16, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 
137 int libata_fua = 0;
138 module_param_named(fua, libata_fua, int, 0444);
139 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 
141 static int ata_ignore_hpa;
142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 
145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146 module_param_named(dma, libata_dma_mask, int, 0444);
147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 
149 static int ata_probe_timeout;
150 module_param(ata_probe_timeout, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 
153 int libata_noacpi = 0;
154 module_param_named(noacpi, libata_noacpi, int, 0444);
155 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 
157 int libata_allow_tpm = 0;
158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION);
165 
166 
ata_sstatus_online(u32 sstatus)167 static bool ata_sstatus_online(u32 sstatus)
168 {
169 	return (sstatus & 0xf) == 0x3;
170 }
171 
172 /**
173  *	ata_link_next - link iteration helper
174  *	@link: the previous link, NULL to start
175  *	@ap: ATA port containing links to iterate
176  *	@mode: iteration mode, one of ATA_LITER_*
177  *
178  *	LOCKING:
179  *	Host lock or EH context.
180  *
181  *	RETURNS:
182  *	Pointer to the next link.
183  */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)184 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
185 			       enum ata_link_iter_mode mode)
186 {
187 	BUG_ON(mode != ATA_LITER_EDGE &&
188 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
189 
190 	/* NULL link indicates start of iteration */
191 	if (!link)
192 		switch (mode) {
193 		case ATA_LITER_EDGE:
194 		case ATA_LITER_PMP_FIRST:
195 			if (sata_pmp_attached(ap))
196 				return ap->pmp_link;
197 			/* fall through */
198 		case ATA_LITER_HOST_FIRST:
199 			return &ap->link;
200 		}
201 
202 	/* we just iterated over the host link, what's next? */
203 	if (link == &ap->link)
204 		switch (mode) {
205 		case ATA_LITER_HOST_FIRST:
206 			if (sata_pmp_attached(ap))
207 				return ap->pmp_link;
208 			/* fall through */
209 		case ATA_LITER_PMP_FIRST:
210 			if (unlikely(ap->slave_link))
211 				return ap->slave_link;
212 			/* fall through */
213 		case ATA_LITER_EDGE:
214 			return NULL;
215 		}
216 
217 	/* slave_link excludes PMP */
218 	if (unlikely(link == ap->slave_link))
219 		return NULL;
220 
221 	/* we were over a PMP link */
222 	if (++link < ap->pmp_link + ap->nr_pmp_links)
223 		return link;
224 
225 	if (mode == ATA_LITER_PMP_FIRST)
226 		return &ap->link;
227 
228 	return NULL;
229 }
230 
231 /**
232  *	ata_dev_next - device iteration helper
233  *	@dev: the previous device, NULL to start
234  *	@link: ATA link containing devices to iterate
235  *	@mode: iteration mode, one of ATA_DITER_*
236  *
237  *	LOCKING:
238  *	Host lock or EH context.
239  *
240  *	RETURNS:
241  *	Pointer to the next device.
242  */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)243 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
244 				enum ata_dev_iter_mode mode)
245 {
246 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
247 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
248 
249 	/* NULL dev indicates start of iteration */
250 	if (!dev)
251 		switch (mode) {
252 		case ATA_DITER_ENABLED:
253 		case ATA_DITER_ALL:
254 			dev = link->device;
255 			goto check;
256 		case ATA_DITER_ENABLED_REVERSE:
257 		case ATA_DITER_ALL_REVERSE:
258 			dev = link->device + ata_link_max_devices(link) - 1;
259 			goto check;
260 		}
261 
262  next:
263 	/* move to the next one */
264 	switch (mode) {
265 	case ATA_DITER_ENABLED:
266 	case ATA_DITER_ALL:
267 		if (++dev < link->device + ata_link_max_devices(link))
268 			goto check;
269 		return NULL;
270 	case ATA_DITER_ENABLED_REVERSE:
271 	case ATA_DITER_ALL_REVERSE:
272 		if (--dev >= link->device)
273 			goto check;
274 		return NULL;
275 	}
276 
277  check:
278 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
279 	    !ata_dev_enabled(dev))
280 		goto next;
281 	return dev;
282 }
283 
284 /**
285  *	ata_dev_phys_link - find physical link for a device
286  *	@dev: ATA device to look up physical link for
287  *
288  *	Look up physical link which @dev is attached to.  Note that
289  *	this is different from @dev->link only when @dev is on slave
290  *	link.  For all other cases, it's the same as @dev->link.
291  *
292  *	LOCKING:
293  *	Don't care.
294  *
295  *	RETURNS:
296  *	Pointer to the found physical link.
297  */
ata_dev_phys_link(struct ata_device * dev)298 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
299 {
300 	struct ata_port *ap = dev->link->ap;
301 
302 	if (!ap->slave_link)
303 		return dev->link;
304 	if (!dev->devno)
305 		return &ap->link;
306 	return ap->slave_link;
307 }
308 
309 /**
310  *	ata_force_cbl - force cable type according to libata.force
311  *	@ap: ATA port of interest
312  *
313  *	Force cable type according to libata.force and whine about it.
314  *	The last entry which has matching port number is used, so it
315  *	can be specified as part of device force parameters.  For
316  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
317  *	same effect.
318  *
319  *	LOCKING:
320  *	EH context.
321  */
ata_force_cbl(struct ata_port * ap)322 void ata_force_cbl(struct ata_port *ap)
323 {
324 	int i;
325 
326 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
327 		const struct ata_force_ent *fe = &ata_force_tbl[i];
328 
329 		if (fe->port != -1 && fe->port != ap->print_id)
330 			continue;
331 
332 		if (fe->param.cbl == ATA_CBL_NONE)
333 			continue;
334 
335 		ap->cbl = fe->param.cbl;
336 		ata_port_printk(ap, KERN_NOTICE,
337 				"FORCE: cable set to %s\n", fe->param.name);
338 		return;
339 	}
340 }
341 
342 /**
343  *	ata_force_link_limits - force link limits according to libata.force
344  *	@link: ATA link of interest
345  *
346  *	Force link flags and SATA spd limit according to libata.force
347  *	and whine about it.  When only the port part is specified
348  *	(e.g. 1:), the limit applies to all links connected to both
349  *	the host link and all fan-out ports connected via PMP.  If the
350  *	device part is specified as 0 (e.g. 1.00:), it specifies the
351  *	first fan-out link not the host link.  Device number 15 always
352  *	points to the host link whether PMP is attached or not.  If the
353  *	controller has slave link, device number 16 points to it.
354  *
355  *	LOCKING:
356  *	EH context.
357  */
ata_force_link_limits(struct ata_link * link)358 static void ata_force_link_limits(struct ata_link *link)
359 {
360 	bool did_spd = false;
361 	int linkno = link->pmp;
362 	int i;
363 
364 	if (ata_is_host_link(link))
365 		linkno += 15;
366 
367 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
368 		const struct ata_force_ent *fe = &ata_force_tbl[i];
369 
370 		if (fe->port != -1 && fe->port != link->ap->print_id)
371 			continue;
372 
373 		if (fe->device != -1 && fe->device != linkno)
374 			continue;
375 
376 		/* only honor the first spd limit */
377 		if (!did_spd && fe->param.spd_limit) {
378 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
379 			ata_link_printk(link, KERN_NOTICE,
380 					"FORCE: PHY spd limit set to %s\n",
381 					fe->param.name);
382 			did_spd = true;
383 		}
384 
385 		/* let lflags stack */
386 		if (fe->param.lflags) {
387 			link->flags |= fe->param.lflags;
388 			ata_link_printk(link, KERN_NOTICE,
389 					"FORCE: link flag 0x%x forced -> 0x%x\n",
390 					fe->param.lflags, link->flags);
391 		}
392 	}
393 }
394 
395 /**
396  *	ata_force_xfermask - force xfermask according to libata.force
397  *	@dev: ATA device of interest
398  *
399  *	Force xfer_mask according to libata.force and whine about it.
400  *	For consistency with link selection, device number 15 selects
401  *	the first device connected to the host link.
402  *
403  *	LOCKING:
404  *	EH context.
405  */
ata_force_xfermask(struct ata_device * dev)406 static void ata_force_xfermask(struct ata_device *dev)
407 {
408 	int devno = dev->link->pmp + dev->devno;
409 	int alt_devno = devno;
410 	int i;
411 
412 	/* allow n.15/16 for devices attached to host port */
413 	if (ata_is_host_link(dev->link))
414 		alt_devno += 15;
415 
416 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 		const struct ata_force_ent *fe = &ata_force_tbl[i];
418 		unsigned long pio_mask, mwdma_mask, udma_mask;
419 
420 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
421 			continue;
422 
423 		if (fe->device != -1 && fe->device != devno &&
424 		    fe->device != alt_devno)
425 			continue;
426 
427 		if (!fe->param.xfer_mask)
428 			continue;
429 
430 		ata_unpack_xfermask(fe->param.xfer_mask,
431 				    &pio_mask, &mwdma_mask, &udma_mask);
432 		if (udma_mask)
433 			dev->udma_mask = udma_mask;
434 		else if (mwdma_mask) {
435 			dev->udma_mask = 0;
436 			dev->mwdma_mask = mwdma_mask;
437 		} else {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = 0;
440 			dev->pio_mask = pio_mask;
441 		}
442 
443 		ata_dev_printk(dev, KERN_NOTICE,
444 			"FORCE: xfer_mask set to %s\n", fe->param.name);
445 		return;
446 	}
447 }
448 
449 /**
450  *	ata_force_horkage - force horkage according to libata.force
451  *	@dev: ATA device of interest
452  *
453  *	Force horkage according to libata.force and whine about it.
454  *	For consistency with link selection, device number 15 selects
455  *	the first device connected to the host link.
456  *
457  *	LOCKING:
458  *	EH context.
459  */
ata_force_horkage(struct ata_device * dev)460 static void ata_force_horkage(struct ata_device *dev)
461 {
462 	int devno = dev->link->pmp + dev->devno;
463 	int alt_devno = devno;
464 	int i;
465 
466 	/* allow n.15/16 for devices attached to host port */
467 	if (ata_is_host_link(dev->link))
468 		alt_devno += 15;
469 
470 	for (i = 0; i < ata_force_tbl_size; i++) {
471 		const struct ata_force_ent *fe = &ata_force_tbl[i];
472 
473 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
474 			continue;
475 
476 		if (fe->device != -1 && fe->device != devno &&
477 		    fe->device != alt_devno)
478 			continue;
479 
480 		if (!(~dev->horkage & fe->param.horkage_on) &&
481 		    !(dev->horkage & fe->param.horkage_off))
482 			continue;
483 
484 		dev->horkage |= fe->param.horkage_on;
485 		dev->horkage &= ~fe->param.horkage_off;
486 
487 		ata_dev_printk(dev, KERN_NOTICE,
488 			"FORCE: horkage modified (%s)\n", fe->param.name);
489 	}
490 }
491 
492 /**
493  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494  *	@opcode: SCSI opcode
495  *
496  *	Determine ATAPI command type from @opcode.
497  *
498  *	LOCKING:
499  *	None.
500  *
501  *	RETURNS:
502  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
503  */
atapi_cmd_type(u8 opcode)504 int atapi_cmd_type(u8 opcode)
505 {
506 	switch (opcode) {
507 	case GPCMD_READ_10:
508 	case GPCMD_READ_12:
509 		return ATAPI_READ;
510 
511 	case GPCMD_WRITE_10:
512 	case GPCMD_WRITE_12:
513 	case GPCMD_WRITE_AND_VERIFY_10:
514 		return ATAPI_WRITE;
515 
516 	case GPCMD_READ_CD:
517 	case GPCMD_READ_CD_MSF:
518 		return ATAPI_READ_CD;
519 
520 	case ATA_16:
521 	case ATA_12:
522 		if (atapi_passthru16)
523 			return ATAPI_PASS_THRU;
524 		/* fall thru */
525 	default:
526 		return ATAPI_MISC;
527 	}
528 }
529 
530 /**
531  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532  *	@tf: Taskfile to convert
533  *	@pmp: Port multiplier port
534  *	@is_cmd: This FIS is for command
535  *	@fis: Buffer into which data will output
536  *
537  *	Converts a standard ATA taskfile to a Serial ATA
538  *	FIS structure (Register - Host to Device).
539  *
540  *	LOCKING:
541  *	Inherited from caller.
542  */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)543 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
544 {
545 	fis[0] = 0x27;			/* Register - Host to Device FIS */
546 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
547 	if (is_cmd)
548 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
549 
550 	fis[2] = tf->command;
551 	fis[3] = tf->feature;
552 
553 	fis[4] = tf->lbal;
554 	fis[5] = tf->lbam;
555 	fis[6] = tf->lbah;
556 	fis[7] = tf->device;
557 
558 	fis[8] = tf->hob_lbal;
559 	fis[9] = tf->hob_lbam;
560 	fis[10] = tf->hob_lbah;
561 	fis[11] = tf->hob_feature;
562 
563 	fis[12] = tf->nsect;
564 	fis[13] = tf->hob_nsect;
565 	fis[14] = 0;
566 	fis[15] = tf->ctl;
567 
568 	fis[16] = 0;
569 	fis[17] = 0;
570 	fis[18] = 0;
571 	fis[19] = 0;
572 }
573 
574 /**
575  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576  *	@fis: Buffer from which data will be input
577  *	@tf: Taskfile to output
578  *
579  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
580  *
581  *	LOCKING:
582  *	Inherited from caller.
583  */
584 
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)585 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
586 {
587 	tf->command	= fis[2];	/* status */
588 	tf->feature	= fis[3];	/* error */
589 
590 	tf->lbal	= fis[4];
591 	tf->lbam	= fis[5];
592 	tf->lbah	= fis[6];
593 	tf->device	= fis[7];
594 
595 	tf->hob_lbal	= fis[8];
596 	tf->hob_lbam	= fis[9];
597 	tf->hob_lbah	= fis[10];
598 
599 	tf->nsect	= fis[12];
600 	tf->hob_nsect	= fis[13];
601 }
602 
603 static const u8 ata_rw_cmds[] = {
604 	/* pio multi */
605 	ATA_CMD_READ_MULTI,
606 	ATA_CMD_WRITE_MULTI,
607 	ATA_CMD_READ_MULTI_EXT,
608 	ATA_CMD_WRITE_MULTI_EXT,
609 	0,
610 	0,
611 	0,
612 	ATA_CMD_WRITE_MULTI_FUA_EXT,
613 	/* pio */
614 	ATA_CMD_PIO_READ,
615 	ATA_CMD_PIO_WRITE,
616 	ATA_CMD_PIO_READ_EXT,
617 	ATA_CMD_PIO_WRITE_EXT,
618 	0,
619 	0,
620 	0,
621 	0,
622 	/* dma */
623 	ATA_CMD_READ,
624 	ATA_CMD_WRITE,
625 	ATA_CMD_READ_EXT,
626 	ATA_CMD_WRITE_EXT,
627 	0,
628 	0,
629 	0,
630 	ATA_CMD_WRITE_FUA_EXT
631 };
632 
633 /**
634  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
635  *	@tf: command to examine and configure
636  *	@dev: device tf belongs to
637  *
638  *	Examine the device configuration and tf->flags to calculate
639  *	the proper read/write commands and protocol to use.
640  *
641  *	LOCKING:
642  *	caller.
643  */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)644 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
645 {
646 	u8 cmd;
647 
648 	int index, fua, lba48, write;
649 
650 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
651 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
653 
654 	if (dev->flags & ATA_DFLAG_PIO) {
655 		tf->protocol = ATA_PROT_PIO;
656 		index = dev->multi_count ? 0 : 8;
657 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
658 		/* Unable to use DMA due to host limitation */
659 		tf->protocol = ATA_PROT_PIO;
660 		index = dev->multi_count ? 0 : 8;
661 	} else {
662 		tf->protocol = ATA_PROT_DMA;
663 		index = 16;
664 	}
665 
666 	cmd = ata_rw_cmds[index + fua + lba48 + write];
667 	if (cmd) {
668 		tf->command = cmd;
669 		return 0;
670 	}
671 	return -1;
672 }
673 
674 /**
675  *	ata_tf_read_block - Read block address from ATA taskfile
676  *	@tf: ATA taskfile of interest
677  *	@dev: ATA device @tf belongs to
678  *
679  *	LOCKING:
680  *	None.
681  *
682  *	Read block address from @tf.  This function can handle all
683  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
684  *	flags select the address format to use.
685  *
686  *	RETURNS:
687  *	Block address read from @tf.
688  */
ata_tf_read_block(struct ata_taskfile * tf,struct ata_device * dev)689 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
690 {
691 	u64 block = 0;
692 
693 	if (tf->flags & ATA_TFLAG_LBA) {
694 		if (tf->flags & ATA_TFLAG_LBA48) {
695 			block |= (u64)tf->hob_lbah << 40;
696 			block |= (u64)tf->hob_lbam << 32;
697 			block |= (u64)tf->hob_lbal << 24;
698 		} else
699 			block |= (tf->device & 0xf) << 24;
700 
701 		block |= tf->lbah << 16;
702 		block |= tf->lbam << 8;
703 		block |= tf->lbal;
704 	} else {
705 		u32 cyl, head, sect;
706 
707 		cyl = tf->lbam | (tf->lbah << 8);
708 		head = tf->device & 0xf;
709 		sect = tf->lbal;
710 
711 		block = (cyl * dev->heads + head) * dev->sectors + sect;
712 	}
713 
714 	return block;
715 }
716 
717 /**
718  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
719  *	@tf: Target ATA taskfile
720  *	@dev: ATA device @tf belongs to
721  *	@block: Block address
722  *	@n_block: Number of blocks
723  *	@tf_flags: RW/FUA etc...
724  *	@tag: tag
725  *
726  *	LOCKING:
727  *	None.
728  *
729  *	Build ATA taskfile @tf for read/write request described by
730  *	@block, @n_block, @tf_flags and @tag on @dev.
731  *
732  *	RETURNS:
733  *
734  *	0 on success, -ERANGE if the request is too large for @dev,
735  *	-EINVAL if the request is invalid.
736  */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag)737 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
738 		    u64 block, u32 n_block, unsigned int tf_flags,
739 		    unsigned int tag)
740 {
741 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
742 	tf->flags |= tf_flags;
743 
744 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
745 		/* yay, NCQ */
746 		if (!lba_48_ok(block, n_block))
747 			return -ERANGE;
748 
749 		tf->protocol = ATA_PROT_NCQ;
750 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
751 
752 		if (tf->flags & ATA_TFLAG_WRITE)
753 			tf->command = ATA_CMD_FPDMA_WRITE;
754 		else
755 			tf->command = ATA_CMD_FPDMA_READ;
756 
757 		tf->nsect = tag << 3;
758 		tf->hob_feature = (n_block >> 8) & 0xff;
759 		tf->feature = n_block & 0xff;
760 
761 		tf->hob_lbah = (block >> 40) & 0xff;
762 		tf->hob_lbam = (block >> 32) & 0xff;
763 		tf->hob_lbal = (block >> 24) & 0xff;
764 		tf->lbah = (block >> 16) & 0xff;
765 		tf->lbam = (block >> 8) & 0xff;
766 		tf->lbal = block & 0xff;
767 
768 		tf->device = 1 << 6;
769 		if (tf->flags & ATA_TFLAG_FUA)
770 			tf->device |= 1 << 7;
771 	} else if (dev->flags & ATA_DFLAG_LBA) {
772 		tf->flags |= ATA_TFLAG_LBA;
773 
774 		if (lba_28_ok(block, n_block)) {
775 			/* use LBA28 */
776 			tf->device |= (block >> 24) & 0xf;
777 		} else if (lba_48_ok(block, n_block)) {
778 			if (!(dev->flags & ATA_DFLAG_LBA48))
779 				return -ERANGE;
780 
781 			/* use LBA48 */
782 			tf->flags |= ATA_TFLAG_LBA48;
783 
784 			tf->hob_nsect = (n_block >> 8) & 0xff;
785 
786 			tf->hob_lbah = (block >> 40) & 0xff;
787 			tf->hob_lbam = (block >> 32) & 0xff;
788 			tf->hob_lbal = (block >> 24) & 0xff;
789 		} else
790 			/* request too large even for LBA48 */
791 			return -ERANGE;
792 
793 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
794 			return -EINVAL;
795 
796 		tf->nsect = n_block & 0xff;
797 
798 		tf->lbah = (block >> 16) & 0xff;
799 		tf->lbam = (block >> 8) & 0xff;
800 		tf->lbal = block & 0xff;
801 
802 		tf->device |= ATA_LBA;
803 	} else {
804 		/* CHS */
805 		u32 sect, head, cyl, track;
806 
807 		/* The request -may- be too large for CHS addressing. */
808 		if (!lba_28_ok(block, n_block))
809 			return -ERANGE;
810 
811 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
812 			return -EINVAL;
813 
814 		/* Convert LBA to CHS */
815 		track = (u32)block / dev->sectors;
816 		cyl   = track / dev->heads;
817 		head  = track % dev->heads;
818 		sect  = (u32)block % dev->sectors + 1;
819 
820 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
821 			(u32)block, track, cyl, head, sect);
822 
823 		/* Check whether the converted CHS can fit.
824 		   Cylinder: 0-65535
825 		   Head: 0-15
826 		   Sector: 1-255*/
827 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
828 			return -ERANGE;
829 
830 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
831 		tf->lbal = sect;
832 		tf->lbam = cyl;
833 		tf->lbah = cyl >> 8;
834 		tf->device |= head;
835 	}
836 
837 	return 0;
838 }
839 
840 /**
841  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
842  *	@pio_mask: pio_mask
843  *	@mwdma_mask: mwdma_mask
844  *	@udma_mask: udma_mask
845  *
846  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
847  *	unsigned int xfer_mask.
848  *
849  *	LOCKING:
850  *	None.
851  *
852  *	RETURNS:
853  *	Packed xfer_mask.
854  */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)855 unsigned long ata_pack_xfermask(unsigned long pio_mask,
856 				unsigned long mwdma_mask,
857 				unsigned long udma_mask)
858 {
859 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
860 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
861 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
862 }
863 
864 /**
865  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
866  *	@xfer_mask: xfer_mask to unpack
867  *	@pio_mask: resulting pio_mask
868  *	@mwdma_mask: resulting mwdma_mask
869  *	@udma_mask: resulting udma_mask
870  *
871  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
872  *	Any NULL distination masks will be ignored.
873  */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)874 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
875 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
876 {
877 	if (pio_mask)
878 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
879 	if (mwdma_mask)
880 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
881 	if (udma_mask)
882 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
883 }
884 
885 static const struct ata_xfer_ent {
886 	int shift, bits;
887 	u8 base;
888 } ata_xfer_tbl[] = {
889 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
890 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
891 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
892 	{ -1, },
893 };
894 
895 /**
896  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
897  *	@xfer_mask: xfer_mask of interest
898  *
899  *	Return matching XFER_* value for @xfer_mask.  Only the highest
900  *	bit of @xfer_mask is considered.
901  *
902  *	LOCKING:
903  *	None.
904  *
905  *	RETURNS:
906  *	Matching XFER_* value, 0xff if no match found.
907  */
ata_xfer_mask2mode(unsigned long xfer_mask)908 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
909 {
910 	int highbit = fls(xfer_mask) - 1;
911 	const struct ata_xfer_ent *ent;
912 
913 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
914 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
915 			return ent->base + highbit - ent->shift;
916 	return 0xff;
917 }
918 
919 /**
920  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
921  *	@xfer_mode: XFER_* of interest
922  *
923  *	Return matching xfer_mask for @xfer_mode.
924  *
925  *	LOCKING:
926  *	None.
927  *
928  *	RETURNS:
929  *	Matching xfer_mask, 0 if no match found.
930  */
ata_xfer_mode2mask(u8 xfer_mode)931 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
932 {
933 	const struct ata_xfer_ent *ent;
934 
935 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
936 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
937 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
938 				& ~((1 << ent->shift) - 1);
939 	return 0;
940 }
941 
942 /**
943  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
944  *	@xfer_mode: XFER_* of interest
945  *
946  *	Return matching xfer_shift for @xfer_mode.
947  *
948  *	LOCKING:
949  *	None.
950  *
951  *	RETURNS:
952  *	Matching xfer_shift, -1 if no match found.
953  */
ata_xfer_mode2shift(unsigned long xfer_mode)954 int ata_xfer_mode2shift(unsigned long xfer_mode)
955 {
956 	const struct ata_xfer_ent *ent;
957 
958 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
959 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
960 			return ent->shift;
961 	return -1;
962 }
963 
964 /**
965  *	ata_mode_string - convert xfer_mask to string
966  *	@xfer_mask: mask of bits supported; only highest bit counts.
967  *
968  *	Determine string which represents the highest speed
969  *	(highest bit in @modemask).
970  *
971  *	LOCKING:
972  *	None.
973  *
974  *	RETURNS:
975  *	Constant C string representing highest speed listed in
976  *	@mode_mask, or the constant C string "<n/a>".
977  */
ata_mode_string(unsigned long xfer_mask)978 const char *ata_mode_string(unsigned long xfer_mask)
979 {
980 	static const char * const xfer_mode_str[] = {
981 		"PIO0",
982 		"PIO1",
983 		"PIO2",
984 		"PIO3",
985 		"PIO4",
986 		"PIO5",
987 		"PIO6",
988 		"MWDMA0",
989 		"MWDMA1",
990 		"MWDMA2",
991 		"MWDMA3",
992 		"MWDMA4",
993 		"UDMA/16",
994 		"UDMA/25",
995 		"UDMA/33",
996 		"UDMA/44",
997 		"UDMA/66",
998 		"UDMA/100",
999 		"UDMA/133",
1000 		"UDMA7",
1001 	};
1002 	int highbit;
1003 
1004 	highbit = fls(xfer_mask) - 1;
1005 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1006 		return xfer_mode_str[highbit];
1007 	return "<n/a>";
1008 }
1009 
sata_spd_string(unsigned int spd)1010 static const char *sata_spd_string(unsigned int spd)
1011 {
1012 	static const char * const spd_str[] = {
1013 		"1.5 Gbps",
1014 		"3.0 Gbps",
1015 		"6.0 Gbps",
1016 	};
1017 
1018 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1019 		return "<unknown>";
1020 	return spd_str[spd - 1];
1021 }
1022 
ata_dev_set_dipm(struct ata_device * dev,enum link_pm policy)1023 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1024 {
1025 	struct ata_link *link = dev->link;
1026 	struct ata_port *ap = link->ap;
1027 	u32 scontrol;
1028 	unsigned int err_mask;
1029 	int rc;
1030 
1031 	/*
1032 	 * disallow DIPM for drivers which haven't set
1033 	 * ATA_FLAG_IPM.  This is because when DIPM is enabled,
1034 	 * phy ready will be set in the interrupt status on
1035 	 * state changes, which will cause some drivers to
1036 	 * think there are errors - additionally drivers will
1037 	 * need to disable hot plug.
1038 	 */
1039 	if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1040 		ap->pm_policy = NOT_AVAILABLE;
1041 		return -EINVAL;
1042 	}
1043 
1044 	/*
1045 	 * For DIPM, we will only enable it for the
1046 	 * min_power setting.
1047 	 *
1048 	 * Why?  Because Disks are too stupid to know that
1049 	 * If the host rejects a request to go to SLUMBER
1050 	 * they should retry at PARTIAL, and instead it
1051 	 * just would give up.  So, for medium_power to
1052 	 * work at all, we need to only allow HIPM.
1053 	 */
1054 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1055 	if (rc)
1056 		return rc;
1057 
1058 	switch (policy) {
1059 	case MIN_POWER:
1060 		/* no restrictions on IPM transitions */
1061 		scontrol &= ~(0x3 << 8);
1062 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1063 		if (rc)
1064 			return rc;
1065 
1066 		/* enable DIPM */
1067 		if (dev->flags & ATA_DFLAG_DIPM)
1068 			err_mask = ata_dev_set_feature(dev,
1069 					SETFEATURES_SATA_ENABLE, SATA_DIPM);
1070 		break;
1071 	case MEDIUM_POWER:
1072 		/* allow IPM to PARTIAL */
1073 		scontrol &= ~(0x1 << 8);
1074 		scontrol |= (0x2 << 8);
1075 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1076 		if (rc)
1077 			return rc;
1078 
1079 		/*
1080 		 * we don't have to disable DIPM since IPM flags
1081 		 * disallow transitions to SLUMBER, which effectively
1082 		 * disable DIPM if it does not support PARTIAL
1083 		 */
1084 		break;
1085 	case NOT_AVAILABLE:
1086 	case MAX_PERFORMANCE:
1087 		/* disable all IPM transitions */
1088 		scontrol |= (0x3 << 8);
1089 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1090 		if (rc)
1091 			return rc;
1092 
1093 		/*
1094 		 * we don't have to disable DIPM since IPM flags
1095 		 * disallow all transitions which effectively
1096 		 * disable DIPM anyway.
1097 		 */
1098 		break;
1099 	}
1100 
1101 	/* FIXME: handle SET FEATURES failure */
1102 	(void) err_mask;
1103 
1104 	return 0;
1105 }
1106 
1107 /**
1108  *	ata_dev_enable_pm - enable SATA interface power management
1109  *	@dev:  device to enable power management
1110  *	@policy: the link power management policy
1111  *
1112  *	Enable SATA Interface power management.  This will enable
1113  *	Device Interface Power Management (DIPM) for min_power
1114  * 	policy, and then call driver specific callbacks for
1115  *	enabling Host Initiated Power management.
1116  *
1117  *	Locking: Caller.
1118  *	Returns: -EINVAL if IPM is not supported, 0 otherwise.
1119  */
ata_dev_enable_pm(struct ata_device * dev,enum link_pm policy)1120 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1121 {
1122 	int rc = 0;
1123 	struct ata_port *ap = dev->link->ap;
1124 
1125 	/* set HIPM first, then DIPM */
1126 	if (ap->ops->enable_pm)
1127 		rc = ap->ops->enable_pm(ap, policy);
1128 	if (rc)
1129 		goto enable_pm_out;
1130 	rc = ata_dev_set_dipm(dev, policy);
1131 
1132 enable_pm_out:
1133 	if (rc)
1134 		ap->pm_policy = MAX_PERFORMANCE;
1135 	else
1136 		ap->pm_policy = policy;
1137 	return /* rc */;	/* hopefully we can use 'rc' eventually */
1138 }
1139 
1140 #ifdef CONFIG_PM
1141 /**
1142  *	ata_dev_disable_pm - disable SATA interface power management
1143  *	@dev: device to disable power management
1144  *
1145  *	Disable SATA Interface power management.  This will disable
1146  *	Device Interface Power Management (DIPM) without changing
1147  * 	policy,  call driver specific callbacks for disabling Host
1148  * 	Initiated Power management.
1149  *
1150  *	Locking: Caller.
1151  *	Returns: void
1152  */
ata_dev_disable_pm(struct ata_device * dev)1153 static void ata_dev_disable_pm(struct ata_device *dev)
1154 {
1155 	struct ata_port *ap = dev->link->ap;
1156 
1157 	ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1158 	if (ap->ops->disable_pm)
1159 		ap->ops->disable_pm(ap);
1160 }
1161 #endif	/* CONFIG_PM */
1162 
ata_lpm_schedule(struct ata_port * ap,enum link_pm policy)1163 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1164 {
1165 	ap->pm_policy = policy;
1166 	ap->link.eh_info.action |= ATA_EH_LPM;
1167 	ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1168 	ata_port_schedule_eh(ap);
1169 }
1170 
1171 #ifdef CONFIG_PM
ata_lpm_enable(struct ata_host * host)1172 static void ata_lpm_enable(struct ata_host *host)
1173 {
1174 	struct ata_link *link;
1175 	struct ata_port *ap;
1176 	struct ata_device *dev;
1177 	int i;
1178 
1179 	for (i = 0; i < host->n_ports; i++) {
1180 		ap = host->ports[i];
1181 		ata_for_each_link(link, ap, EDGE) {
1182 			ata_for_each_dev(dev, link, ALL)
1183 				ata_dev_disable_pm(dev);
1184 		}
1185 	}
1186 }
1187 
ata_lpm_disable(struct ata_host * host)1188 static void ata_lpm_disable(struct ata_host *host)
1189 {
1190 	int i;
1191 
1192 	for (i = 0; i < host->n_ports; i++) {
1193 		struct ata_port *ap = host->ports[i];
1194 		ata_lpm_schedule(ap, ap->pm_policy);
1195 	}
1196 }
1197 #endif	/* CONFIG_PM */
1198 
1199 /**
1200  *	ata_dev_classify - determine device type based on ATA-spec signature
1201  *	@tf: ATA taskfile register set for device to be identified
1202  *
1203  *	Determine from taskfile register contents whether a device is
1204  *	ATA or ATAPI, as per "Signature and persistence" section
1205  *	of ATA/PI spec (volume 1, sect 5.14).
1206  *
1207  *	LOCKING:
1208  *	None.
1209  *
1210  *	RETURNS:
1211  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1212  *	%ATA_DEV_UNKNOWN the event of failure.
1213  */
ata_dev_classify(const struct ata_taskfile * tf)1214 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1215 {
1216 	/* Apple's open source Darwin code hints that some devices only
1217 	 * put a proper signature into the LBA mid/high registers,
1218 	 * So, we only check those.  It's sufficient for uniqueness.
1219 	 *
1220 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1221 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1222 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1223 	 * spec has never mentioned about using different signatures
1224 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1225 	 * Multiplier specification began to use 0x69/0x96 to identify
1226 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1227 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1228 	 * 0x69/0x96 shortly and described them as reserved for
1229 	 * SerialATA.
1230 	 *
1231 	 * We follow the current spec and consider that 0x69/0x96
1232 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1233 	 */
1234 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1235 		DPRINTK("found ATA device by sig\n");
1236 		return ATA_DEV_ATA;
1237 	}
1238 
1239 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1240 		DPRINTK("found ATAPI device by sig\n");
1241 		return ATA_DEV_ATAPI;
1242 	}
1243 
1244 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1245 		DPRINTK("found PMP device by sig\n");
1246 		return ATA_DEV_PMP;
1247 	}
1248 
1249 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1250 		printk(KERN_INFO "ata: SEMB device ignored\n");
1251 		return ATA_DEV_SEMB_UNSUP; /* not yet */
1252 	}
1253 
1254 	DPRINTK("unknown device\n");
1255 	return ATA_DEV_UNKNOWN;
1256 }
1257 
1258 /**
1259  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1260  *	@id: IDENTIFY DEVICE results we will examine
1261  *	@s: string into which data is output
1262  *	@ofs: offset into identify device page
1263  *	@len: length of string to return. must be an even number.
1264  *
1265  *	The strings in the IDENTIFY DEVICE page are broken up into
1266  *	16-bit chunks.  Run through the string, and output each
1267  *	8-bit chunk linearly, regardless of platform.
1268  *
1269  *	LOCKING:
1270  *	caller.
1271  */
1272 
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1273 void ata_id_string(const u16 *id, unsigned char *s,
1274 		   unsigned int ofs, unsigned int len)
1275 {
1276 	unsigned int c;
1277 
1278 	BUG_ON(len & 1);
1279 
1280 	while (len > 0) {
1281 		c = id[ofs] >> 8;
1282 		*s = c;
1283 		s++;
1284 
1285 		c = id[ofs] & 0xff;
1286 		*s = c;
1287 		s++;
1288 
1289 		ofs++;
1290 		len -= 2;
1291 	}
1292 }
1293 
1294 /**
1295  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1296  *	@id: IDENTIFY DEVICE results we will examine
1297  *	@s: string into which data is output
1298  *	@ofs: offset into identify device page
1299  *	@len: length of string to return. must be an odd number.
1300  *
1301  *	This function is identical to ata_id_string except that it
1302  *	trims trailing spaces and terminates the resulting string with
1303  *	null.  @len must be actual maximum length (even number) + 1.
1304  *
1305  *	LOCKING:
1306  *	caller.
1307  */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1308 void ata_id_c_string(const u16 *id, unsigned char *s,
1309 		     unsigned int ofs, unsigned int len)
1310 {
1311 	unsigned char *p;
1312 
1313 	ata_id_string(id, s, ofs, len - 1);
1314 
1315 	p = s + strnlen(s, len - 1);
1316 	while (p > s && p[-1] == ' ')
1317 		p--;
1318 	*p = '\0';
1319 }
1320 
ata_id_n_sectors(const u16 * id)1321 static u64 ata_id_n_sectors(const u16 *id)
1322 {
1323 	if (ata_id_has_lba(id)) {
1324 		if (ata_id_has_lba48(id))
1325 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1326 		else
1327 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1328 	} else {
1329 		if (ata_id_current_chs_valid(id))
1330 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1331 			       id[ATA_ID_CUR_SECTORS];
1332 		else
1333 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1334 			       id[ATA_ID_SECTORS];
1335 	}
1336 }
1337 
ata_tf_to_lba48(const struct ata_taskfile * tf)1338 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1339 {
1340 	u64 sectors = 0;
1341 
1342 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1343 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1344 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1345 	sectors |= (tf->lbah & 0xff) << 16;
1346 	sectors |= (tf->lbam & 0xff) << 8;
1347 	sectors |= (tf->lbal & 0xff);
1348 
1349 	return sectors;
1350 }
1351 
ata_tf_to_lba(const struct ata_taskfile * tf)1352 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1353 {
1354 	u64 sectors = 0;
1355 
1356 	sectors |= (tf->device & 0x0f) << 24;
1357 	sectors |= (tf->lbah & 0xff) << 16;
1358 	sectors |= (tf->lbam & 0xff) << 8;
1359 	sectors |= (tf->lbal & 0xff);
1360 
1361 	return sectors;
1362 }
1363 
1364 /**
1365  *	ata_read_native_max_address - Read native max address
1366  *	@dev: target device
1367  *	@max_sectors: out parameter for the result native max address
1368  *
1369  *	Perform an LBA48 or LBA28 native size query upon the device in
1370  *	question.
1371  *
1372  *	RETURNS:
1373  *	0 on success, -EACCES if command is aborted by the drive.
1374  *	-EIO on other errors.
1375  */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1376 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1377 {
1378 	unsigned int err_mask;
1379 	struct ata_taskfile tf;
1380 	int lba48 = ata_id_has_lba48(dev->id);
1381 
1382 	ata_tf_init(dev, &tf);
1383 
1384 	/* always clear all address registers */
1385 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1386 
1387 	if (lba48) {
1388 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1389 		tf.flags |= ATA_TFLAG_LBA48;
1390 	} else
1391 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1392 
1393 	tf.protocol |= ATA_PROT_NODATA;
1394 	tf.device |= ATA_LBA;
1395 
1396 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1397 	if (err_mask) {
1398 		ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1399 			       "max address (err_mask=0x%x)\n", err_mask);
1400 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1401 			return -EACCES;
1402 		return -EIO;
1403 	}
1404 
1405 	if (lba48)
1406 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1407 	else
1408 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1409 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1410 		(*max_sectors)--;
1411 	return 0;
1412 }
1413 
1414 /**
1415  *	ata_set_max_sectors - Set max sectors
1416  *	@dev: target device
1417  *	@new_sectors: new max sectors value to set for the device
1418  *
1419  *	Set max sectors of @dev to @new_sectors.
1420  *
1421  *	RETURNS:
1422  *	0 on success, -EACCES if command is aborted or denied (due to
1423  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1424  *	errors.
1425  */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1426 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1427 {
1428 	unsigned int err_mask;
1429 	struct ata_taskfile tf;
1430 	int lba48 = ata_id_has_lba48(dev->id);
1431 
1432 	new_sectors--;
1433 
1434 	ata_tf_init(dev, &tf);
1435 
1436 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1437 
1438 	if (lba48) {
1439 		tf.command = ATA_CMD_SET_MAX_EXT;
1440 		tf.flags |= ATA_TFLAG_LBA48;
1441 
1442 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1443 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1444 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1445 	} else {
1446 		tf.command = ATA_CMD_SET_MAX;
1447 
1448 		tf.device |= (new_sectors >> 24) & 0xf;
1449 	}
1450 
1451 	tf.protocol |= ATA_PROT_NODATA;
1452 	tf.device |= ATA_LBA;
1453 
1454 	tf.lbal = (new_sectors >> 0) & 0xff;
1455 	tf.lbam = (new_sectors >> 8) & 0xff;
1456 	tf.lbah = (new_sectors >> 16) & 0xff;
1457 
1458 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1459 	if (err_mask) {
1460 		ata_dev_printk(dev, KERN_WARNING, "failed to set "
1461 			       "max address (err_mask=0x%x)\n", err_mask);
1462 		if (err_mask == AC_ERR_DEV &&
1463 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1464 			return -EACCES;
1465 		return -EIO;
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 /**
1472  *	ata_hpa_resize		-	Resize a device with an HPA set
1473  *	@dev: Device to resize
1474  *
1475  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1476  *	it if required to the full size of the media. The caller must check
1477  *	the drive has the HPA feature set enabled.
1478  *
1479  *	RETURNS:
1480  *	0 on success, -errno on failure.
1481  */
ata_hpa_resize(struct ata_device * dev)1482 static int ata_hpa_resize(struct ata_device *dev)
1483 {
1484 	struct ata_eh_context *ehc = &dev->link->eh_context;
1485 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1486 	u64 sectors = ata_id_n_sectors(dev->id);
1487 	u64 native_sectors;
1488 	int rc;
1489 
1490 	/* do we need to do it? */
1491 	if (dev->class != ATA_DEV_ATA ||
1492 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1493 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1494 		return 0;
1495 
1496 	/* read native max address */
1497 	rc = ata_read_native_max_address(dev, &native_sectors);
1498 	if (rc) {
1499 		/* If device aborted the command or HPA isn't going to
1500 		 * be unlocked, skip HPA resizing.
1501 		 */
1502 		if (rc == -EACCES || !ata_ignore_hpa) {
1503 			ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1504 				       "broken, skipping HPA handling\n");
1505 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1506 
1507 			/* we can continue if device aborted the command */
1508 			if (rc == -EACCES)
1509 				rc = 0;
1510 		}
1511 
1512 		return rc;
1513 	}
1514 
1515 	/* nothing to do? */
1516 	if (native_sectors <= sectors || !ata_ignore_hpa) {
1517 		if (!print_info || native_sectors == sectors)
1518 			return 0;
1519 
1520 		if (native_sectors > sectors)
1521 			ata_dev_printk(dev, KERN_INFO,
1522 				"HPA detected: current %llu, native %llu\n",
1523 				(unsigned long long)sectors,
1524 				(unsigned long long)native_sectors);
1525 		else if (native_sectors < sectors)
1526 			ata_dev_printk(dev, KERN_WARNING,
1527 				"native sectors (%llu) is smaller than "
1528 				"sectors (%llu)\n",
1529 				(unsigned long long)native_sectors,
1530 				(unsigned long long)sectors);
1531 		return 0;
1532 	}
1533 
1534 	/* let's unlock HPA */
1535 	rc = ata_set_max_sectors(dev, native_sectors);
1536 	if (rc == -EACCES) {
1537 		/* if device aborted the command, skip HPA resizing */
1538 		ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1539 			       "(%llu -> %llu), skipping HPA handling\n",
1540 			       (unsigned long long)sectors,
1541 			       (unsigned long long)native_sectors);
1542 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1543 		return 0;
1544 	} else if (rc)
1545 		return rc;
1546 
1547 	/* re-read IDENTIFY data */
1548 	rc = ata_dev_reread_id(dev, 0);
1549 	if (rc) {
1550 		ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1551 			       "data after HPA resizing\n");
1552 		return rc;
1553 	}
1554 
1555 	if (print_info) {
1556 		u64 new_sectors = ata_id_n_sectors(dev->id);
1557 		ata_dev_printk(dev, KERN_INFO,
1558 			"HPA unlocked: %llu -> %llu, native %llu\n",
1559 			(unsigned long long)sectors,
1560 			(unsigned long long)new_sectors,
1561 			(unsigned long long)native_sectors);
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1569  *	@id: IDENTIFY DEVICE page to dump
1570  *
1571  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1572  *	page.
1573  *
1574  *	LOCKING:
1575  *	caller.
1576  */
1577 
ata_dump_id(const u16 * id)1578 static inline void ata_dump_id(const u16 *id)
1579 {
1580 	DPRINTK("49==0x%04x  "
1581 		"53==0x%04x  "
1582 		"63==0x%04x  "
1583 		"64==0x%04x  "
1584 		"75==0x%04x  \n",
1585 		id[49],
1586 		id[53],
1587 		id[63],
1588 		id[64],
1589 		id[75]);
1590 	DPRINTK("80==0x%04x  "
1591 		"81==0x%04x  "
1592 		"82==0x%04x  "
1593 		"83==0x%04x  "
1594 		"84==0x%04x  \n",
1595 		id[80],
1596 		id[81],
1597 		id[82],
1598 		id[83],
1599 		id[84]);
1600 	DPRINTK("88==0x%04x  "
1601 		"93==0x%04x\n",
1602 		id[88],
1603 		id[93]);
1604 }
1605 
1606 /**
1607  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1608  *	@id: IDENTIFY data to compute xfer mask from
1609  *
1610  *	Compute the xfermask for this device. This is not as trivial
1611  *	as it seems if we must consider early devices correctly.
1612  *
1613  *	FIXME: pre IDE drive timing (do we care ?).
1614  *
1615  *	LOCKING:
1616  *	None.
1617  *
1618  *	RETURNS:
1619  *	Computed xfermask
1620  */
ata_id_xfermask(const u16 * id)1621 unsigned long ata_id_xfermask(const u16 *id)
1622 {
1623 	unsigned long pio_mask, mwdma_mask, udma_mask;
1624 
1625 	/* Usual case. Word 53 indicates word 64 is valid */
1626 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1627 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1628 		pio_mask <<= 3;
1629 		pio_mask |= 0x7;
1630 	} else {
1631 		/* If word 64 isn't valid then Word 51 high byte holds
1632 		 * the PIO timing number for the maximum. Turn it into
1633 		 * a mask.
1634 		 */
1635 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1636 		if (mode < 5)	/* Valid PIO range */
1637 			pio_mask = (2 << mode) - 1;
1638 		else
1639 			pio_mask = 1;
1640 
1641 		/* But wait.. there's more. Design your standards by
1642 		 * committee and you too can get a free iordy field to
1643 		 * process. However its the speeds not the modes that
1644 		 * are supported... Note drivers using the timing API
1645 		 * will get this right anyway
1646 		 */
1647 	}
1648 
1649 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1650 
1651 	if (ata_id_is_cfa(id)) {
1652 		/*
1653 		 *	Process compact flash extended modes
1654 		 */
1655 		int pio = id[163] & 0x7;
1656 		int dma = (id[163] >> 3) & 7;
1657 
1658 		if (pio)
1659 			pio_mask |= (1 << 5);
1660 		if (pio > 1)
1661 			pio_mask |= (1 << 6);
1662 		if (dma)
1663 			mwdma_mask |= (1 << 3);
1664 		if (dma > 1)
1665 			mwdma_mask |= (1 << 4);
1666 	}
1667 
1668 	udma_mask = 0;
1669 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1670 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1671 
1672 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1673 }
1674 
1675 /**
1676  *	ata_pio_queue_task - Queue port_task
1677  *	@ap: The ata_port to queue port_task for
1678  *	@data: data for @fn to use
1679  *	@delay: delay time in msecs for workqueue function
1680  *
1681  *	Schedule @fn(@data) for execution after @delay jiffies using
1682  *	port_task.  There is one port_task per port and it's the
1683  *	user(low level driver)'s responsibility to make sure that only
1684  *	one task is active at any given time.
1685  *
1686  *	libata core layer takes care of synchronization between
1687  *	port_task and EH.  ata_pio_queue_task() may be ignored for EH
1688  *	synchronization.
1689  *
1690  *	LOCKING:
1691  *	Inherited from caller.
1692  */
ata_pio_queue_task(struct ata_port * ap,void * data,unsigned long delay)1693 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1694 {
1695 	ap->port_task_data = data;
1696 
1697 	/* may fail if ata_port_flush_task() in progress */
1698 	queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1699 }
1700 
1701 /**
1702  *	ata_port_flush_task - Flush port_task
1703  *	@ap: The ata_port to flush port_task for
1704  *
1705  *	After this function completes, port_task is guranteed not to
1706  *	be running or scheduled.
1707  *
1708  *	LOCKING:
1709  *	Kernel thread context (may sleep)
1710  */
ata_port_flush_task(struct ata_port * ap)1711 void ata_port_flush_task(struct ata_port *ap)
1712 {
1713 	DPRINTK("ENTER\n");
1714 
1715 	cancel_rearming_delayed_work(&ap->port_task);
1716 
1717 	if (ata_msg_ctl(ap))
1718 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1719 }
1720 
ata_qc_complete_internal(struct ata_queued_cmd * qc)1721 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1722 {
1723 	struct completion *waiting = qc->private_data;
1724 
1725 	complete(waiting);
1726 }
1727 
1728 /**
1729  *	ata_exec_internal_sg - execute libata internal command
1730  *	@dev: Device to which the command is sent
1731  *	@tf: Taskfile registers for the command and the result
1732  *	@cdb: CDB for packet command
1733  *	@dma_dir: Data tranfer direction of the command
1734  *	@sgl: sg list for the data buffer of the command
1735  *	@n_elem: Number of sg entries
1736  *	@timeout: Timeout in msecs (0 for default)
1737  *
1738  *	Executes libata internal command with timeout.  @tf contains
1739  *	command on entry and result on return.  Timeout and error
1740  *	conditions are reported via return value.  No recovery action
1741  *	is taken after a command times out.  It's caller's duty to
1742  *	clean up after timeout.
1743  *
1744  *	LOCKING:
1745  *	None.  Should be called with kernel context, might sleep.
1746  *
1747  *	RETURNS:
1748  *	Zero on success, AC_ERR_* mask on failure
1749  */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1750 unsigned ata_exec_internal_sg(struct ata_device *dev,
1751 			      struct ata_taskfile *tf, const u8 *cdb,
1752 			      int dma_dir, struct scatterlist *sgl,
1753 			      unsigned int n_elem, unsigned long timeout)
1754 {
1755 	struct ata_link *link = dev->link;
1756 	struct ata_port *ap = link->ap;
1757 	u8 command = tf->command;
1758 	int auto_timeout = 0;
1759 	struct ata_queued_cmd *qc;
1760 	unsigned int tag, preempted_tag;
1761 	u32 preempted_sactive, preempted_qc_active;
1762 	int preempted_nr_active_links;
1763 	DECLARE_COMPLETION_ONSTACK(wait);
1764 	unsigned long flags;
1765 	unsigned int err_mask;
1766 	int rc;
1767 
1768 	spin_lock_irqsave(ap->lock, flags);
1769 
1770 	/* no internal command while frozen */
1771 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1772 		spin_unlock_irqrestore(ap->lock, flags);
1773 		return AC_ERR_SYSTEM;
1774 	}
1775 
1776 	/* initialize internal qc */
1777 
1778 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1779 	 * drivers choke if any other tag is given.  This breaks
1780 	 * ata_tag_internal() test for those drivers.  Don't use new
1781 	 * EH stuff without converting to it.
1782 	 */
1783 	if (ap->ops->error_handler)
1784 		tag = ATA_TAG_INTERNAL;
1785 	else
1786 		tag = 0;
1787 
1788 	if (test_and_set_bit(tag, &ap->qc_allocated))
1789 		BUG();
1790 	qc = __ata_qc_from_tag(ap, tag);
1791 
1792 	qc->tag = tag;
1793 	qc->scsicmd = NULL;
1794 	qc->ap = ap;
1795 	qc->dev = dev;
1796 	ata_qc_reinit(qc);
1797 
1798 	preempted_tag = link->active_tag;
1799 	preempted_sactive = link->sactive;
1800 	preempted_qc_active = ap->qc_active;
1801 	preempted_nr_active_links = ap->nr_active_links;
1802 	link->active_tag = ATA_TAG_POISON;
1803 	link->sactive = 0;
1804 	ap->qc_active = 0;
1805 	ap->nr_active_links = 0;
1806 
1807 	/* prepare & issue qc */
1808 	qc->tf = *tf;
1809 	if (cdb)
1810 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1811 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1812 	qc->dma_dir = dma_dir;
1813 	if (dma_dir != DMA_NONE) {
1814 		unsigned int i, buflen = 0;
1815 		struct scatterlist *sg;
1816 
1817 		for_each_sg(sgl, sg, n_elem, i)
1818 			buflen += sg->length;
1819 
1820 		ata_sg_init(qc, sgl, n_elem);
1821 		qc->nbytes = buflen;
1822 	}
1823 
1824 	qc->private_data = &wait;
1825 	qc->complete_fn = ata_qc_complete_internal;
1826 
1827 	ata_qc_issue(qc);
1828 
1829 	spin_unlock_irqrestore(ap->lock, flags);
1830 
1831 	if (!timeout) {
1832 		if (ata_probe_timeout)
1833 			timeout = ata_probe_timeout * 1000;
1834 		else {
1835 			timeout = ata_internal_cmd_timeout(dev, command);
1836 			auto_timeout = 1;
1837 		}
1838 	}
1839 
1840 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1841 
1842 	ata_port_flush_task(ap);
1843 
1844 	if (!rc) {
1845 		spin_lock_irqsave(ap->lock, flags);
1846 
1847 		/* We're racing with irq here.  If we lose, the
1848 		 * following test prevents us from completing the qc
1849 		 * twice.  If we win, the port is frozen and will be
1850 		 * cleaned up by ->post_internal_cmd().
1851 		 */
1852 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1853 			qc->err_mask |= AC_ERR_TIMEOUT;
1854 
1855 			if (ap->ops->error_handler)
1856 				ata_port_freeze(ap);
1857 			else
1858 				ata_qc_complete(qc);
1859 
1860 			if (ata_msg_warn(ap))
1861 				ata_dev_printk(dev, KERN_WARNING,
1862 					"qc timeout (cmd 0x%x)\n", command);
1863 		}
1864 
1865 		spin_unlock_irqrestore(ap->lock, flags);
1866 	}
1867 
1868 	/* do post_internal_cmd */
1869 	if (ap->ops->post_internal_cmd)
1870 		ap->ops->post_internal_cmd(qc);
1871 
1872 	/* perform minimal error analysis */
1873 	if (qc->flags & ATA_QCFLAG_FAILED) {
1874 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1875 			qc->err_mask |= AC_ERR_DEV;
1876 
1877 		if (!qc->err_mask)
1878 			qc->err_mask |= AC_ERR_OTHER;
1879 
1880 		if (qc->err_mask & ~AC_ERR_OTHER)
1881 			qc->err_mask &= ~AC_ERR_OTHER;
1882 	}
1883 
1884 	/* finish up */
1885 	spin_lock_irqsave(ap->lock, flags);
1886 
1887 	*tf = qc->result_tf;
1888 	err_mask = qc->err_mask;
1889 
1890 	ata_qc_free(qc);
1891 	link->active_tag = preempted_tag;
1892 	link->sactive = preempted_sactive;
1893 	ap->qc_active = preempted_qc_active;
1894 	ap->nr_active_links = preempted_nr_active_links;
1895 
1896 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1897 	 * Until those drivers are fixed, we detect the condition
1898 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1899 	 * port.
1900 	 *
1901 	 * Note that this doesn't change any behavior as internal
1902 	 * command failure results in disabling the device in the
1903 	 * higher layer for LLDDs without new reset/EH callbacks.
1904 	 *
1905 	 * Kill the following code as soon as those drivers are fixed.
1906 	 */
1907 	if (ap->flags & ATA_FLAG_DISABLED) {
1908 		err_mask |= AC_ERR_SYSTEM;
1909 		ata_port_probe(ap);
1910 	}
1911 
1912 	spin_unlock_irqrestore(ap->lock, flags);
1913 
1914 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1915 		ata_internal_cmd_timed_out(dev, command);
1916 
1917 	return err_mask;
1918 }
1919 
1920 /**
1921  *	ata_exec_internal - execute libata internal command
1922  *	@dev: Device to which the command is sent
1923  *	@tf: Taskfile registers for the command and the result
1924  *	@cdb: CDB for packet command
1925  *	@dma_dir: Data tranfer direction of the command
1926  *	@buf: Data buffer of the command
1927  *	@buflen: Length of data buffer
1928  *	@timeout: Timeout in msecs (0 for default)
1929  *
1930  *	Wrapper around ata_exec_internal_sg() which takes simple
1931  *	buffer instead of sg list.
1932  *
1933  *	LOCKING:
1934  *	None.  Should be called with kernel context, might sleep.
1935  *
1936  *	RETURNS:
1937  *	Zero on success, AC_ERR_* mask on failure
1938  */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1939 unsigned ata_exec_internal(struct ata_device *dev,
1940 			   struct ata_taskfile *tf, const u8 *cdb,
1941 			   int dma_dir, void *buf, unsigned int buflen,
1942 			   unsigned long timeout)
1943 {
1944 	struct scatterlist *psg = NULL, sg;
1945 	unsigned int n_elem = 0;
1946 
1947 	if (dma_dir != DMA_NONE) {
1948 		WARN_ON(!buf);
1949 		sg_init_one(&sg, buf, buflen);
1950 		psg = &sg;
1951 		n_elem++;
1952 	}
1953 
1954 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1955 				    timeout);
1956 }
1957 
1958 /**
1959  *	ata_do_simple_cmd - execute simple internal command
1960  *	@dev: Device to which the command is sent
1961  *	@cmd: Opcode to execute
1962  *
1963  *	Execute a 'simple' command, that only consists of the opcode
1964  *	'cmd' itself, without filling any other registers
1965  *
1966  *	LOCKING:
1967  *	Kernel thread context (may sleep).
1968  *
1969  *	RETURNS:
1970  *	Zero on success, AC_ERR_* mask on failure
1971  */
ata_do_simple_cmd(struct ata_device * dev,u8 cmd)1972 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1973 {
1974 	struct ata_taskfile tf;
1975 
1976 	ata_tf_init(dev, &tf);
1977 
1978 	tf.command = cmd;
1979 	tf.flags |= ATA_TFLAG_DEVICE;
1980 	tf.protocol = ATA_PROT_NODATA;
1981 
1982 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1983 }
1984 
1985 /**
1986  *	ata_pio_need_iordy	-	check if iordy needed
1987  *	@adev: ATA device
1988  *
1989  *	Check if the current speed of the device requires IORDY. Used
1990  *	by various controllers for chip configuration.
1991  */
1992 
ata_pio_need_iordy(const struct ata_device * adev)1993 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1994 {
1995 	/* Controller doesn't support  IORDY. Probably a pointless check
1996 	   as the caller should know this */
1997 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1998 		return 0;
1999 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
2000 	if (ata_id_is_cfa(adev->id)
2001 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2002 		return 0;
2003 	/* PIO3 and higher it is mandatory */
2004 	if (adev->pio_mode > XFER_PIO_2)
2005 		return 1;
2006 	/* We turn it on when possible */
2007 	if (ata_id_has_iordy(adev->id))
2008 		return 1;
2009 	return 0;
2010 }
2011 
2012 /**
2013  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
2014  *	@adev: ATA device
2015  *
2016  *	Compute the highest mode possible if we are not using iordy. Return
2017  *	-1 if no iordy mode is available.
2018  */
2019 
ata_pio_mask_no_iordy(const struct ata_device * adev)2020 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2021 {
2022 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
2023 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
2024 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
2025 		/* Is the speed faster than the drive allows non IORDY ? */
2026 		if (pio) {
2027 			/* This is cycle times not frequency - watch the logic! */
2028 			if (pio > 240)	/* PIO2 is 240nS per cycle */
2029 				return 3 << ATA_SHIFT_PIO;
2030 			return 7 << ATA_SHIFT_PIO;
2031 		}
2032 	}
2033 	return 3 << ATA_SHIFT_PIO;
2034 }
2035 
2036 /**
2037  *	ata_do_dev_read_id		-	default ID read method
2038  *	@dev: device
2039  *	@tf: proposed taskfile
2040  *	@id: data buffer
2041  *
2042  *	Issue the identify taskfile and hand back the buffer containing
2043  *	identify data. For some RAID controllers and for pre ATA devices
2044  *	this function is wrapped or replaced by the driver
2045  */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)2046 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2047 					struct ata_taskfile *tf, u16 *id)
2048 {
2049 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2050 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2051 }
2052 
2053 /**
2054  *	ata_dev_read_id - Read ID data from the specified device
2055  *	@dev: target device
2056  *	@p_class: pointer to class of the target device (may be changed)
2057  *	@flags: ATA_READID_* flags
2058  *	@id: buffer to read IDENTIFY data into
2059  *
2060  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
2061  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2062  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
2063  *	for pre-ATA4 drives.
2064  *
2065  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2066  *	now we abort if we hit that case.
2067  *
2068  *	LOCKING:
2069  *	Kernel thread context (may sleep)
2070  *
2071  *	RETURNS:
2072  *	0 on success, -errno otherwise.
2073  */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)2074 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2075 		    unsigned int flags, u16 *id)
2076 {
2077 	struct ata_port *ap = dev->link->ap;
2078 	unsigned int class = *p_class;
2079 	struct ata_taskfile tf;
2080 	unsigned int err_mask = 0;
2081 	const char *reason;
2082 	int may_fallback = 1, tried_spinup = 0;
2083 	int rc;
2084 
2085 	if (ata_msg_ctl(ap))
2086 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2087 
2088 retry:
2089 	ata_tf_init(dev, &tf);
2090 
2091 	switch (class) {
2092 	case ATA_DEV_ATA:
2093 		tf.command = ATA_CMD_ID_ATA;
2094 		break;
2095 	case ATA_DEV_ATAPI:
2096 		tf.command = ATA_CMD_ID_ATAPI;
2097 		break;
2098 	default:
2099 		rc = -ENODEV;
2100 		reason = "unsupported class";
2101 		goto err_out;
2102 	}
2103 
2104 	tf.protocol = ATA_PROT_PIO;
2105 
2106 	/* Some devices choke if TF registers contain garbage.  Make
2107 	 * sure those are properly initialized.
2108 	 */
2109 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2110 
2111 	/* Device presence detection is unreliable on some
2112 	 * controllers.  Always poll IDENTIFY if available.
2113 	 */
2114 	tf.flags |= ATA_TFLAG_POLLING;
2115 
2116 	if (ap->ops->read_id)
2117 		err_mask = ap->ops->read_id(dev, &tf, id);
2118 	else
2119 		err_mask = ata_do_dev_read_id(dev, &tf, id);
2120 
2121 	if (err_mask) {
2122 		if (err_mask & AC_ERR_NODEV_HINT) {
2123 			ata_dev_printk(dev, KERN_DEBUG,
2124 				       "NODEV after polling detection\n");
2125 			return -ENOENT;
2126 		}
2127 
2128 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2129 			/* Device or controller might have reported
2130 			 * the wrong device class.  Give a shot at the
2131 			 * other IDENTIFY if the current one is
2132 			 * aborted by the device.
2133 			 */
2134 			if (may_fallback) {
2135 				may_fallback = 0;
2136 
2137 				if (class == ATA_DEV_ATA)
2138 					class = ATA_DEV_ATAPI;
2139 				else
2140 					class = ATA_DEV_ATA;
2141 				goto retry;
2142 			}
2143 
2144 			/* Control reaches here iff the device aborted
2145 			 * both flavors of IDENTIFYs which happens
2146 			 * sometimes with phantom devices.
2147 			 */
2148 			ata_dev_printk(dev, KERN_DEBUG,
2149 				       "both IDENTIFYs aborted, assuming NODEV\n");
2150 			return -ENOENT;
2151 		}
2152 
2153 		rc = -EIO;
2154 		reason = "I/O error";
2155 		goto err_out;
2156 	}
2157 
2158 	/* Falling back doesn't make sense if ID data was read
2159 	 * successfully at least once.
2160 	 */
2161 	may_fallback = 0;
2162 
2163 	swap_buf_le16(id, ATA_ID_WORDS);
2164 
2165 	/* sanity check */
2166 	rc = -EINVAL;
2167 	reason = "device reports invalid type";
2168 
2169 	if (class == ATA_DEV_ATA) {
2170 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2171 			goto err_out;
2172 	} else {
2173 		if (ata_id_is_ata(id))
2174 			goto err_out;
2175 	}
2176 
2177 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2178 		tried_spinup = 1;
2179 		/*
2180 		 * Drive powered-up in standby mode, and requires a specific
2181 		 * SET_FEATURES spin-up subcommand before it will accept
2182 		 * anything other than the original IDENTIFY command.
2183 		 */
2184 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2185 		if (err_mask && id[2] != 0x738c) {
2186 			rc = -EIO;
2187 			reason = "SPINUP failed";
2188 			goto err_out;
2189 		}
2190 		/*
2191 		 * If the drive initially returned incomplete IDENTIFY info,
2192 		 * we now must reissue the IDENTIFY command.
2193 		 */
2194 		if (id[2] == 0x37c8)
2195 			goto retry;
2196 	}
2197 
2198 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2199 		/*
2200 		 * The exact sequence expected by certain pre-ATA4 drives is:
2201 		 * SRST RESET
2202 		 * IDENTIFY (optional in early ATA)
2203 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2204 		 * anything else..
2205 		 * Some drives were very specific about that exact sequence.
2206 		 *
2207 		 * Note that ATA4 says lba is mandatory so the second check
2208 		 * shoud never trigger.
2209 		 */
2210 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2211 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2212 			if (err_mask) {
2213 				rc = -EIO;
2214 				reason = "INIT_DEV_PARAMS failed";
2215 				goto err_out;
2216 			}
2217 
2218 			/* current CHS translation info (id[53-58]) might be
2219 			 * changed. reread the identify device info.
2220 			 */
2221 			flags &= ~ATA_READID_POSTRESET;
2222 			goto retry;
2223 		}
2224 	}
2225 
2226 	*p_class = class;
2227 
2228 	return 0;
2229 
2230  err_out:
2231 	if (ata_msg_warn(ap))
2232 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2233 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
2234 	return rc;
2235 }
2236 
ata_do_link_spd_horkage(struct ata_device * dev)2237 static int ata_do_link_spd_horkage(struct ata_device *dev)
2238 {
2239 	struct ata_link *plink = ata_dev_phys_link(dev);
2240 	u32 target, target_limit;
2241 
2242 	if (!sata_scr_valid(plink))
2243 		return 0;
2244 
2245 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2246 		target = 1;
2247 	else
2248 		return 0;
2249 
2250 	target_limit = (1 << target) - 1;
2251 
2252 	/* if already on stricter limit, no need to push further */
2253 	if (plink->sata_spd_limit <= target_limit)
2254 		return 0;
2255 
2256 	plink->sata_spd_limit = target_limit;
2257 
2258 	/* Request another EH round by returning -EAGAIN if link is
2259 	 * going faster than the target speed.  Forward progress is
2260 	 * guaranteed by setting sata_spd_limit to target_limit above.
2261 	 */
2262 	if (plink->sata_spd > target) {
2263 		ata_dev_printk(dev, KERN_INFO,
2264 			       "applying link speed limit horkage to %s\n",
2265 			       sata_spd_string(target));
2266 		return -EAGAIN;
2267 	}
2268 	return 0;
2269 }
2270 
ata_dev_knobble(struct ata_device * dev)2271 static inline u8 ata_dev_knobble(struct ata_device *dev)
2272 {
2273 	struct ata_port *ap = dev->link->ap;
2274 
2275 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2276 		return 0;
2277 
2278 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2279 }
2280 
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2281 static void ata_dev_config_ncq(struct ata_device *dev,
2282 			       char *desc, size_t desc_sz)
2283 {
2284 	struct ata_port *ap = dev->link->ap;
2285 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286 
2287 	if (!ata_id_has_ncq(dev->id)) {
2288 		desc[0] = '\0';
2289 		return;
2290 	}
2291 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2292 		snprintf(desc, desc_sz, "NCQ (not used)");
2293 		return;
2294 	}
2295 	if (ap->flags & ATA_FLAG_NCQ) {
2296 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2297 		dev->flags |= ATA_DFLAG_NCQ;
2298 	}
2299 
2300 	if (hdepth >= ddepth)
2301 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2302 	else
2303 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2304 }
2305 
2306 /**
2307  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2308  *	@dev: Target device to configure
2309  *
2310  *	Configure @dev according to @dev->id.  Generic and low-level
2311  *	driver specific fixups are also applied.
2312  *
2313  *	LOCKING:
2314  *	Kernel thread context (may sleep)
2315  *
2316  *	RETURNS:
2317  *	0 on success, -errno otherwise
2318  */
ata_dev_configure(struct ata_device * dev)2319 int ata_dev_configure(struct ata_device *dev)
2320 {
2321 	struct ata_port *ap = dev->link->ap;
2322 	struct ata_eh_context *ehc = &dev->link->eh_context;
2323 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2324 	const u16 *id = dev->id;
2325 	unsigned long xfer_mask;
2326 	char revbuf[7];		/* XYZ-99\0 */
2327 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2328 	char modelbuf[ATA_ID_PROD_LEN+1];
2329 	int rc;
2330 
2331 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2332 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2333 			       __func__);
2334 		return 0;
2335 	}
2336 
2337 	if (ata_msg_probe(ap))
2338 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2339 
2340 	/* set horkage */
2341 	dev->horkage |= ata_dev_blacklisted(dev);
2342 	ata_force_horkage(dev);
2343 
2344 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2345 		ata_dev_printk(dev, KERN_INFO,
2346 			       "unsupported device, disabling\n");
2347 		ata_dev_disable(dev);
2348 		return 0;
2349 	}
2350 
2351 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2352 	    dev->class == ATA_DEV_ATAPI) {
2353 		ata_dev_printk(dev, KERN_WARNING,
2354 			"WARNING: ATAPI is %s, device ignored.\n",
2355 			atapi_enabled ? "not supported with this driver"
2356 				      : "disabled");
2357 		ata_dev_disable(dev);
2358 		return 0;
2359 	}
2360 
2361 	rc = ata_do_link_spd_horkage(dev);
2362 	if (rc)
2363 		return rc;
2364 
2365 	/* let ACPI work its magic */
2366 	rc = ata_acpi_on_devcfg(dev);
2367 	if (rc)
2368 		return rc;
2369 
2370 	/* massage HPA, do it early as it might change IDENTIFY data */
2371 	rc = ata_hpa_resize(dev);
2372 	if (rc)
2373 		return rc;
2374 
2375 	/* print device capabilities */
2376 	if (ata_msg_probe(ap))
2377 		ata_dev_printk(dev, KERN_DEBUG,
2378 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2379 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
2380 			       __func__,
2381 			       id[49], id[82], id[83], id[84],
2382 			       id[85], id[86], id[87], id[88]);
2383 
2384 	/* initialize to-be-configured parameters */
2385 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2386 	dev->max_sectors = 0;
2387 	dev->cdb_len = 0;
2388 	dev->n_sectors = 0;
2389 	dev->cylinders = 0;
2390 	dev->heads = 0;
2391 	dev->sectors = 0;
2392 
2393 	/*
2394 	 * common ATA, ATAPI feature tests
2395 	 */
2396 
2397 	/* find max transfer mode; for printk only */
2398 	xfer_mask = ata_id_xfermask(id);
2399 
2400 	if (ata_msg_probe(ap))
2401 		ata_dump_id(id);
2402 
2403 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2404 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2405 			sizeof(fwrevbuf));
2406 
2407 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2408 			sizeof(modelbuf));
2409 
2410 	/* ATA-specific feature tests */
2411 	if (dev->class == ATA_DEV_ATA) {
2412 		if (ata_id_is_cfa(id)) {
2413 			if (id[162] & 1) /* CPRM may make this media unusable */
2414 				ata_dev_printk(dev, KERN_WARNING,
2415 					       "supports DRM functions and may "
2416 					       "not be fully accessable.\n");
2417 			snprintf(revbuf, 7, "CFA");
2418 		} else {
2419 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2420 			/* Warn the user if the device has TPM extensions */
2421 			if (ata_id_has_tpm(id))
2422 				ata_dev_printk(dev, KERN_WARNING,
2423 					       "supports DRM functions and may "
2424 					       "not be fully accessable.\n");
2425 		}
2426 
2427 		dev->n_sectors = ata_id_n_sectors(id);
2428 
2429 		if (dev->id[59] & 0x100)
2430 			dev->multi_count = dev->id[59] & 0xff;
2431 
2432 		if (ata_id_has_lba(id)) {
2433 			const char *lba_desc;
2434 			char ncq_desc[20];
2435 
2436 			lba_desc = "LBA";
2437 			dev->flags |= ATA_DFLAG_LBA;
2438 			if (ata_id_has_lba48(id)) {
2439 				dev->flags |= ATA_DFLAG_LBA48;
2440 				lba_desc = "LBA48";
2441 
2442 				if (dev->n_sectors >= (1UL << 28) &&
2443 				    ata_id_has_flush_ext(id))
2444 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2445 			}
2446 
2447 			/* config NCQ */
2448 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2449 
2450 			/* print device info to dmesg */
2451 			if (ata_msg_drv(ap) && print_info) {
2452 				ata_dev_printk(dev, KERN_INFO,
2453 					"%s: %s, %s, max %s\n",
2454 					revbuf, modelbuf, fwrevbuf,
2455 					ata_mode_string(xfer_mask));
2456 				ata_dev_printk(dev, KERN_INFO,
2457 					"%Lu sectors, multi %u: %s %s\n",
2458 					(unsigned long long)dev->n_sectors,
2459 					dev->multi_count, lba_desc, ncq_desc);
2460 			}
2461 		} else {
2462 			/* CHS */
2463 
2464 			/* Default translation */
2465 			dev->cylinders	= id[1];
2466 			dev->heads	= id[3];
2467 			dev->sectors	= id[6];
2468 
2469 			if (ata_id_current_chs_valid(id)) {
2470 				/* Current CHS translation is valid. */
2471 				dev->cylinders = id[54];
2472 				dev->heads     = id[55];
2473 				dev->sectors   = id[56];
2474 			}
2475 
2476 			/* print device info to dmesg */
2477 			if (ata_msg_drv(ap) && print_info) {
2478 				ata_dev_printk(dev, KERN_INFO,
2479 					"%s: %s, %s, max %s\n",
2480 					revbuf,	modelbuf, fwrevbuf,
2481 					ata_mode_string(xfer_mask));
2482 				ata_dev_printk(dev, KERN_INFO,
2483 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
2484 					(unsigned long long)dev->n_sectors,
2485 					dev->multi_count, dev->cylinders,
2486 					dev->heads, dev->sectors);
2487 			}
2488 		}
2489 
2490 		dev->cdb_len = 16;
2491 	}
2492 
2493 	/* ATAPI-specific feature tests */
2494 	else if (dev->class == ATA_DEV_ATAPI) {
2495 		const char *cdb_intr_string = "";
2496 		const char *atapi_an_string = "";
2497 		const char *dma_dir_string = "";
2498 		u32 sntf;
2499 
2500 		rc = atapi_cdb_len(id);
2501 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2502 			if (ata_msg_warn(ap))
2503 				ata_dev_printk(dev, KERN_WARNING,
2504 					       "unsupported CDB len\n");
2505 			rc = -EINVAL;
2506 			goto err_out_nosup;
2507 		}
2508 		dev->cdb_len = (unsigned int) rc;
2509 
2510 		/* Enable ATAPI AN if both the host and device have
2511 		 * the support.  If PMP is attached, SNTF is required
2512 		 * to enable ATAPI AN to discern between PHY status
2513 		 * changed notifications and ATAPI ANs.
2514 		 */
2515 		if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2516 		    (!sata_pmp_attached(ap) ||
2517 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2518 			unsigned int err_mask;
2519 
2520 			/* issue SET feature command to turn this on */
2521 			err_mask = ata_dev_set_feature(dev,
2522 					SETFEATURES_SATA_ENABLE, SATA_AN);
2523 			if (err_mask)
2524 				ata_dev_printk(dev, KERN_ERR,
2525 					"failed to enable ATAPI AN "
2526 					"(err_mask=0x%x)\n", err_mask);
2527 			else {
2528 				dev->flags |= ATA_DFLAG_AN;
2529 				atapi_an_string = ", ATAPI AN";
2530 			}
2531 		}
2532 
2533 		if (ata_id_cdb_intr(dev->id)) {
2534 			dev->flags |= ATA_DFLAG_CDB_INTR;
2535 			cdb_intr_string = ", CDB intr";
2536 		}
2537 
2538 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2539 			dev->flags |= ATA_DFLAG_DMADIR;
2540 			dma_dir_string = ", DMADIR";
2541 		}
2542 
2543 		/* print device info to dmesg */
2544 		if (ata_msg_drv(ap) && print_info)
2545 			ata_dev_printk(dev, KERN_INFO,
2546 				       "ATAPI: %s, %s, max %s%s%s%s\n",
2547 				       modelbuf, fwrevbuf,
2548 				       ata_mode_string(xfer_mask),
2549 				       cdb_intr_string, atapi_an_string,
2550 				       dma_dir_string);
2551 	}
2552 
2553 	/* determine max_sectors */
2554 	dev->max_sectors = ATA_MAX_SECTORS;
2555 	if (dev->flags & ATA_DFLAG_LBA48)
2556 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2557 
2558 	if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2559 		if (ata_id_has_hipm(dev->id))
2560 			dev->flags |= ATA_DFLAG_HIPM;
2561 		if (ata_id_has_dipm(dev->id))
2562 			dev->flags |= ATA_DFLAG_DIPM;
2563 	}
2564 
2565 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2566 	   200 sectors */
2567 	if (ata_dev_knobble(dev)) {
2568 		if (ata_msg_drv(ap) && print_info)
2569 			ata_dev_printk(dev, KERN_INFO,
2570 				       "applying bridge limits\n");
2571 		dev->udma_mask &= ATA_UDMA5;
2572 		dev->max_sectors = ATA_MAX_SECTORS;
2573 	}
2574 
2575 	if ((dev->class == ATA_DEV_ATAPI) &&
2576 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2577 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2578 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2579 	}
2580 
2581 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2582 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2583 					 dev->max_sectors);
2584 
2585 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2586 		dev->horkage |= ATA_HORKAGE_IPM;
2587 
2588 		/* reset link pm_policy for this port to no pm */
2589 		ap->pm_policy = MAX_PERFORMANCE;
2590 	}
2591 
2592 	if (ap->ops->dev_config)
2593 		ap->ops->dev_config(dev);
2594 
2595 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2596 		/* Let the user know. We don't want to disallow opens for
2597 		   rescue purposes, or in case the vendor is just a blithering
2598 		   idiot. Do this after the dev_config call as some controllers
2599 		   with buggy firmware may want to avoid reporting false device
2600 		   bugs */
2601 
2602 		if (print_info) {
2603 			ata_dev_printk(dev, KERN_WARNING,
2604 "Drive reports diagnostics failure. This may indicate a drive\n");
2605 			ata_dev_printk(dev, KERN_WARNING,
2606 "fault or invalid emulation. Contact drive vendor for information.\n");
2607 		}
2608 	}
2609 
2610 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2611 		ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2612 			       "firmware update to be fully functional.\n");
2613 		ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2614 			       "or visit http://ata.wiki.kernel.org.\n");
2615 	}
2616 
2617 	return 0;
2618 
2619 err_out_nosup:
2620 	if (ata_msg_probe(ap))
2621 		ata_dev_printk(dev, KERN_DEBUG,
2622 			       "%s: EXIT, err\n", __func__);
2623 	return rc;
2624 }
2625 
2626 /**
2627  *	ata_cable_40wire	-	return 40 wire cable type
2628  *	@ap: port
2629  *
2630  *	Helper method for drivers which want to hardwire 40 wire cable
2631  *	detection.
2632  */
2633 
ata_cable_40wire(struct ata_port * ap)2634 int ata_cable_40wire(struct ata_port *ap)
2635 {
2636 	return ATA_CBL_PATA40;
2637 }
2638 
2639 /**
2640  *	ata_cable_80wire	-	return 80 wire cable type
2641  *	@ap: port
2642  *
2643  *	Helper method for drivers which want to hardwire 80 wire cable
2644  *	detection.
2645  */
2646 
ata_cable_80wire(struct ata_port * ap)2647 int ata_cable_80wire(struct ata_port *ap)
2648 {
2649 	return ATA_CBL_PATA80;
2650 }
2651 
2652 /**
2653  *	ata_cable_unknown	-	return unknown PATA cable.
2654  *	@ap: port
2655  *
2656  *	Helper method for drivers which have no PATA cable detection.
2657  */
2658 
ata_cable_unknown(struct ata_port * ap)2659 int ata_cable_unknown(struct ata_port *ap)
2660 {
2661 	return ATA_CBL_PATA_UNK;
2662 }
2663 
2664 /**
2665  *	ata_cable_ignore	-	return ignored PATA cable.
2666  *	@ap: port
2667  *
2668  *	Helper method for drivers which don't use cable type to limit
2669  *	transfer mode.
2670  */
ata_cable_ignore(struct ata_port * ap)2671 int ata_cable_ignore(struct ata_port *ap)
2672 {
2673 	return ATA_CBL_PATA_IGN;
2674 }
2675 
2676 /**
2677  *	ata_cable_sata	-	return SATA cable type
2678  *	@ap: port
2679  *
2680  *	Helper method for drivers which have SATA cables
2681  */
2682 
ata_cable_sata(struct ata_port * ap)2683 int ata_cable_sata(struct ata_port *ap)
2684 {
2685 	return ATA_CBL_SATA;
2686 }
2687 
2688 /**
2689  *	ata_bus_probe - Reset and probe ATA bus
2690  *	@ap: Bus to probe
2691  *
2692  *	Master ATA bus probing function.  Initiates a hardware-dependent
2693  *	bus reset, then attempts to identify any devices found on
2694  *	the bus.
2695  *
2696  *	LOCKING:
2697  *	PCI/etc. bus probe sem.
2698  *
2699  *	RETURNS:
2700  *	Zero on success, negative errno otherwise.
2701  */
2702 
ata_bus_probe(struct ata_port * ap)2703 int ata_bus_probe(struct ata_port *ap)
2704 {
2705 	unsigned int classes[ATA_MAX_DEVICES];
2706 	int tries[ATA_MAX_DEVICES];
2707 	int rc;
2708 	struct ata_device *dev;
2709 
2710 	ata_port_probe(ap);
2711 
2712 	ata_for_each_dev(dev, &ap->link, ALL)
2713 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2714 
2715  retry:
2716 	ata_for_each_dev(dev, &ap->link, ALL) {
2717 		/* If we issue an SRST then an ATA drive (not ATAPI)
2718 		 * may change configuration and be in PIO0 timing. If
2719 		 * we do a hard reset (or are coming from power on)
2720 		 * this is true for ATA or ATAPI. Until we've set a
2721 		 * suitable controller mode we should not touch the
2722 		 * bus as we may be talking too fast.
2723 		 */
2724 		dev->pio_mode = XFER_PIO_0;
2725 
2726 		/* If the controller has a pio mode setup function
2727 		 * then use it to set the chipset to rights. Don't
2728 		 * touch the DMA setup as that will be dealt with when
2729 		 * configuring devices.
2730 		 */
2731 		if (ap->ops->set_piomode)
2732 			ap->ops->set_piomode(ap, dev);
2733 	}
2734 
2735 	/* reset and determine device classes */
2736 	ap->ops->phy_reset(ap);
2737 
2738 	ata_for_each_dev(dev, &ap->link, ALL) {
2739 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2740 		    dev->class != ATA_DEV_UNKNOWN)
2741 			classes[dev->devno] = dev->class;
2742 		else
2743 			classes[dev->devno] = ATA_DEV_NONE;
2744 
2745 		dev->class = ATA_DEV_UNKNOWN;
2746 	}
2747 
2748 	ata_port_probe(ap);
2749 
2750 	/* read IDENTIFY page and configure devices. We have to do the identify
2751 	   specific sequence bass-ackwards so that PDIAG- is released by
2752 	   the slave device */
2753 
2754 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2755 		if (tries[dev->devno])
2756 			dev->class = classes[dev->devno];
2757 
2758 		if (!ata_dev_enabled(dev))
2759 			continue;
2760 
2761 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2762 				     dev->id);
2763 		if (rc)
2764 			goto fail;
2765 	}
2766 
2767 	/* Now ask for the cable type as PDIAG- should have been released */
2768 	if (ap->ops->cable_detect)
2769 		ap->cbl = ap->ops->cable_detect(ap);
2770 
2771 	/* We may have SATA bridge glue hiding here irrespective of
2772 	 * the reported cable types and sensed types.  When SATA
2773 	 * drives indicate we have a bridge, we don't know which end
2774 	 * of the link the bridge is which is a problem.
2775 	 */
2776 	ata_for_each_dev(dev, &ap->link, ENABLED)
2777 		if (ata_id_is_sata(dev->id))
2778 			ap->cbl = ATA_CBL_SATA;
2779 
2780 	/* After the identify sequence we can now set up the devices. We do
2781 	   this in the normal order so that the user doesn't get confused */
2782 
2783 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2784 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2785 		rc = ata_dev_configure(dev);
2786 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2787 		if (rc)
2788 			goto fail;
2789 	}
2790 
2791 	/* configure transfer mode */
2792 	rc = ata_set_mode(&ap->link, &dev);
2793 	if (rc)
2794 		goto fail;
2795 
2796 	ata_for_each_dev(dev, &ap->link, ENABLED)
2797 		return 0;
2798 
2799 	/* no device present, disable port */
2800 	ata_port_disable(ap);
2801 	return -ENODEV;
2802 
2803  fail:
2804 	tries[dev->devno]--;
2805 
2806 	switch (rc) {
2807 	case -EINVAL:
2808 		/* eeek, something went very wrong, give up */
2809 		tries[dev->devno] = 0;
2810 		break;
2811 
2812 	case -ENODEV:
2813 		/* give it just one more chance */
2814 		tries[dev->devno] = min(tries[dev->devno], 1);
2815 	case -EIO:
2816 		if (tries[dev->devno] == 1) {
2817 			/* This is the last chance, better to slow
2818 			 * down than lose it.
2819 			 */
2820 			sata_down_spd_limit(&ap->link, 0);
2821 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2822 		}
2823 	}
2824 
2825 	if (!tries[dev->devno])
2826 		ata_dev_disable(dev);
2827 
2828 	goto retry;
2829 }
2830 
2831 /**
2832  *	ata_port_probe - Mark port as enabled
2833  *	@ap: Port for which we indicate enablement
2834  *
2835  *	Modify @ap data structure such that the system
2836  *	thinks that the entire port is enabled.
2837  *
2838  *	LOCKING: host lock, or some other form of
2839  *	serialization.
2840  */
2841 
ata_port_probe(struct ata_port * ap)2842 void ata_port_probe(struct ata_port *ap)
2843 {
2844 	ap->flags &= ~ATA_FLAG_DISABLED;
2845 }
2846 
2847 /**
2848  *	sata_print_link_status - Print SATA link status
2849  *	@link: SATA link to printk link status about
2850  *
2851  *	This function prints link speed and status of a SATA link.
2852  *
2853  *	LOCKING:
2854  *	None.
2855  */
sata_print_link_status(struct ata_link * link)2856 static void sata_print_link_status(struct ata_link *link)
2857 {
2858 	u32 sstatus, scontrol, tmp;
2859 
2860 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2861 		return;
2862 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2863 
2864 	if (ata_phys_link_online(link)) {
2865 		tmp = (sstatus >> 4) & 0xf;
2866 		ata_link_printk(link, KERN_INFO,
2867 				"SATA link up %s (SStatus %X SControl %X)\n",
2868 				sata_spd_string(tmp), sstatus, scontrol);
2869 	} else {
2870 		ata_link_printk(link, KERN_INFO,
2871 				"SATA link down (SStatus %X SControl %X)\n",
2872 				sstatus, scontrol);
2873 	}
2874 }
2875 
2876 /**
2877  *	ata_dev_pair		-	return other device on cable
2878  *	@adev: device
2879  *
2880  *	Obtain the other device on the same cable, or if none is
2881  *	present NULL is returned
2882  */
2883 
ata_dev_pair(struct ata_device * adev)2884 struct ata_device *ata_dev_pair(struct ata_device *adev)
2885 {
2886 	struct ata_link *link = adev->link;
2887 	struct ata_device *pair = &link->device[1 - adev->devno];
2888 	if (!ata_dev_enabled(pair))
2889 		return NULL;
2890 	return pair;
2891 }
2892 
2893 /**
2894  *	ata_port_disable - Disable port.
2895  *	@ap: Port to be disabled.
2896  *
2897  *	Modify @ap data structure such that the system
2898  *	thinks that the entire port is disabled, and should
2899  *	never attempt to probe or communicate with devices
2900  *	on this port.
2901  *
2902  *	LOCKING: host lock, or some other form of
2903  *	serialization.
2904  */
2905 
ata_port_disable(struct ata_port * ap)2906 void ata_port_disable(struct ata_port *ap)
2907 {
2908 	ap->link.device[0].class = ATA_DEV_NONE;
2909 	ap->link.device[1].class = ATA_DEV_NONE;
2910 	ap->flags |= ATA_FLAG_DISABLED;
2911 }
2912 
2913 /**
2914  *	sata_down_spd_limit - adjust SATA spd limit downward
2915  *	@link: Link to adjust SATA spd limit for
2916  *	@spd_limit: Additional limit
2917  *
2918  *	Adjust SATA spd limit of @link downward.  Note that this
2919  *	function only adjusts the limit.  The change must be applied
2920  *	using sata_set_spd().
2921  *
2922  *	If @spd_limit is non-zero, the speed is limited to equal to or
2923  *	lower than @spd_limit if such speed is supported.  If
2924  *	@spd_limit is slower than any supported speed, only the lowest
2925  *	supported speed is allowed.
2926  *
2927  *	LOCKING:
2928  *	Inherited from caller.
2929  *
2930  *	RETURNS:
2931  *	0 on success, negative errno on failure
2932  */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)2933 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2934 {
2935 	u32 sstatus, spd, mask;
2936 	int rc, bit;
2937 
2938 	if (!sata_scr_valid(link))
2939 		return -EOPNOTSUPP;
2940 
2941 	/* If SCR can be read, use it to determine the current SPD.
2942 	 * If not, use cached value in link->sata_spd.
2943 	 */
2944 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2945 	if (rc == 0 && ata_sstatus_online(sstatus))
2946 		spd = (sstatus >> 4) & 0xf;
2947 	else
2948 		spd = link->sata_spd;
2949 
2950 	mask = link->sata_spd_limit;
2951 	if (mask <= 1)
2952 		return -EINVAL;
2953 
2954 	/* unconditionally mask off the highest bit */
2955 	bit = fls(mask) - 1;
2956 	mask &= ~(1 << bit);
2957 
2958 	/* Mask off all speeds higher than or equal to the current
2959 	 * one.  Force 1.5Gbps if current SPD is not available.
2960 	 */
2961 	if (spd > 1)
2962 		mask &= (1 << (spd - 1)) - 1;
2963 	else
2964 		mask &= 1;
2965 
2966 	/* were we already at the bottom? */
2967 	if (!mask)
2968 		return -EINVAL;
2969 
2970 	if (spd_limit) {
2971 		if (mask & ((1 << spd_limit) - 1))
2972 			mask &= (1 << spd_limit) - 1;
2973 		else {
2974 			bit = ffs(mask) - 1;
2975 			mask = 1 << bit;
2976 		}
2977 	}
2978 
2979 	link->sata_spd_limit = mask;
2980 
2981 	ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2982 			sata_spd_string(fls(mask)));
2983 
2984 	return 0;
2985 }
2986 
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)2987 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2988 {
2989 	struct ata_link *host_link = &link->ap->link;
2990 	u32 limit, target, spd;
2991 
2992 	limit = link->sata_spd_limit;
2993 
2994 	/* Don't configure downstream link faster than upstream link.
2995 	 * It doesn't speed up anything and some PMPs choke on such
2996 	 * configuration.
2997 	 */
2998 	if (!ata_is_host_link(link) && host_link->sata_spd)
2999 		limit &= (1 << host_link->sata_spd) - 1;
3000 
3001 	if (limit == UINT_MAX)
3002 		target = 0;
3003 	else
3004 		target = fls(limit);
3005 
3006 	spd = (*scontrol >> 4) & 0xf;
3007 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3008 
3009 	return spd != target;
3010 }
3011 
3012 /**
3013  *	sata_set_spd_needed - is SATA spd configuration needed
3014  *	@link: Link in question
3015  *
3016  *	Test whether the spd limit in SControl matches
3017  *	@link->sata_spd_limit.  This function is used to determine
3018  *	whether hardreset is necessary to apply SATA spd
3019  *	configuration.
3020  *
3021  *	LOCKING:
3022  *	Inherited from caller.
3023  *
3024  *	RETURNS:
3025  *	1 if SATA spd configuration is needed, 0 otherwise.
3026  */
sata_set_spd_needed(struct ata_link * link)3027 static int sata_set_spd_needed(struct ata_link *link)
3028 {
3029 	u32 scontrol;
3030 
3031 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3032 		return 1;
3033 
3034 	return __sata_set_spd_needed(link, &scontrol);
3035 }
3036 
3037 /**
3038  *	sata_set_spd - set SATA spd according to spd limit
3039  *	@link: Link to set SATA spd for
3040  *
3041  *	Set SATA spd of @link according to sata_spd_limit.
3042  *
3043  *	LOCKING:
3044  *	Inherited from caller.
3045  *
3046  *	RETURNS:
3047  *	0 if spd doesn't need to be changed, 1 if spd has been
3048  *	changed.  Negative errno if SCR registers are inaccessible.
3049  */
sata_set_spd(struct ata_link * link)3050 int sata_set_spd(struct ata_link *link)
3051 {
3052 	u32 scontrol;
3053 	int rc;
3054 
3055 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3056 		return rc;
3057 
3058 	if (!__sata_set_spd_needed(link, &scontrol))
3059 		return 0;
3060 
3061 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3062 		return rc;
3063 
3064 	return 1;
3065 }
3066 
3067 /*
3068  * This mode timing computation functionality is ported over from
3069  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3070  */
3071 /*
3072  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3073  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3074  * for UDMA6, which is currently supported only by Maxtor drives.
3075  *
3076  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3077  */
3078 
3079 static const struct ata_timing ata_timing[] = {
3080 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3081 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3082 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3083 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3084 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3085 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3086 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3087 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3088 
3089 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3090 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3091 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3092 
3093 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3094 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3095 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3096 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3097 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3098 
3099 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3100 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3101 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3102 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3103 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3104 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3105 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3106 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3107 
3108 	{ 0xFF }
3109 };
3110 
3111 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3112 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3113 
ata_timing_quantize(const struct ata_timing * t,struct ata_timing * q,int T,int UT)3114 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3115 {
3116 	q->setup	= EZ(t->setup      * 1000,  T);
3117 	q->act8b	= EZ(t->act8b      * 1000,  T);
3118 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3119 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3120 	q->active	= EZ(t->active     * 1000,  T);
3121 	q->recover	= EZ(t->recover    * 1000,  T);
3122 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3123 	q->cycle	= EZ(t->cycle      * 1000,  T);
3124 	q->udma		= EZ(t->udma       * 1000, UT);
3125 }
3126 
ata_timing_merge(const struct ata_timing * a,const struct ata_timing * b,struct ata_timing * m,unsigned int what)3127 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3128 		      struct ata_timing *m, unsigned int what)
3129 {
3130 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3131 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3132 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3133 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3134 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3135 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3136 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3137 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3138 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3139 }
3140 
ata_timing_find_mode(u8 xfer_mode)3141 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3142 {
3143 	const struct ata_timing *t = ata_timing;
3144 
3145 	while (xfer_mode > t->mode)
3146 		t++;
3147 
3148 	if (xfer_mode == t->mode)
3149 		return t;
3150 	return NULL;
3151 }
3152 
ata_timing_compute(struct ata_device * adev,unsigned short speed,struct ata_timing * t,int T,int UT)3153 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3154 		       struct ata_timing *t, int T, int UT)
3155 {
3156 	const struct ata_timing *s;
3157 	struct ata_timing p;
3158 
3159 	/*
3160 	 * Find the mode.
3161 	 */
3162 
3163 	if (!(s = ata_timing_find_mode(speed)))
3164 		return -EINVAL;
3165 
3166 	memcpy(t, s, sizeof(*s));
3167 
3168 	/*
3169 	 * If the drive is an EIDE drive, it can tell us it needs extended
3170 	 * PIO/MW_DMA cycle timing.
3171 	 */
3172 
3173 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3174 		memset(&p, 0, sizeof(p));
3175 		if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3176 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3177 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3178 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3179 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3180 		}
3181 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3182 	}
3183 
3184 	/*
3185 	 * Convert the timing to bus clock counts.
3186 	 */
3187 
3188 	ata_timing_quantize(t, t, T, UT);
3189 
3190 	/*
3191 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3192 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3193 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3194 	 */
3195 
3196 	if (speed > XFER_PIO_6) {
3197 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3198 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3199 	}
3200 
3201 	/*
3202 	 * Lengthen active & recovery time so that cycle time is correct.
3203 	 */
3204 
3205 	if (t->act8b + t->rec8b < t->cyc8b) {
3206 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3207 		t->rec8b = t->cyc8b - t->act8b;
3208 	}
3209 
3210 	if (t->active + t->recover < t->cycle) {
3211 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3212 		t->recover = t->cycle - t->active;
3213 	}
3214 
3215 	/* In a few cases quantisation may produce enough errors to
3216 	   leave t->cycle too low for the sum of active and recovery
3217 	   if so we must correct this */
3218 	if (t->active + t->recover > t->cycle)
3219 		t->cycle = t->active + t->recover;
3220 
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3226  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3227  *	@cycle: cycle duration in ns
3228  *
3229  *	Return matching xfer mode for @cycle.  The returned mode is of
3230  *	the transfer type specified by @xfer_shift.  If @cycle is too
3231  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3232  *	than the fastest known mode, the fasted mode is returned.
3233  *
3234  *	LOCKING:
3235  *	None.
3236  *
3237  *	RETURNS:
3238  *	Matching xfer_mode, 0xff if no match found.
3239  */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3240 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3241 {
3242 	u8 base_mode = 0xff, last_mode = 0xff;
3243 	const struct ata_xfer_ent *ent;
3244 	const struct ata_timing *t;
3245 
3246 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3247 		if (ent->shift == xfer_shift)
3248 			base_mode = ent->base;
3249 
3250 	for (t = ata_timing_find_mode(base_mode);
3251 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3252 		unsigned short this_cycle;
3253 
3254 		switch (xfer_shift) {
3255 		case ATA_SHIFT_PIO:
3256 		case ATA_SHIFT_MWDMA:
3257 			this_cycle = t->cycle;
3258 			break;
3259 		case ATA_SHIFT_UDMA:
3260 			this_cycle = t->udma;
3261 			break;
3262 		default:
3263 			return 0xff;
3264 		}
3265 
3266 		if (cycle > this_cycle)
3267 			break;
3268 
3269 		last_mode = t->mode;
3270 	}
3271 
3272 	return last_mode;
3273 }
3274 
3275 /**
3276  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3277  *	@dev: Device to adjust xfer masks
3278  *	@sel: ATA_DNXFER_* selector
3279  *
3280  *	Adjust xfer masks of @dev downward.  Note that this function
3281  *	does not apply the change.  Invoking ata_set_mode() afterwards
3282  *	will apply the limit.
3283  *
3284  *	LOCKING:
3285  *	Inherited from caller.
3286  *
3287  *	RETURNS:
3288  *	0 on success, negative errno on failure
3289  */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3290 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3291 {
3292 	char buf[32];
3293 	unsigned long orig_mask, xfer_mask;
3294 	unsigned long pio_mask, mwdma_mask, udma_mask;
3295 	int quiet, highbit;
3296 
3297 	quiet = !!(sel & ATA_DNXFER_QUIET);
3298 	sel &= ~ATA_DNXFER_QUIET;
3299 
3300 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3301 						  dev->mwdma_mask,
3302 						  dev->udma_mask);
3303 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3304 
3305 	switch (sel) {
3306 	case ATA_DNXFER_PIO:
3307 		highbit = fls(pio_mask) - 1;
3308 		pio_mask &= ~(1 << highbit);
3309 		break;
3310 
3311 	case ATA_DNXFER_DMA:
3312 		if (udma_mask) {
3313 			highbit = fls(udma_mask) - 1;
3314 			udma_mask &= ~(1 << highbit);
3315 			if (!udma_mask)
3316 				return -ENOENT;
3317 		} else if (mwdma_mask) {
3318 			highbit = fls(mwdma_mask) - 1;
3319 			mwdma_mask &= ~(1 << highbit);
3320 			if (!mwdma_mask)
3321 				return -ENOENT;
3322 		}
3323 		break;
3324 
3325 	case ATA_DNXFER_40C:
3326 		udma_mask &= ATA_UDMA_MASK_40C;
3327 		break;
3328 
3329 	case ATA_DNXFER_FORCE_PIO0:
3330 		pio_mask &= 1;
3331 	case ATA_DNXFER_FORCE_PIO:
3332 		mwdma_mask = 0;
3333 		udma_mask = 0;
3334 		break;
3335 
3336 	default:
3337 		BUG();
3338 	}
3339 
3340 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3341 
3342 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3343 		return -ENOENT;
3344 
3345 	if (!quiet) {
3346 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3347 			snprintf(buf, sizeof(buf), "%s:%s",
3348 				 ata_mode_string(xfer_mask),
3349 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3350 		else
3351 			snprintf(buf, sizeof(buf), "%s",
3352 				 ata_mode_string(xfer_mask));
3353 
3354 		ata_dev_printk(dev, KERN_WARNING,
3355 			       "limiting speed to %s\n", buf);
3356 	}
3357 
3358 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3359 			    &dev->udma_mask);
3360 
3361 	return 0;
3362 }
3363 
ata_dev_set_mode(struct ata_device * dev)3364 static int ata_dev_set_mode(struct ata_device *dev)
3365 {
3366 	struct ata_eh_context *ehc = &dev->link->eh_context;
3367 	const char *dev_err_whine = "";
3368 	int ign_dev_err = 0;
3369 	unsigned int err_mask;
3370 	int rc;
3371 
3372 	dev->flags &= ~ATA_DFLAG_PIO;
3373 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3374 		dev->flags |= ATA_DFLAG_PIO;
3375 
3376 	err_mask = ata_dev_set_xfermode(dev);
3377 
3378 	if (err_mask & ~AC_ERR_DEV)
3379 		goto fail;
3380 
3381 	/* revalidate */
3382 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3383 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3384 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3385 	if (rc)
3386 		return rc;
3387 
3388 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3389 		/* Old CFA may refuse this command, which is just fine */
3390 		if (ata_id_is_cfa(dev->id))
3391 			ign_dev_err = 1;
3392 		/* Catch several broken garbage emulations plus some pre
3393 		   ATA devices */
3394 		if (ata_id_major_version(dev->id) == 0 &&
3395 					dev->pio_mode <= XFER_PIO_2)
3396 			ign_dev_err = 1;
3397 		/* Some very old devices and some bad newer ones fail
3398 		   any kind of SET_XFERMODE request but support PIO0-2
3399 		   timings and no IORDY */
3400 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3401 			ign_dev_err = 1;
3402 	}
3403 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3404 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3405 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3406 	    dev->dma_mode == XFER_MW_DMA_0 &&
3407 	    (dev->id[63] >> 8) & 1)
3408 		ign_dev_err = 1;
3409 
3410 	/* if the device is actually configured correctly, ignore dev err */
3411 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3412 		ign_dev_err = 1;
3413 
3414 	if (err_mask & AC_ERR_DEV) {
3415 		if (!ign_dev_err)
3416 			goto fail;
3417 		else
3418 			dev_err_whine = " (device error ignored)";
3419 	}
3420 
3421 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3422 		dev->xfer_shift, (int)dev->xfer_mode);
3423 
3424 	ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3425 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3426 		       dev_err_whine);
3427 
3428 	return 0;
3429 
3430  fail:
3431 	ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3432 		       "(err_mask=0x%x)\n", err_mask);
3433 	return -EIO;
3434 }
3435 
3436 /**
3437  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3438  *	@link: link on which timings will be programmed
3439  *	@r_failed_dev: out parameter for failed device
3440  *
3441  *	Standard implementation of the function used to tune and set
3442  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3443  *	ata_dev_set_mode() fails, pointer to the failing device is
3444  *	returned in @r_failed_dev.
3445  *
3446  *	LOCKING:
3447  *	PCI/etc. bus probe sem.
3448  *
3449  *	RETURNS:
3450  *	0 on success, negative errno otherwise
3451  */
3452 
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3453 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3454 {
3455 	struct ata_port *ap = link->ap;
3456 	struct ata_device *dev;
3457 	int rc = 0, used_dma = 0, found = 0;
3458 
3459 	/* step 1: calculate xfer_mask */
3460 	ata_for_each_dev(dev, link, ENABLED) {
3461 		unsigned long pio_mask, dma_mask;
3462 		unsigned int mode_mask;
3463 
3464 		mode_mask = ATA_DMA_MASK_ATA;
3465 		if (dev->class == ATA_DEV_ATAPI)
3466 			mode_mask = ATA_DMA_MASK_ATAPI;
3467 		else if (ata_id_is_cfa(dev->id))
3468 			mode_mask = ATA_DMA_MASK_CFA;
3469 
3470 		ata_dev_xfermask(dev);
3471 		ata_force_xfermask(dev);
3472 
3473 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3474 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3475 
3476 		if (libata_dma_mask & mode_mask)
3477 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3478 		else
3479 			dma_mask = 0;
3480 
3481 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3482 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3483 
3484 		found = 1;
3485 		if (ata_dma_enabled(dev))
3486 			used_dma = 1;
3487 	}
3488 	if (!found)
3489 		goto out;
3490 
3491 	/* step 2: always set host PIO timings */
3492 	ata_for_each_dev(dev, link, ENABLED) {
3493 		if (dev->pio_mode == 0xff) {
3494 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3495 			rc = -EINVAL;
3496 			goto out;
3497 		}
3498 
3499 		dev->xfer_mode = dev->pio_mode;
3500 		dev->xfer_shift = ATA_SHIFT_PIO;
3501 		if (ap->ops->set_piomode)
3502 			ap->ops->set_piomode(ap, dev);
3503 	}
3504 
3505 	/* step 3: set host DMA timings */
3506 	ata_for_each_dev(dev, link, ENABLED) {
3507 		if (!ata_dma_enabled(dev))
3508 			continue;
3509 
3510 		dev->xfer_mode = dev->dma_mode;
3511 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3512 		if (ap->ops->set_dmamode)
3513 			ap->ops->set_dmamode(ap, dev);
3514 	}
3515 
3516 	/* step 4: update devices' xfer mode */
3517 	ata_for_each_dev(dev, link, ENABLED) {
3518 		rc = ata_dev_set_mode(dev);
3519 		if (rc)
3520 			goto out;
3521 	}
3522 
3523 	/* Record simplex status. If we selected DMA then the other
3524 	 * host channels are not permitted to do so.
3525 	 */
3526 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3527 		ap->host->simplex_claimed = ap;
3528 
3529  out:
3530 	if (rc)
3531 		*r_failed_dev = dev;
3532 	return rc;
3533 }
3534 
3535 /**
3536  *	ata_wait_ready - wait for link to become ready
3537  *	@link: link to be waited on
3538  *	@deadline: deadline jiffies for the operation
3539  *	@check_ready: callback to check link readiness
3540  *
3541  *	Wait for @link to become ready.  @check_ready should return
3542  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3543  *	link doesn't seem to be occupied, other errno for other error
3544  *	conditions.
3545  *
3546  *	Transient -ENODEV conditions are allowed for
3547  *	ATA_TMOUT_FF_WAIT.
3548  *
3549  *	LOCKING:
3550  *	EH context.
3551  *
3552  *	RETURNS:
3553  *	0 if @linke is ready before @deadline; otherwise, -errno.
3554  */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3555 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3556 		   int (*check_ready)(struct ata_link *link))
3557 {
3558 	unsigned long start = jiffies;
3559 	unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3560 	int warned = 0;
3561 
3562 	/* Slave readiness can't be tested separately from master.  On
3563 	 * M/S emulation configuration, this function should be called
3564 	 * only on the master and it will handle both master and slave.
3565 	 */
3566 	WARN_ON(link == link->ap->slave_link);
3567 
3568 	if (time_after(nodev_deadline, deadline))
3569 		nodev_deadline = deadline;
3570 
3571 	while (1) {
3572 		unsigned long now = jiffies;
3573 		int ready, tmp;
3574 
3575 		ready = tmp = check_ready(link);
3576 		if (ready > 0)
3577 			return 0;
3578 
3579 		/* -ENODEV could be transient.  Ignore -ENODEV if link
3580 		 * is online.  Also, some SATA devices take a long
3581 		 * time to clear 0xff after reset.  For example,
3582 		 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3583 		 * GoVault needs even more than that.  Wait for
3584 		 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3585 		 *
3586 		 * Note that some PATA controllers (pata_ali) explode
3587 		 * if status register is read more than once when
3588 		 * there's no device attached.
3589 		 */
3590 		if (ready == -ENODEV) {
3591 			if (ata_link_online(link))
3592 				ready = 0;
3593 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3594 				 !ata_link_offline(link) &&
3595 				 time_before(now, nodev_deadline))
3596 				ready = 0;
3597 		}
3598 
3599 		if (ready)
3600 			return ready;
3601 		if (time_after(now, deadline))
3602 			return -EBUSY;
3603 
3604 		if (!warned && time_after(now, start + 5 * HZ) &&
3605 		    (deadline - now > 3 * HZ)) {
3606 			ata_link_printk(link, KERN_WARNING,
3607 				"link is slow to respond, please be patient "
3608 				"(ready=%d)\n", tmp);
3609 			warned = 1;
3610 		}
3611 
3612 		msleep(50);
3613 	}
3614 }
3615 
3616 /**
3617  *	ata_wait_after_reset - wait for link to become ready after reset
3618  *	@link: link to be waited on
3619  *	@deadline: deadline jiffies for the operation
3620  *	@check_ready: callback to check link readiness
3621  *
3622  *	Wait for @link to become ready after reset.
3623  *
3624  *	LOCKING:
3625  *	EH context.
3626  *
3627  *	RETURNS:
3628  *	0 if @linke is ready before @deadline; otherwise, -errno.
3629  */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3630 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3631 				int (*check_ready)(struct ata_link *link))
3632 {
3633 	msleep(ATA_WAIT_AFTER_RESET);
3634 
3635 	return ata_wait_ready(link, deadline, check_ready);
3636 }
3637 
3638 /**
3639  *	sata_link_debounce - debounce SATA phy status
3640  *	@link: ATA link to debounce SATA phy status for
3641  *	@params: timing parameters { interval, duratinon, timeout } in msec
3642  *	@deadline: deadline jiffies for the operation
3643  *
3644 *	Make sure SStatus of @link reaches stable state, determined by
3645  *	holding the same value where DET is not 1 for @duration polled
3646  *	every @interval, before @timeout.  Timeout constraints the
3647  *	beginning of the stable state.  Because DET gets stuck at 1 on
3648  *	some controllers after hot unplugging, this functions waits
3649  *	until timeout then returns 0 if DET is stable at 1.
3650  *
3651  *	@timeout is further limited by @deadline.  The sooner of the
3652  *	two is used.
3653  *
3654  *	LOCKING:
3655  *	Kernel thread context (may sleep)
3656  *
3657  *	RETURNS:
3658  *	0 on success, -errno on failure.
3659  */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)3660 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3661 		       unsigned long deadline)
3662 {
3663 	unsigned long interval = params[0];
3664 	unsigned long duration = params[1];
3665 	unsigned long last_jiffies, t;
3666 	u32 last, cur;
3667 	int rc;
3668 
3669 	t = ata_deadline(jiffies, params[2]);
3670 	if (time_before(t, deadline))
3671 		deadline = t;
3672 
3673 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3674 		return rc;
3675 	cur &= 0xf;
3676 
3677 	last = cur;
3678 	last_jiffies = jiffies;
3679 
3680 	while (1) {
3681 		msleep(interval);
3682 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3683 			return rc;
3684 		cur &= 0xf;
3685 
3686 		/* DET stable? */
3687 		if (cur == last) {
3688 			if (cur == 1 && time_before(jiffies, deadline))
3689 				continue;
3690 			if (time_after(jiffies,
3691 				       ata_deadline(last_jiffies, duration)))
3692 				return 0;
3693 			continue;
3694 		}
3695 
3696 		/* unstable, start over */
3697 		last = cur;
3698 		last_jiffies = jiffies;
3699 
3700 		/* Check deadline.  If debouncing failed, return
3701 		 * -EPIPE to tell upper layer to lower link speed.
3702 		 */
3703 		if (time_after(jiffies, deadline))
3704 			return -EPIPE;
3705 	}
3706 }
3707 
3708 /**
3709  *	sata_link_resume - resume SATA link
3710  *	@link: ATA link to resume SATA
3711  *	@params: timing parameters { interval, duratinon, timeout } in msec
3712  *	@deadline: deadline jiffies for the operation
3713  *
3714  *	Resume SATA phy @link and debounce it.
3715  *
3716  *	LOCKING:
3717  *	Kernel thread context (may sleep)
3718  *
3719  *	RETURNS:
3720  *	0 on success, -errno on failure.
3721  */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)3722 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3723 		     unsigned long deadline)
3724 {
3725 	u32 scontrol, serror;
3726 	int rc;
3727 
3728 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3729 		return rc;
3730 
3731 	scontrol = (scontrol & 0x0f0) | 0x300;
3732 
3733 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3734 		return rc;
3735 
3736 	/* Some PHYs react badly if SStatus is pounded immediately
3737 	 * after resuming.  Delay 200ms before debouncing.
3738 	 */
3739 	msleep(200);
3740 
3741 	if ((rc = sata_link_debounce(link, params, deadline)))
3742 		return rc;
3743 
3744 	/* clear SError, some PHYs require this even for SRST to work */
3745 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3746 		rc = sata_scr_write(link, SCR_ERROR, serror);
3747 
3748 	return rc != -EINVAL ? rc : 0;
3749 }
3750 
3751 /**
3752  *	ata_std_prereset - prepare for reset
3753  *	@link: ATA link to be reset
3754  *	@deadline: deadline jiffies for the operation
3755  *
3756  *	@link is about to be reset.  Initialize it.  Failure from
3757  *	prereset makes libata abort whole reset sequence and give up
3758  *	that port, so prereset should be best-effort.  It does its
3759  *	best to prepare for reset sequence but if things go wrong, it
3760  *	should just whine, not fail.
3761  *
3762  *	LOCKING:
3763  *	Kernel thread context (may sleep)
3764  *
3765  *	RETURNS:
3766  *	0 on success, -errno otherwise.
3767  */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3768 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3769 {
3770 	struct ata_port *ap = link->ap;
3771 	struct ata_eh_context *ehc = &link->eh_context;
3772 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3773 	int rc;
3774 
3775 	/* if we're about to do hardreset, nothing more to do */
3776 	if (ehc->i.action & ATA_EH_HARDRESET)
3777 		return 0;
3778 
3779 	/* if SATA, resume link */
3780 	if (ap->flags & ATA_FLAG_SATA) {
3781 		rc = sata_link_resume(link, timing, deadline);
3782 		/* whine about phy resume failure but proceed */
3783 		if (rc && rc != -EOPNOTSUPP)
3784 			ata_link_printk(link, KERN_WARNING, "failed to resume "
3785 					"link for reset (errno=%d)\n", rc);
3786 	}
3787 
3788 	/* no point in trying softreset on offline link */
3789 	if (ata_phys_link_offline(link))
3790 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3791 
3792 	return 0;
3793 }
3794 
3795 /**
3796  *	sata_link_hardreset - reset link via SATA phy reset
3797  *	@link: link to reset
3798  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3799  *	@deadline: deadline jiffies for the operation
3800  *	@online: optional out parameter indicating link onlineness
3801  *	@check_ready: optional callback to check link readiness
3802  *
3803  *	SATA phy-reset @link using DET bits of SControl register.
3804  *	After hardreset, link readiness is waited upon using
3805  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3806  *	allowed to not specify @check_ready and wait itself after this
3807  *	function returns.  Device classification is LLD's
3808  *	responsibility.
3809  *
3810  *	*@online is set to one iff reset succeeded and @link is online
3811  *	after reset.
3812  *
3813  *	LOCKING:
3814  *	Kernel thread context (may sleep)
3815  *
3816  *	RETURNS:
3817  *	0 on success, -errno otherwise.
3818  */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))3819 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3820 			unsigned long deadline,
3821 			bool *online, int (*check_ready)(struct ata_link *))
3822 {
3823 	u32 scontrol;
3824 	int rc;
3825 
3826 	DPRINTK("ENTER\n");
3827 
3828 	if (online)
3829 		*online = false;
3830 
3831 	if (sata_set_spd_needed(link)) {
3832 		/* SATA spec says nothing about how to reconfigure
3833 		 * spd.  To be on the safe side, turn off phy during
3834 		 * reconfiguration.  This works for at least ICH7 AHCI
3835 		 * and Sil3124.
3836 		 */
3837 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3838 			goto out;
3839 
3840 		scontrol = (scontrol & 0x0f0) | 0x304;
3841 
3842 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3843 			goto out;
3844 
3845 		sata_set_spd(link);
3846 	}
3847 
3848 	/* issue phy wake/reset */
3849 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3850 		goto out;
3851 
3852 	scontrol = (scontrol & 0x0f0) | 0x301;
3853 
3854 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3855 		goto out;
3856 
3857 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3858 	 * 10.4.2 says at least 1 ms.
3859 	 */
3860 	msleep(1);
3861 
3862 	/* bring link back */
3863 	rc = sata_link_resume(link, timing, deadline);
3864 	if (rc)
3865 		goto out;
3866 	/* if link is offline nothing more to do */
3867 	if (ata_phys_link_offline(link))
3868 		goto out;
3869 
3870 	/* Link is online.  From this point, -ENODEV too is an error. */
3871 	if (online)
3872 		*online = true;
3873 
3874 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3875 		/* If PMP is supported, we have to do follow-up SRST.
3876 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3877 		 * the first port is empty.  Wait only for
3878 		 * ATA_TMOUT_PMP_SRST_WAIT.
3879 		 */
3880 		if (check_ready) {
3881 			unsigned long pmp_deadline;
3882 
3883 			pmp_deadline = ata_deadline(jiffies,
3884 						    ATA_TMOUT_PMP_SRST_WAIT);
3885 			if (time_after(pmp_deadline, deadline))
3886 				pmp_deadline = deadline;
3887 			ata_wait_ready(link, pmp_deadline, check_ready);
3888 		}
3889 		rc = -EAGAIN;
3890 		goto out;
3891 	}
3892 
3893 	rc = 0;
3894 	if (check_ready)
3895 		rc = ata_wait_ready(link, deadline, check_ready);
3896  out:
3897 	if (rc && rc != -EAGAIN) {
3898 		/* online is set iff link is online && reset succeeded */
3899 		if (online)
3900 			*online = false;
3901 		ata_link_printk(link, KERN_ERR,
3902 				"COMRESET failed (errno=%d)\n", rc);
3903 	}
3904 	DPRINTK("EXIT, rc=%d\n", rc);
3905 	return rc;
3906 }
3907 
3908 /**
3909  *	sata_std_hardreset - COMRESET w/o waiting or classification
3910  *	@link: link to reset
3911  *	@class: resulting class of attached device
3912  *	@deadline: deadline jiffies for the operation
3913  *
3914  *	Standard SATA COMRESET w/o waiting or classification.
3915  *
3916  *	LOCKING:
3917  *	Kernel thread context (may sleep)
3918  *
3919  *	RETURNS:
3920  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3921  */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3922 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3923 		       unsigned long deadline)
3924 {
3925 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3926 	bool online;
3927 	int rc;
3928 
3929 	/* do hardreset */
3930 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3931 	return online ? -EAGAIN : rc;
3932 }
3933 
3934 /**
3935  *	ata_std_postreset - standard postreset callback
3936  *	@link: the target ata_link
3937  *	@classes: classes of attached devices
3938  *
3939  *	This function is invoked after a successful reset.  Note that
3940  *	the device might have been reset more than once using
3941  *	different reset methods before postreset is invoked.
3942  *
3943  *	LOCKING:
3944  *	Kernel thread context (may sleep)
3945  */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3946 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3947 {
3948 	u32 serror;
3949 
3950 	DPRINTK("ENTER\n");
3951 
3952 	/* reset complete, clear SError */
3953 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3954 		sata_scr_write(link, SCR_ERROR, serror);
3955 
3956 	/* print link status */
3957 	sata_print_link_status(link);
3958 
3959 	DPRINTK("EXIT\n");
3960 }
3961 
3962 /**
3963  *	ata_dev_same_device - Determine whether new ID matches configured device
3964  *	@dev: device to compare against
3965  *	@new_class: class of the new device
3966  *	@new_id: IDENTIFY page of the new device
3967  *
3968  *	Compare @new_class and @new_id against @dev and determine
3969  *	whether @dev is the device indicated by @new_class and
3970  *	@new_id.
3971  *
3972  *	LOCKING:
3973  *	None.
3974  *
3975  *	RETURNS:
3976  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3977  */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3978 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3979 			       const u16 *new_id)
3980 {
3981 	const u16 *old_id = dev->id;
3982 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3983 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3984 
3985 	if (dev->class != new_class) {
3986 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3987 			       dev->class, new_class);
3988 		return 0;
3989 	}
3990 
3991 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3992 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3993 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3994 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3995 
3996 	if (strcmp(model[0], model[1])) {
3997 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3998 			       "'%s' != '%s'\n", model[0], model[1]);
3999 		return 0;
4000 	}
4001 
4002 	if (strcmp(serial[0], serial[1])) {
4003 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4004 			       "'%s' != '%s'\n", serial[0], serial[1]);
4005 		return 0;
4006 	}
4007 
4008 	return 1;
4009 }
4010 
4011 /**
4012  *	ata_dev_reread_id - Re-read IDENTIFY data
4013  *	@dev: target ATA device
4014  *	@readid_flags: read ID flags
4015  *
4016  *	Re-read IDENTIFY page and make sure @dev is still attached to
4017  *	the port.
4018  *
4019  *	LOCKING:
4020  *	Kernel thread context (may sleep)
4021  *
4022  *	RETURNS:
4023  *	0 on success, negative errno otherwise
4024  */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)4025 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4026 {
4027 	unsigned int class = dev->class;
4028 	u16 *id = (void *)dev->link->ap->sector_buf;
4029 	int rc;
4030 
4031 	/* read ID data */
4032 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4033 	if (rc)
4034 		return rc;
4035 
4036 	/* is the device still there? */
4037 	if (!ata_dev_same_device(dev, class, id))
4038 		return -ENODEV;
4039 
4040 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4041 	return 0;
4042 }
4043 
4044 /**
4045  *	ata_dev_revalidate - Revalidate ATA device
4046  *	@dev: device to revalidate
4047  *	@new_class: new class code
4048  *	@readid_flags: read ID flags
4049  *
4050  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4051  *	port and reconfigure it according to the new IDENTIFY page.
4052  *
4053  *	LOCKING:
4054  *	Kernel thread context (may sleep)
4055  *
4056  *	RETURNS:
4057  *	0 on success, negative errno otherwise
4058  */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)4059 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4060 		       unsigned int readid_flags)
4061 {
4062 	u64 n_sectors = dev->n_sectors;
4063 	int rc;
4064 
4065 	if (!ata_dev_enabled(dev))
4066 		return -ENODEV;
4067 
4068 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4069 	if (ata_class_enabled(new_class) &&
4070 	    new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4071 		ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4072 			       dev->class, new_class);
4073 		rc = -ENODEV;
4074 		goto fail;
4075 	}
4076 
4077 	/* re-read ID */
4078 	rc = ata_dev_reread_id(dev, readid_flags);
4079 	if (rc)
4080 		goto fail;
4081 
4082 	/* configure device according to the new ID */
4083 	rc = ata_dev_configure(dev);
4084 	if (rc)
4085 		goto fail;
4086 
4087 	/* verify n_sectors hasn't changed */
4088 	if (dev->class == ATA_DEV_ATA && n_sectors &&
4089 	    dev->n_sectors != n_sectors) {
4090 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4091 			       "%llu != %llu\n",
4092 			       (unsigned long long)n_sectors,
4093 			       (unsigned long long)dev->n_sectors);
4094 
4095 		/* restore original n_sectors */
4096 		dev->n_sectors = n_sectors;
4097 
4098 		rc = -ENODEV;
4099 		goto fail;
4100 	}
4101 
4102 	return 0;
4103 
4104  fail:
4105 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4106 	return rc;
4107 }
4108 
4109 struct ata_blacklist_entry {
4110 	const char *model_num;
4111 	const char *model_rev;
4112 	unsigned long horkage;
4113 };
4114 
4115 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4116 	/* Devices with DMA related problems under Linux */
4117 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4118 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4119 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4120 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4121 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4122 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4123 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4124 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4125 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4126 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
4127 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
4128 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4129 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4130 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4131 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4132 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4133 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
4134 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
4135 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4136 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4137 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4138 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4139 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4140 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4141 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4142 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4143 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4144 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4145 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4146 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4147 	/* Odd clown on sil3726/4726 PMPs */
4148 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4149 
4150 	/* Weird ATAPI devices */
4151 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4152 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4153 
4154 	/* Devices we expect to fail diagnostics */
4155 
4156 	/* Devices where NCQ should be avoided */
4157 	/* NCQ is slow */
4158 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4159 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4160 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4161 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4162 	/* NCQ is broken */
4163 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4164 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4165 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4166 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4167 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4168 
4169 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4170 	{ "ST31500341AS",	"SD15",		ATA_HORKAGE_NONCQ |
4171 						ATA_HORKAGE_FIRMWARE_WARN },
4172 	{ "ST31500341AS",	"SD16",		ATA_HORKAGE_NONCQ |
4173 						ATA_HORKAGE_FIRMWARE_WARN },
4174 	{ "ST31500341AS",	"SD17",		ATA_HORKAGE_NONCQ |
4175 						ATA_HORKAGE_FIRMWARE_WARN },
4176 	{ "ST31500341AS",	"SD18",		ATA_HORKAGE_NONCQ |
4177 						ATA_HORKAGE_FIRMWARE_WARN },
4178 	{ "ST31500341AS",	"SD19",		ATA_HORKAGE_NONCQ |
4179 						ATA_HORKAGE_FIRMWARE_WARN },
4180 
4181 	{ "ST31000333AS",	"SD15",		ATA_HORKAGE_NONCQ |
4182 						ATA_HORKAGE_FIRMWARE_WARN },
4183 	{ "ST31000333AS",	"SD16",		ATA_HORKAGE_NONCQ |
4184 						ATA_HORKAGE_FIRMWARE_WARN },
4185 	{ "ST31000333AS",	"SD17",		ATA_HORKAGE_NONCQ |
4186 						ATA_HORKAGE_FIRMWARE_WARN },
4187 	{ "ST31000333AS",	"SD18",		ATA_HORKAGE_NONCQ |
4188 						ATA_HORKAGE_FIRMWARE_WARN },
4189 	{ "ST31000333AS",	"SD19",		ATA_HORKAGE_NONCQ |
4190 						ATA_HORKAGE_FIRMWARE_WARN },
4191 
4192 	{ "ST3640623AS",	"SD15",		ATA_HORKAGE_NONCQ |
4193 						ATA_HORKAGE_FIRMWARE_WARN },
4194 	{ "ST3640623AS",	"SD16",		ATA_HORKAGE_NONCQ |
4195 						ATA_HORKAGE_FIRMWARE_WARN },
4196 	{ "ST3640623AS",	"SD17",		ATA_HORKAGE_NONCQ |
4197 						ATA_HORKAGE_FIRMWARE_WARN },
4198 	{ "ST3640623AS",	"SD18",		ATA_HORKAGE_NONCQ |
4199 						ATA_HORKAGE_FIRMWARE_WARN },
4200 	{ "ST3640623AS",	"SD19",		ATA_HORKAGE_NONCQ |
4201 						ATA_HORKAGE_FIRMWARE_WARN },
4202 
4203 	{ "ST3640323AS",	"SD15",		ATA_HORKAGE_NONCQ |
4204 						ATA_HORKAGE_FIRMWARE_WARN },
4205 	{ "ST3640323AS",	"SD16",		ATA_HORKAGE_NONCQ |
4206 						ATA_HORKAGE_FIRMWARE_WARN },
4207 	{ "ST3640323AS",	"SD17",		ATA_HORKAGE_NONCQ |
4208 						ATA_HORKAGE_FIRMWARE_WARN },
4209 	{ "ST3640323AS",	"SD18",		ATA_HORKAGE_NONCQ |
4210 						ATA_HORKAGE_FIRMWARE_WARN },
4211 	{ "ST3640323AS",	"SD19",		ATA_HORKAGE_NONCQ |
4212 						ATA_HORKAGE_FIRMWARE_WARN },
4213 
4214 	{ "ST3320813AS",	"SD15",		ATA_HORKAGE_NONCQ |
4215 						ATA_HORKAGE_FIRMWARE_WARN },
4216 	{ "ST3320813AS",	"SD16",		ATA_HORKAGE_NONCQ |
4217 						ATA_HORKAGE_FIRMWARE_WARN },
4218 	{ "ST3320813AS",	"SD17",		ATA_HORKAGE_NONCQ |
4219 						ATA_HORKAGE_FIRMWARE_WARN },
4220 	{ "ST3320813AS",	"SD18",		ATA_HORKAGE_NONCQ |
4221 						ATA_HORKAGE_FIRMWARE_WARN },
4222 	{ "ST3320813AS",	"SD19",		ATA_HORKAGE_NONCQ |
4223 						ATA_HORKAGE_FIRMWARE_WARN },
4224 
4225 	{ "ST3320613AS",	"SD15",		ATA_HORKAGE_NONCQ |
4226 						ATA_HORKAGE_FIRMWARE_WARN },
4227 	{ "ST3320613AS",	"SD16",		ATA_HORKAGE_NONCQ |
4228 						ATA_HORKAGE_FIRMWARE_WARN },
4229 	{ "ST3320613AS",	"SD17",		ATA_HORKAGE_NONCQ |
4230 						ATA_HORKAGE_FIRMWARE_WARN },
4231 	{ "ST3320613AS",	"SD18",		ATA_HORKAGE_NONCQ |
4232 						ATA_HORKAGE_FIRMWARE_WARN },
4233 	{ "ST3320613AS",	"SD19",		ATA_HORKAGE_NONCQ |
4234 						ATA_HORKAGE_FIRMWARE_WARN },
4235 
4236 	/* Blacklist entries taken from Silicon Image 3124/3132
4237 	   Windows driver .inf file - also several Linux problem reports */
4238 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4239 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4240 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4241 
4242 	/* devices which puke on READ_NATIVE_MAX */
4243 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4244 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4245 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4246 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4247 
4248 	/* Devices which report 1 sector over size HPA */
4249 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4250 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4251 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4252 
4253 	/* Devices which get the IVB wrong */
4254 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4255 	/* Maybe we should just blacklist TSSTcorp... */
4256 	{ "TSSTcorp CDDVDW SH-S202H", "SB00",	  ATA_HORKAGE_IVB, },
4257 	{ "TSSTcorp CDDVDW SH-S202H", "SB01",	  ATA_HORKAGE_IVB, },
4258 	{ "TSSTcorp CDDVDW SH-S202J", "SB00",	  ATA_HORKAGE_IVB, },
4259 	{ "TSSTcorp CDDVDW SH-S202J", "SB01",	  ATA_HORKAGE_IVB, },
4260 	{ "TSSTcorp CDDVDW SH-S202N", "SB00",	  ATA_HORKAGE_IVB, },
4261 	{ "TSSTcorp CDDVDW SH-S202N", "SB01",	  ATA_HORKAGE_IVB, },
4262 
4263 	/* Devices that do not need bridging limits applied */
4264 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4265 
4266 	/* Devices which aren't very happy with higher link speeds */
4267 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4268 
4269 	/* End Marker */
4270 	{ }
4271 };
4272 
strn_pattern_cmp(const char * patt,const char * name,int wildchar)4273 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4274 {
4275 	const char *p;
4276 	int len;
4277 
4278 	/*
4279 	 * check for trailing wildcard: *\0
4280 	 */
4281 	p = strchr(patt, wildchar);
4282 	if (p && ((*(p + 1)) == 0))
4283 		len = p - patt;
4284 	else {
4285 		len = strlen(name);
4286 		if (!len) {
4287 			if (!*patt)
4288 				return 0;
4289 			return -1;
4290 		}
4291 	}
4292 
4293 	return strncmp(patt, name, len);
4294 }
4295 
ata_dev_blacklisted(const struct ata_device * dev)4296 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4297 {
4298 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4299 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4300 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4301 
4302 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4303 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4304 
4305 	while (ad->model_num) {
4306 		if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4307 			if (ad->model_rev == NULL)
4308 				return ad->horkage;
4309 			if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4310 				return ad->horkage;
4311 		}
4312 		ad++;
4313 	}
4314 	return 0;
4315 }
4316 
ata_dma_blacklisted(const struct ata_device * dev)4317 static int ata_dma_blacklisted(const struct ata_device *dev)
4318 {
4319 	/* We don't support polling DMA.
4320 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4321 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4322 	 */
4323 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4324 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4325 		return 1;
4326 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4327 }
4328 
4329 /**
4330  *	ata_is_40wire		-	check drive side detection
4331  *	@dev: device
4332  *
4333  *	Perform drive side detection decoding, allowing for device vendors
4334  *	who can't follow the documentation.
4335  */
4336 
ata_is_40wire(struct ata_device * dev)4337 static int ata_is_40wire(struct ata_device *dev)
4338 {
4339 	if (dev->horkage & ATA_HORKAGE_IVB)
4340 		return ata_drive_40wire_relaxed(dev->id);
4341 	return ata_drive_40wire(dev->id);
4342 }
4343 
4344 /**
4345  *	cable_is_40wire		-	40/80/SATA decider
4346  *	@ap: port to consider
4347  *
4348  *	This function encapsulates the policy for speed management
4349  *	in one place. At the moment we don't cache the result but
4350  *	there is a good case for setting ap->cbl to the result when
4351  *	we are called with unknown cables (and figuring out if it
4352  *	impacts hotplug at all).
4353  *
4354  *	Return 1 if the cable appears to be 40 wire.
4355  */
4356 
cable_is_40wire(struct ata_port * ap)4357 static int cable_is_40wire(struct ata_port *ap)
4358 {
4359 	struct ata_link *link;
4360 	struct ata_device *dev;
4361 
4362 	/* If the controller thinks we are 40 wire, we are. */
4363 	if (ap->cbl == ATA_CBL_PATA40)
4364 		return 1;
4365 
4366 	/* If the controller thinks we are 80 wire, we are. */
4367 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4368 		return 0;
4369 
4370 	/* If the system is known to be 40 wire short cable (eg
4371 	 * laptop), then we allow 80 wire modes even if the drive
4372 	 * isn't sure.
4373 	 */
4374 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4375 		return 0;
4376 
4377 	/* If the controller doesn't know, we scan.
4378 	 *
4379 	 * Note: We look for all 40 wire detects at this point.  Any
4380 	 *       80 wire detect is taken to be 80 wire cable because
4381 	 * - in many setups only the one drive (slave if present) will
4382 	 *   give a valid detect
4383 	 * - if you have a non detect capable drive you don't want it
4384 	 *   to colour the choice
4385 	 */
4386 	ata_for_each_link(link, ap, EDGE) {
4387 		ata_for_each_dev(dev, link, ENABLED) {
4388 			if (!ata_is_40wire(dev))
4389 				return 0;
4390 		}
4391 	}
4392 	return 1;
4393 }
4394 
4395 /**
4396  *	ata_dev_xfermask - Compute supported xfermask of the given device
4397  *	@dev: Device to compute xfermask for
4398  *
4399  *	Compute supported xfermask of @dev and store it in
4400  *	dev->*_mask.  This function is responsible for applying all
4401  *	known limits including host controller limits, device
4402  *	blacklist, etc...
4403  *
4404  *	LOCKING:
4405  *	None.
4406  */
ata_dev_xfermask(struct ata_device * dev)4407 static void ata_dev_xfermask(struct ata_device *dev)
4408 {
4409 	struct ata_link *link = dev->link;
4410 	struct ata_port *ap = link->ap;
4411 	struct ata_host *host = ap->host;
4412 	unsigned long xfer_mask;
4413 
4414 	/* controller modes available */
4415 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4416 				      ap->mwdma_mask, ap->udma_mask);
4417 
4418 	/* drive modes available */
4419 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4420 				       dev->mwdma_mask, dev->udma_mask);
4421 	xfer_mask &= ata_id_xfermask(dev->id);
4422 
4423 	/*
4424 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4425 	 *	cable
4426 	 */
4427 	if (ata_dev_pair(dev)) {
4428 		/* No PIO5 or PIO6 */
4429 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4430 		/* No MWDMA3 or MWDMA 4 */
4431 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4432 	}
4433 
4434 	if (ata_dma_blacklisted(dev)) {
4435 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4436 		ata_dev_printk(dev, KERN_WARNING,
4437 			       "device is on DMA blacklist, disabling DMA\n");
4438 	}
4439 
4440 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4441 	    host->simplex_claimed && host->simplex_claimed != ap) {
4442 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4443 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4444 			       "other device, disabling DMA\n");
4445 	}
4446 
4447 	if (ap->flags & ATA_FLAG_NO_IORDY)
4448 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4449 
4450 	if (ap->ops->mode_filter)
4451 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4452 
4453 	/* Apply cable rule here.  Don't apply it early because when
4454 	 * we handle hot plug the cable type can itself change.
4455 	 * Check this last so that we know if the transfer rate was
4456 	 * solely limited by the cable.
4457 	 * Unknown or 80 wire cables reported host side are checked
4458 	 * drive side as well. Cases where we know a 40wire cable
4459 	 * is used safely for 80 are not checked here.
4460 	 */
4461 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4462 		/* UDMA/44 or higher would be available */
4463 		if (cable_is_40wire(ap)) {
4464 			ata_dev_printk(dev, KERN_WARNING,
4465 				 "limited to UDMA/33 due to 40-wire cable\n");
4466 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4467 		}
4468 
4469 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4470 			    &dev->mwdma_mask, &dev->udma_mask);
4471 }
4472 
4473 /**
4474  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4475  *	@dev: Device to which command will be sent
4476  *
4477  *	Issue SET FEATURES - XFER MODE command to device @dev
4478  *	on port @ap.
4479  *
4480  *	LOCKING:
4481  *	PCI/etc. bus probe sem.
4482  *
4483  *	RETURNS:
4484  *	0 on success, AC_ERR_* mask otherwise.
4485  */
4486 
ata_dev_set_xfermode(struct ata_device * dev)4487 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4488 {
4489 	struct ata_taskfile tf;
4490 	unsigned int err_mask;
4491 
4492 	/* set up set-features taskfile */
4493 	DPRINTK("set features - xfer mode\n");
4494 
4495 	/* Some controllers and ATAPI devices show flaky interrupt
4496 	 * behavior after setting xfer mode.  Use polling instead.
4497 	 */
4498 	ata_tf_init(dev, &tf);
4499 	tf.command = ATA_CMD_SET_FEATURES;
4500 	tf.feature = SETFEATURES_XFER;
4501 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4502 	tf.protocol = ATA_PROT_NODATA;
4503 	/* If we are using IORDY we must send the mode setting command */
4504 	if (ata_pio_need_iordy(dev))
4505 		tf.nsect = dev->xfer_mode;
4506 	/* If the device has IORDY and the controller does not - turn it off */
4507  	else if (ata_id_has_iordy(dev->id))
4508 		tf.nsect = 0x01;
4509 	else /* In the ancient relic department - skip all of this */
4510 		return 0;
4511 
4512 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4513 
4514 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4515 	return err_mask;
4516 }
4517 /**
4518  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4519  *	@dev: Device to which command will be sent
4520  *	@enable: Whether to enable or disable the feature
4521  *	@feature: The sector count represents the feature to set
4522  *
4523  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4524  *	on port @ap with sector count
4525  *
4526  *	LOCKING:
4527  *	PCI/etc. bus probe sem.
4528  *
4529  *	RETURNS:
4530  *	0 on success, AC_ERR_* mask otherwise.
4531  */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4532 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4533 					u8 feature)
4534 {
4535 	struct ata_taskfile tf;
4536 	unsigned int err_mask;
4537 
4538 	/* set up set-features taskfile */
4539 	DPRINTK("set features - SATA features\n");
4540 
4541 	ata_tf_init(dev, &tf);
4542 	tf.command = ATA_CMD_SET_FEATURES;
4543 	tf.feature = enable;
4544 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4545 	tf.protocol = ATA_PROT_NODATA;
4546 	tf.nsect = feature;
4547 
4548 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4549 
4550 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4551 	return err_mask;
4552 }
4553 
4554 /**
4555  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4556  *	@dev: Device to which command will be sent
4557  *	@heads: Number of heads (taskfile parameter)
4558  *	@sectors: Number of sectors (taskfile parameter)
4559  *
4560  *	LOCKING:
4561  *	Kernel thread context (may sleep)
4562  *
4563  *	RETURNS:
4564  *	0 on success, AC_ERR_* mask otherwise.
4565  */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4566 static unsigned int ata_dev_init_params(struct ata_device *dev,
4567 					u16 heads, u16 sectors)
4568 {
4569 	struct ata_taskfile tf;
4570 	unsigned int err_mask;
4571 
4572 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4573 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4574 		return AC_ERR_INVALID;
4575 
4576 	/* set up init dev params taskfile */
4577 	DPRINTK("init dev params \n");
4578 
4579 	ata_tf_init(dev, &tf);
4580 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4581 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4582 	tf.protocol = ATA_PROT_NODATA;
4583 	tf.nsect = sectors;
4584 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4585 
4586 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4587 	/* A clean abort indicates an original or just out of spec drive
4588 	   and we should continue as we issue the setup based on the
4589 	   drive reported working geometry */
4590 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4591 		err_mask = 0;
4592 
4593 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4594 	return err_mask;
4595 }
4596 
4597 /**
4598  *	ata_sg_clean - Unmap DMA memory associated with command
4599  *	@qc: Command containing DMA memory to be released
4600  *
4601  *	Unmap all mapped DMA memory associated with this command.
4602  *
4603  *	LOCKING:
4604  *	spin_lock_irqsave(host lock)
4605  */
ata_sg_clean(struct ata_queued_cmd * qc)4606 void ata_sg_clean(struct ata_queued_cmd *qc)
4607 {
4608 	struct ata_port *ap = qc->ap;
4609 	struct scatterlist *sg = qc->sg;
4610 	int dir = qc->dma_dir;
4611 
4612 	WARN_ON_ONCE(sg == NULL);
4613 
4614 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4615 
4616 	if (qc->n_elem)
4617 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4618 
4619 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4620 	qc->sg = NULL;
4621 }
4622 
4623 /**
4624  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4625  *	@qc: Metadata associated with taskfile to check
4626  *
4627  *	Allow low-level driver to filter ATA PACKET commands, returning
4628  *	a status indicating whether or not it is OK to use DMA for the
4629  *	supplied PACKET command.
4630  *
4631  *	LOCKING:
4632  *	spin_lock_irqsave(host lock)
4633  *
4634  *	RETURNS: 0 when ATAPI DMA can be used
4635  *               nonzero otherwise
4636  */
atapi_check_dma(struct ata_queued_cmd * qc)4637 int atapi_check_dma(struct ata_queued_cmd *qc)
4638 {
4639 	struct ata_port *ap = qc->ap;
4640 
4641 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4642 	 * few ATAPI devices choke on such DMA requests.
4643 	 */
4644 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4645 	    unlikely(qc->nbytes & 15))
4646 		return 1;
4647 
4648 	if (ap->ops->check_atapi_dma)
4649 		return ap->ops->check_atapi_dma(qc);
4650 
4651 	return 0;
4652 }
4653 
4654 /**
4655  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4656  *	@qc: ATA command in question
4657  *
4658  *	Non-NCQ commands cannot run with any other command, NCQ or
4659  *	not.  As upper layer only knows the queue depth, we are
4660  *	responsible for maintaining exclusion.  This function checks
4661  *	whether a new command @qc can be issued.
4662  *
4663  *	LOCKING:
4664  *	spin_lock_irqsave(host lock)
4665  *
4666  *	RETURNS:
4667  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4668  */
ata_std_qc_defer(struct ata_queued_cmd * qc)4669 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4670 {
4671 	struct ata_link *link = qc->dev->link;
4672 
4673 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4674 		if (!ata_tag_valid(link->active_tag))
4675 			return 0;
4676 	} else {
4677 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4678 			return 0;
4679 	}
4680 
4681 	return ATA_DEFER_LINK;
4682 }
4683 
ata_noop_qc_prep(struct ata_queued_cmd * qc)4684 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4685 
4686 /**
4687  *	ata_sg_init - Associate command with scatter-gather table.
4688  *	@qc: Command to be associated
4689  *	@sg: Scatter-gather table.
4690  *	@n_elem: Number of elements in s/g table.
4691  *
4692  *	Initialize the data-related elements of queued_cmd @qc
4693  *	to point to a scatter-gather table @sg, containing @n_elem
4694  *	elements.
4695  *
4696  *	LOCKING:
4697  *	spin_lock_irqsave(host lock)
4698  */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4699 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4700 		 unsigned int n_elem)
4701 {
4702 	qc->sg = sg;
4703 	qc->n_elem = n_elem;
4704 	qc->cursg = qc->sg;
4705 }
4706 
4707 /**
4708  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4709  *	@qc: Command with scatter-gather table to be mapped.
4710  *
4711  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4712  *
4713  *	LOCKING:
4714  *	spin_lock_irqsave(host lock)
4715  *
4716  *	RETURNS:
4717  *	Zero on success, negative on error.
4718  *
4719  */
ata_sg_setup(struct ata_queued_cmd * qc)4720 static int ata_sg_setup(struct ata_queued_cmd *qc)
4721 {
4722 	struct ata_port *ap = qc->ap;
4723 	unsigned int n_elem;
4724 
4725 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4726 
4727 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4728 	if (n_elem < 1)
4729 		return -1;
4730 
4731 	DPRINTK("%d sg elements mapped\n", n_elem);
4732 	qc->orig_n_elem = qc->n_elem;
4733 	qc->n_elem = n_elem;
4734 	qc->flags |= ATA_QCFLAG_DMAMAP;
4735 
4736 	return 0;
4737 }
4738 
4739 /**
4740  *	swap_buf_le16 - swap halves of 16-bit words in place
4741  *	@buf:  Buffer to swap
4742  *	@buf_words:  Number of 16-bit words in buffer.
4743  *
4744  *	Swap halves of 16-bit words if needed to convert from
4745  *	little-endian byte order to native cpu byte order, or
4746  *	vice-versa.
4747  *
4748  *	LOCKING:
4749  *	Inherited from caller.
4750  */
swap_buf_le16(u16 * buf,unsigned int buf_words)4751 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4752 {
4753 #ifdef __BIG_ENDIAN
4754 	unsigned int i;
4755 
4756 	for (i = 0; i < buf_words; i++)
4757 		buf[i] = le16_to_cpu(buf[i]);
4758 #endif /* __BIG_ENDIAN */
4759 }
4760 
4761 /**
4762  *	ata_qc_new - Request an available ATA command, for queueing
4763  *	@ap: target port
4764  *
4765  *	LOCKING:
4766  *	None.
4767  */
4768 
ata_qc_new(struct ata_port * ap)4769 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4770 {
4771 	struct ata_queued_cmd *qc = NULL;
4772 	unsigned int i;
4773 
4774 	/* no command while frozen */
4775 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4776 		return NULL;
4777 
4778 	/* the last tag is reserved for internal command. */
4779 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4780 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4781 			qc = __ata_qc_from_tag(ap, i);
4782 			break;
4783 		}
4784 
4785 	if (qc)
4786 		qc->tag = i;
4787 
4788 	return qc;
4789 }
4790 
4791 /**
4792  *	ata_qc_new_init - Request an available ATA command, and initialize it
4793  *	@dev: Device from whom we request an available command structure
4794  *
4795  *	LOCKING:
4796  *	None.
4797  */
4798 
ata_qc_new_init(struct ata_device * dev)4799 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4800 {
4801 	struct ata_port *ap = dev->link->ap;
4802 	struct ata_queued_cmd *qc;
4803 
4804 	qc = ata_qc_new(ap);
4805 	if (qc) {
4806 		qc->scsicmd = NULL;
4807 		qc->ap = ap;
4808 		qc->dev = dev;
4809 
4810 		ata_qc_reinit(qc);
4811 	}
4812 
4813 	return qc;
4814 }
4815 
4816 /**
4817  *	ata_qc_free - free unused ata_queued_cmd
4818  *	@qc: Command to complete
4819  *
4820  *	Designed to free unused ata_queued_cmd object
4821  *	in case something prevents using it.
4822  *
4823  *	LOCKING:
4824  *	spin_lock_irqsave(host lock)
4825  */
ata_qc_free(struct ata_queued_cmd * qc)4826 void ata_qc_free(struct ata_queued_cmd *qc)
4827 {
4828 	struct ata_port *ap = qc->ap;
4829 	unsigned int tag;
4830 
4831 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4832 
4833 	qc->flags = 0;
4834 	tag = qc->tag;
4835 	if (likely(ata_tag_valid(tag))) {
4836 		qc->tag = ATA_TAG_POISON;
4837 		clear_bit(tag, &ap->qc_allocated);
4838 	}
4839 }
4840 
__ata_qc_complete(struct ata_queued_cmd * qc)4841 void __ata_qc_complete(struct ata_queued_cmd *qc)
4842 {
4843 	struct ata_port *ap = qc->ap;
4844 	struct ata_link *link = qc->dev->link;
4845 
4846 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4847 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4848 
4849 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4850 		ata_sg_clean(qc);
4851 
4852 	/* command should be marked inactive atomically with qc completion */
4853 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4854 		link->sactive &= ~(1 << qc->tag);
4855 		if (!link->sactive)
4856 			ap->nr_active_links--;
4857 	} else {
4858 		link->active_tag = ATA_TAG_POISON;
4859 		ap->nr_active_links--;
4860 	}
4861 
4862 	/* clear exclusive status */
4863 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4864 		     ap->excl_link == link))
4865 		ap->excl_link = NULL;
4866 
4867 	/* atapi: mark qc as inactive to prevent the interrupt handler
4868 	 * from completing the command twice later, before the error handler
4869 	 * is called. (when rc != 0 and atapi request sense is needed)
4870 	 */
4871 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4872 	ap->qc_active &= ~(1 << qc->tag);
4873 
4874 	/* call completion callback */
4875 	qc->complete_fn(qc);
4876 }
4877 
fill_result_tf(struct ata_queued_cmd * qc)4878 static void fill_result_tf(struct ata_queued_cmd *qc)
4879 {
4880 	struct ata_port *ap = qc->ap;
4881 
4882 	qc->result_tf.flags = qc->tf.flags;
4883 	ap->ops->qc_fill_rtf(qc);
4884 }
4885 
ata_verify_xfer(struct ata_queued_cmd * qc)4886 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4887 {
4888 	struct ata_device *dev = qc->dev;
4889 
4890 	if (ata_tag_internal(qc->tag))
4891 		return;
4892 
4893 	if (ata_is_nodata(qc->tf.protocol))
4894 		return;
4895 
4896 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4897 		return;
4898 
4899 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4900 }
4901 
4902 /**
4903  *	ata_qc_complete - Complete an active ATA command
4904  *	@qc: Command to complete
4905  *
4906  *	Indicate to the mid and upper layers that an ATA
4907  *	command has completed, with either an ok or not-ok status.
4908  *
4909  *	LOCKING:
4910  *	spin_lock_irqsave(host lock)
4911  */
ata_qc_complete(struct ata_queued_cmd * qc)4912 void ata_qc_complete(struct ata_queued_cmd *qc)
4913 {
4914 	struct ata_port *ap = qc->ap;
4915 
4916 	/* XXX: New EH and old EH use different mechanisms to
4917 	 * synchronize EH with regular execution path.
4918 	 *
4919 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4920 	 * Normal execution path is responsible for not accessing a
4921 	 * failed qc.  libata core enforces the rule by returning NULL
4922 	 * from ata_qc_from_tag() for failed qcs.
4923 	 *
4924 	 * Old EH depends on ata_qc_complete() nullifying completion
4925 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4926 	 * not synchronize with interrupt handler.  Only PIO task is
4927 	 * taken care of.
4928 	 */
4929 	if (ap->ops->error_handler) {
4930 		struct ata_device *dev = qc->dev;
4931 		struct ata_eh_info *ehi = &dev->link->eh_info;
4932 
4933 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4934 
4935 		if (unlikely(qc->err_mask))
4936 			qc->flags |= ATA_QCFLAG_FAILED;
4937 
4938 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4939 			if (!ata_tag_internal(qc->tag)) {
4940 				/* always fill result TF for failed qc */
4941 				fill_result_tf(qc);
4942 				ata_qc_schedule_eh(qc);
4943 				return;
4944 			}
4945 		}
4946 
4947 		/* read result TF if requested */
4948 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4949 			fill_result_tf(qc);
4950 
4951 		/* Some commands need post-processing after successful
4952 		 * completion.
4953 		 */
4954 		switch (qc->tf.command) {
4955 		case ATA_CMD_SET_FEATURES:
4956 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4957 			    qc->tf.feature != SETFEATURES_WC_OFF)
4958 				break;
4959 			/* fall through */
4960 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4961 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4962 			/* revalidate device */
4963 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4964 			ata_port_schedule_eh(ap);
4965 			break;
4966 
4967 		case ATA_CMD_SLEEP:
4968 			dev->flags |= ATA_DFLAG_SLEEPING;
4969 			break;
4970 		}
4971 
4972 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4973 			ata_verify_xfer(qc);
4974 
4975 		__ata_qc_complete(qc);
4976 	} else {
4977 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4978 			return;
4979 
4980 		/* read result TF if failed or requested */
4981 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4982 			fill_result_tf(qc);
4983 
4984 		__ata_qc_complete(qc);
4985 	}
4986 }
4987 
4988 /**
4989  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4990  *	@ap: port in question
4991  *	@qc_active: new qc_active mask
4992  *
4993  *	Complete in-flight commands.  This functions is meant to be
4994  *	called from low-level driver's interrupt routine to complete
4995  *	requests normally.  ap->qc_active and @qc_active is compared
4996  *	and commands are completed accordingly.
4997  *
4998  *	LOCKING:
4999  *	spin_lock_irqsave(host lock)
5000  *
5001  *	RETURNS:
5002  *	Number of completed commands on success, -errno otherwise.
5003  */
ata_qc_complete_multiple(struct ata_port * ap,u32 qc_active)5004 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5005 {
5006 	int nr_done = 0;
5007 	u32 done_mask;
5008 	int i;
5009 
5010 	done_mask = ap->qc_active ^ qc_active;
5011 
5012 	if (unlikely(done_mask & qc_active)) {
5013 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5014 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5015 		return -EINVAL;
5016 	}
5017 
5018 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5019 		struct ata_queued_cmd *qc;
5020 
5021 		if (!(done_mask & (1 << i)))
5022 			continue;
5023 
5024 		if ((qc = ata_qc_from_tag(ap, i))) {
5025 			ata_qc_complete(qc);
5026 			nr_done++;
5027 		}
5028 	}
5029 
5030 	return nr_done;
5031 }
5032 
5033 /**
5034  *	ata_qc_issue - issue taskfile to device
5035  *	@qc: command to issue to device
5036  *
5037  *	Prepare an ATA command to submission to device.
5038  *	This includes mapping the data into a DMA-able
5039  *	area, filling in the S/G table, and finally
5040  *	writing the taskfile to hardware, starting the command.
5041  *
5042  *	LOCKING:
5043  *	spin_lock_irqsave(host lock)
5044  */
ata_qc_issue(struct ata_queued_cmd * qc)5045 void ata_qc_issue(struct ata_queued_cmd *qc)
5046 {
5047 	struct ata_port *ap = qc->ap;
5048 	struct ata_link *link = qc->dev->link;
5049 	u8 prot = qc->tf.protocol;
5050 
5051 	/* Make sure only one non-NCQ command is outstanding.  The
5052 	 * check is skipped for old EH because it reuses active qc to
5053 	 * request ATAPI sense.
5054 	 */
5055 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5056 
5057 	if (ata_is_ncq(prot)) {
5058 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5059 
5060 		if (!link->sactive)
5061 			ap->nr_active_links++;
5062 		link->sactive |= 1 << qc->tag;
5063 	} else {
5064 		WARN_ON_ONCE(link->sactive);
5065 
5066 		ap->nr_active_links++;
5067 		link->active_tag = qc->tag;
5068 	}
5069 
5070 	qc->flags |= ATA_QCFLAG_ACTIVE;
5071 	ap->qc_active |= 1 << qc->tag;
5072 
5073 	/* We guarantee to LLDs that they will have at least one
5074 	 * non-zero sg if the command is a data command.
5075 	 */
5076 	BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5077 
5078 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5079 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5080 		if (ata_sg_setup(qc))
5081 			goto sg_err;
5082 
5083 	/* if device is sleeping, schedule reset and abort the link */
5084 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5085 		link->eh_info.action |= ATA_EH_RESET;
5086 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5087 		ata_link_abort(link);
5088 		return;
5089 	}
5090 
5091 	ap->ops->qc_prep(qc);
5092 
5093 	qc->err_mask |= ap->ops->qc_issue(qc);
5094 	if (unlikely(qc->err_mask))
5095 		goto err;
5096 	return;
5097 
5098 sg_err:
5099 	qc->err_mask |= AC_ERR_SYSTEM;
5100 err:
5101 	ata_qc_complete(qc);
5102 }
5103 
5104 /**
5105  *	sata_scr_valid - test whether SCRs are accessible
5106  *	@link: ATA link to test SCR accessibility for
5107  *
5108  *	Test whether SCRs are accessible for @link.
5109  *
5110  *	LOCKING:
5111  *	None.
5112  *
5113  *	RETURNS:
5114  *	1 if SCRs are accessible, 0 otherwise.
5115  */
sata_scr_valid(struct ata_link * link)5116 int sata_scr_valid(struct ata_link *link)
5117 {
5118 	struct ata_port *ap = link->ap;
5119 
5120 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5121 }
5122 
5123 /**
5124  *	sata_scr_read - read SCR register of the specified port
5125  *	@link: ATA link to read SCR for
5126  *	@reg: SCR to read
5127  *	@val: Place to store read value
5128  *
5129  *	Read SCR register @reg of @link into *@val.  This function is
5130  *	guaranteed to succeed if @link is ap->link, the cable type of
5131  *	the port is SATA and the port implements ->scr_read.
5132  *
5133  *	LOCKING:
5134  *	None if @link is ap->link.  Kernel thread context otherwise.
5135  *
5136  *	RETURNS:
5137  *	0 on success, negative errno on failure.
5138  */
sata_scr_read(struct ata_link * link,int reg,u32 * val)5139 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5140 {
5141 	if (ata_is_host_link(link)) {
5142 		if (sata_scr_valid(link))
5143 			return link->ap->ops->scr_read(link, reg, val);
5144 		return -EOPNOTSUPP;
5145 	}
5146 
5147 	return sata_pmp_scr_read(link, reg, val);
5148 }
5149 
5150 /**
5151  *	sata_scr_write - write SCR register of the specified port
5152  *	@link: ATA link to write SCR for
5153  *	@reg: SCR to write
5154  *	@val: value to write
5155  *
5156  *	Write @val to SCR register @reg of @link.  This function is
5157  *	guaranteed to succeed if @link is ap->link, the cable type of
5158  *	the port is SATA and the port implements ->scr_read.
5159  *
5160  *	LOCKING:
5161  *	None if @link is ap->link.  Kernel thread context otherwise.
5162  *
5163  *	RETURNS:
5164  *	0 on success, negative errno on failure.
5165  */
sata_scr_write(struct ata_link * link,int reg,u32 val)5166 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5167 {
5168 	if (ata_is_host_link(link)) {
5169 		if (sata_scr_valid(link))
5170 			return link->ap->ops->scr_write(link, reg, val);
5171 		return -EOPNOTSUPP;
5172 	}
5173 
5174 	return sata_pmp_scr_write(link, reg, val);
5175 }
5176 
5177 /**
5178  *	sata_scr_write_flush - write SCR register of the specified port and flush
5179  *	@link: ATA link to write SCR for
5180  *	@reg: SCR to write
5181  *	@val: value to write
5182  *
5183  *	This function is identical to sata_scr_write() except that this
5184  *	function performs flush after writing to the register.
5185  *
5186  *	LOCKING:
5187  *	None if @link is ap->link.  Kernel thread context otherwise.
5188  *
5189  *	RETURNS:
5190  *	0 on success, negative errno on failure.
5191  */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)5192 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5193 {
5194 	if (ata_is_host_link(link)) {
5195 		int rc;
5196 
5197 		if (sata_scr_valid(link)) {
5198 			rc = link->ap->ops->scr_write(link, reg, val);
5199 			if (rc == 0)
5200 				rc = link->ap->ops->scr_read(link, reg, &val);
5201 			return rc;
5202 		}
5203 		return -EOPNOTSUPP;
5204 	}
5205 
5206 	return sata_pmp_scr_write(link, reg, val);
5207 }
5208 
5209 /**
5210  *	ata_phys_link_online - test whether the given link is online
5211  *	@link: ATA link to test
5212  *
5213  *	Test whether @link is online.  Note that this function returns
5214  *	0 if online status of @link cannot be obtained, so
5215  *	ata_link_online(link) != !ata_link_offline(link).
5216  *
5217  *	LOCKING:
5218  *	None.
5219  *
5220  *	RETURNS:
5221  *	True if the port online status is available and online.
5222  */
ata_phys_link_online(struct ata_link * link)5223 bool ata_phys_link_online(struct ata_link *link)
5224 {
5225 	u32 sstatus;
5226 
5227 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5228 	    ata_sstatus_online(sstatus))
5229 		return true;
5230 	return false;
5231 }
5232 
5233 /**
5234  *	ata_phys_link_offline - test whether the given link is offline
5235  *	@link: ATA link to test
5236  *
5237  *	Test whether @link is offline.  Note that this function
5238  *	returns 0 if offline status of @link cannot be obtained, so
5239  *	ata_link_online(link) != !ata_link_offline(link).
5240  *
5241  *	LOCKING:
5242  *	None.
5243  *
5244  *	RETURNS:
5245  *	True if the port offline status is available and offline.
5246  */
ata_phys_link_offline(struct ata_link * link)5247 bool ata_phys_link_offline(struct ata_link *link)
5248 {
5249 	u32 sstatus;
5250 
5251 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5252 	    !ata_sstatus_online(sstatus))
5253 		return true;
5254 	return false;
5255 }
5256 
5257 /**
5258  *	ata_link_online - test whether the given link is online
5259  *	@link: ATA link to test
5260  *
5261  *	Test whether @link is online.  This is identical to
5262  *	ata_phys_link_online() when there's no slave link.  When
5263  *	there's a slave link, this function should only be called on
5264  *	the master link and will return true if any of M/S links is
5265  *	online.
5266  *
5267  *	LOCKING:
5268  *	None.
5269  *
5270  *	RETURNS:
5271  *	True if the port online status is available and online.
5272  */
ata_link_online(struct ata_link * link)5273 bool ata_link_online(struct ata_link *link)
5274 {
5275 	struct ata_link *slave = link->ap->slave_link;
5276 
5277 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5278 
5279 	return ata_phys_link_online(link) ||
5280 		(slave && ata_phys_link_online(slave));
5281 }
5282 
5283 /**
5284  *	ata_link_offline - test whether the given link is offline
5285  *	@link: ATA link to test
5286  *
5287  *	Test whether @link is offline.  This is identical to
5288  *	ata_phys_link_offline() when there's no slave link.  When
5289  *	there's a slave link, this function should only be called on
5290  *	the master link and will return true if both M/S links are
5291  *	offline.
5292  *
5293  *	LOCKING:
5294  *	None.
5295  *
5296  *	RETURNS:
5297  *	True if the port offline status is available and offline.
5298  */
ata_link_offline(struct ata_link * link)5299 bool ata_link_offline(struct ata_link *link)
5300 {
5301 	struct ata_link *slave = link->ap->slave_link;
5302 
5303 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5304 
5305 	return ata_phys_link_offline(link) &&
5306 		(!slave || ata_phys_link_offline(slave));
5307 }
5308 
5309 #ifdef CONFIG_PM
ata_host_request_pm(struct ata_host * host,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,int wait)5310 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5311 			       unsigned int action, unsigned int ehi_flags,
5312 			       int wait)
5313 {
5314 	unsigned long flags;
5315 	int i, rc;
5316 
5317 	for (i = 0; i < host->n_ports; i++) {
5318 		struct ata_port *ap = host->ports[i];
5319 		struct ata_link *link;
5320 
5321 		/* Previous resume operation might still be in
5322 		 * progress.  Wait for PM_PENDING to clear.
5323 		 */
5324 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5325 			ata_port_wait_eh(ap);
5326 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5327 		}
5328 
5329 		/* request PM ops to EH */
5330 		spin_lock_irqsave(ap->lock, flags);
5331 
5332 		ap->pm_mesg = mesg;
5333 		if (wait) {
5334 			rc = 0;
5335 			ap->pm_result = &rc;
5336 		}
5337 
5338 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5339 		ata_for_each_link(link, ap, HOST_FIRST) {
5340 			link->eh_info.action |= action;
5341 			link->eh_info.flags |= ehi_flags;
5342 		}
5343 
5344 		ata_port_schedule_eh(ap);
5345 
5346 		spin_unlock_irqrestore(ap->lock, flags);
5347 
5348 		/* wait and check result */
5349 		if (wait) {
5350 			ata_port_wait_eh(ap);
5351 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5352 			if (rc)
5353 				return rc;
5354 		}
5355 	}
5356 
5357 	return 0;
5358 }
5359 
5360 /**
5361  *	ata_host_suspend - suspend host
5362  *	@host: host to suspend
5363  *	@mesg: PM message
5364  *
5365  *	Suspend @host.  Actual operation is performed by EH.  This
5366  *	function requests EH to perform PM operations and waits for EH
5367  *	to finish.
5368  *
5369  *	LOCKING:
5370  *	Kernel thread context (may sleep).
5371  *
5372  *	RETURNS:
5373  *	0 on success, -errno on failure.
5374  */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5375 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5376 {
5377 	int rc;
5378 
5379 	/*
5380 	 * disable link pm on all ports before requesting
5381 	 * any pm activity
5382 	 */
5383 	ata_lpm_enable(host);
5384 
5385 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5386 	if (rc == 0)
5387 		host->dev->power.power_state = mesg;
5388 	return rc;
5389 }
5390 
5391 /**
5392  *	ata_host_resume - resume host
5393  *	@host: host to resume
5394  *
5395  *	Resume @host.  Actual operation is performed by EH.  This
5396  *	function requests EH to perform PM operations and returns.
5397  *	Note that all resume operations are performed parallely.
5398  *
5399  *	LOCKING:
5400  *	Kernel thread context (may sleep).
5401  */
ata_host_resume(struct ata_host * host)5402 void ata_host_resume(struct ata_host *host)
5403 {
5404 	ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5405 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5406 	host->dev->power.power_state = PMSG_ON;
5407 
5408 	/* reenable link pm */
5409 	ata_lpm_disable(host);
5410 }
5411 #endif
5412 
5413 /**
5414  *	ata_port_start - Set port up for dma.
5415  *	@ap: Port to initialize
5416  *
5417  *	Called just after data structures for each port are
5418  *	initialized.  Allocates space for PRD table.
5419  *
5420  *	May be used as the port_start() entry in ata_port_operations.
5421  *
5422  *	LOCKING:
5423  *	Inherited from caller.
5424  */
ata_port_start(struct ata_port * ap)5425 int ata_port_start(struct ata_port *ap)
5426 {
5427 	struct device *dev = ap->dev;
5428 
5429 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5430 				      GFP_KERNEL);
5431 	if (!ap->prd)
5432 		return -ENOMEM;
5433 
5434 	return 0;
5435 }
5436 
5437 /**
5438  *	ata_dev_init - Initialize an ata_device structure
5439  *	@dev: Device structure to initialize
5440  *
5441  *	Initialize @dev in preparation for probing.
5442  *
5443  *	LOCKING:
5444  *	Inherited from caller.
5445  */
ata_dev_init(struct ata_device * dev)5446 void ata_dev_init(struct ata_device *dev)
5447 {
5448 	struct ata_link *link = ata_dev_phys_link(dev);
5449 	struct ata_port *ap = link->ap;
5450 	unsigned long flags;
5451 
5452 	/* SATA spd limit is bound to the attached device, reset together */
5453 	link->sata_spd_limit = link->hw_sata_spd_limit;
5454 	link->sata_spd = 0;
5455 
5456 	/* High bits of dev->flags are used to record warm plug
5457 	 * requests which occur asynchronously.  Synchronize using
5458 	 * host lock.
5459 	 */
5460 	spin_lock_irqsave(ap->lock, flags);
5461 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5462 	dev->horkage = 0;
5463 	spin_unlock_irqrestore(ap->lock, flags);
5464 
5465 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5466 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5467 	dev->pio_mask = UINT_MAX;
5468 	dev->mwdma_mask = UINT_MAX;
5469 	dev->udma_mask = UINT_MAX;
5470 }
5471 
5472 /**
5473  *	ata_link_init - Initialize an ata_link structure
5474  *	@ap: ATA port link is attached to
5475  *	@link: Link structure to initialize
5476  *	@pmp: Port multiplier port number
5477  *
5478  *	Initialize @link.
5479  *
5480  *	LOCKING:
5481  *	Kernel thread context (may sleep)
5482  */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5483 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5484 {
5485 	int i;
5486 
5487 	/* clear everything except for devices */
5488 	memset(link, 0, offsetof(struct ata_link, device[0]));
5489 
5490 	link->ap = ap;
5491 	link->pmp = pmp;
5492 	link->active_tag = ATA_TAG_POISON;
5493 	link->hw_sata_spd_limit = UINT_MAX;
5494 
5495 	/* can't use iterator, ap isn't initialized yet */
5496 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5497 		struct ata_device *dev = &link->device[i];
5498 
5499 		dev->link = link;
5500 		dev->devno = dev - link->device;
5501 		ata_dev_init(dev);
5502 	}
5503 }
5504 
5505 /**
5506  *	sata_link_init_spd - Initialize link->sata_spd_limit
5507  *	@link: Link to configure sata_spd_limit for
5508  *
5509  *	Initialize @link->[hw_]sata_spd_limit to the currently
5510  *	configured value.
5511  *
5512  *	LOCKING:
5513  *	Kernel thread context (may sleep).
5514  *
5515  *	RETURNS:
5516  *	0 on success, -errno on failure.
5517  */
sata_link_init_spd(struct ata_link * link)5518 int sata_link_init_spd(struct ata_link *link)
5519 {
5520 	u8 spd;
5521 	int rc;
5522 
5523 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5524 	if (rc)
5525 		return rc;
5526 
5527 	spd = (link->saved_scontrol >> 4) & 0xf;
5528 	if (spd)
5529 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5530 
5531 	ata_force_link_limits(link);
5532 
5533 	link->sata_spd_limit = link->hw_sata_spd_limit;
5534 
5535 	return 0;
5536 }
5537 
5538 /**
5539  *	ata_port_alloc - allocate and initialize basic ATA port resources
5540  *	@host: ATA host this allocated port belongs to
5541  *
5542  *	Allocate and initialize basic ATA port resources.
5543  *
5544  *	RETURNS:
5545  *	Allocate ATA port on success, NULL on failure.
5546  *
5547  *	LOCKING:
5548  *	Inherited from calling layer (may sleep).
5549  */
ata_port_alloc(struct ata_host * host)5550 struct ata_port *ata_port_alloc(struct ata_host *host)
5551 {
5552 	struct ata_port *ap;
5553 
5554 	DPRINTK("ENTER\n");
5555 
5556 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5557 	if (!ap)
5558 		return NULL;
5559 
5560 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5561 	ap->lock = &host->lock;
5562 	ap->flags = ATA_FLAG_DISABLED;
5563 	ap->print_id = -1;
5564 	ap->ctl = ATA_DEVCTL_OBS;
5565 	ap->host = host;
5566 	ap->dev = host->dev;
5567 	ap->last_ctl = 0xFF;
5568 
5569 #if defined(ATA_VERBOSE_DEBUG)
5570 	/* turn on all debugging levels */
5571 	ap->msg_enable = 0x00FF;
5572 #elif defined(ATA_DEBUG)
5573 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5574 #else
5575 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5576 #endif
5577 
5578 #ifdef CONFIG_ATA_SFF
5579 	INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5580 #else
5581 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5582 #endif
5583 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5584 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5585 	INIT_LIST_HEAD(&ap->eh_done_q);
5586 	init_waitqueue_head(&ap->eh_wait_q);
5587 	init_completion(&ap->park_req_pending);
5588 	init_timer_deferrable(&ap->fastdrain_timer);
5589 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5590 	ap->fastdrain_timer.data = (unsigned long)ap;
5591 
5592 	ap->cbl = ATA_CBL_NONE;
5593 
5594 	ata_link_init(ap, &ap->link, 0);
5595 
5596 #ifdef ATA_IRQ_TRAP
5597 	ap->stats.unhandled_irq = 1;
5598 	ap->stats.idle_irq = 1;
5599 #endif
5600 	return ap;
5601 }
5602 
ata_host_release(struct device * gendev,void * res)5603 static void ata_host_release(struct device *gendev, void *res)
5604 {
5605 	struct ata_host *host = dev_get_drvdata(gendev);
5606 	int i;
5607 
5608 	for (i = 0; i < host->n_ports; i++) {
5609 		struct ata_port *ap = host->ports[i];
5610 
5611 		if (!ap)
5612 			continue;
5613 
5614 		if (ap->scsi_host)
5615 			scsi_host_put(ap->scsi_host);
5616 
5617 		kfree(ap->pmp_link);
5618 		kfree(ap->slave_link);
5619 		kfree(ap);
5620 		host->ports[i] = NULL;
5621 	}
5622 
5623 	dev_set_drvdata(gendev, NULL);
5624 }
5625 
5626 /**
5627  *	ata_host_alloc - allocate and init basic ATA host resources
5628  *	@dev: generic device this host is associated with
5629  *	@max_ports: maximum number of ATA ports associated with this host
5630  *
5631  *	Allocate and initialize basic ATA host resources.  LLD calls
5632  *	this function to allocate a host, initializes it fully and
5633  *	attaches it using ata_host_register().
5634  *
5635  *	@max_ports ports are allocated and host->n_ports is
5636  *	initialized to @max_ports.  The caller is allowed to decrease
5637  *	host->n_ports before calling ata_host_register().  The unused
5638  *	ports will be automatically freed on registration.
5639  *
5640  *	RETURNS:
5641  *	Allocate ATA host on success, NULL on failure.
5642  *
5643  *	LOCKING:
5644  *	Inherited from calling layer (may sleep).
5645  */
ata_host_alloc(struct device * dev,int max_ports)5646 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5647 {
5648 	struct ata_host *host;
5649 	size_t sz;
5650 	int i;
5651 
5652 	DPRINTK("ENTER\n");
5653 
5654 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5655 		return NULL;
5656 
5657 	/* alloc a container for our list of ATA ports (buses) */
5658 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5659 	/* alloc a container for our list of ATA ports (buses) */
5660 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5661 	if (!host)
5662 		goto err_out;
5663 
5664 	devres_add(dev, host);
5665 	dev_set_drvdata(dev, host);
5666 
5667 	spin_lock_init(&host->lock);
5668 	host->dev = dev;
5669 	host->n_ports = max_ports;
5670 
5671 	/* allocate ports bound to this host */
5672 	for (i = 0; i < max_ports; i++) {
5673 		struct ata_port *ap;
5674 
5675 		ap = ata_port_alloc(host);
5676 		if (!ap)
5677 			goto err_out;
5678 
5679 		ap->port_no = i;
5680 		host->ports[i] = ap;
5681 	}
5682 
5683 	devres_remove_group(dev, NULL);
5684 	return host;
5685 
5686  err_out:
5687 	devres_release_group(dev, NULL);
5688 	return NULL;
5689 }
5690 
5691 /**
5692  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5693  *	@dev: generic device this host is associated with
5694  *	@ppi: array of ATA port_info to initialize host with
5695  *	@n_ports: number of ATA ports attached to this host
5696  *
5697  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5698  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5699  *	last entry will be used for the remaining ports.
5700  *
5701  *	RETURNS:
5702  *	Allocate ATA host on success, NULL on failure.
5703  *
5704  *	LOCKING:
5705  *	Inherited from calling layer (may sleep).
5706  */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5707 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5708 				      const struct ata_port_info * const * ppi,
5709 				      int n_ports)
5710 {
5711 	const struct ata_port_info *pi;
5712 	struct ata_host *host;
5713 	int i, j;
5714 
5715 	host = ata_host_alloc(dev, n_ports);
5716 	if (!host)
5717 		return NULL;
5718 
5719 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5720 		struct ata_port *ap = host->ports[i];
5721 
5722 		if (ppi[j])
5723 			pi = ppi[j++];
5724 
5725 		ap->pio_mask = pi->pio_mask;
5726 		ap->mwdma_mask = pi->mwdma_mask;
5727 		ap->udma_mask = pi->udma_mask;
5728 		ap->flags |= pi->flags;
5729 		ap->link.flags |= pi->link_flags;
5730 		ap->ops = pi->port_ops;
5731 
5732 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5733 			host->ops = pi->port_ops;
5734 	}
5735 
5736 	return host;
5737 }
5738 
5739 /**
5740  *	ata_slave_link_init - initialize slave link
5741  *	@ap: port to initialize slave link for
5742  *
5743  *	Create and initialize slave link for @ap.  This enables slave
5744  *	link handling on the port.
5745  *
5746  *	In libata, a port contains links and a link contains devices.
5747  *	There is single host link but if a PMP is attached to it,
5748  *	there can be multiple fan-out links.  On SATA, there's usually
5749  *	a single device connected to a link but PATA and SATA
5750  *	controllers emulating TF based interface can have two - master
5751  *	and slave.
5752  *
5753  *	However, there are a few controllers which don't fit into this
5754  *	abstraction too well - SATA controllers which emulate TF
5755  *	interface with both master and slave devices but also have
5756  *	separate SCR register sets for each device.  These controllers
5757  *	need separate links for physical link handling
5758  *	(e.g. onlineness, link speed) but should be treated like a
5759  *	traditional M/S controller for everything else (e.g. command
5760  *	issue, softreset).
5761  *
5762  *	slave_link is libata's way of handling this class of
5763  *	controllers without impacting core layer too much.  For
5764  *	anything other than physical link handling, the default host
5765  *	link is used for both master and slave.  For physical link
5766  *	handling, separate @ap->slave_link is used.  All dirty details
5767  *	are implemented inside libata core layer.  From LLD's POV, the
5768  *	only difference is that prereset, hardreset and postreset are
5769  *	called once more for the slave link, so the reset sequence
5770  *	looks like the following.
5771  *
5772  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5773  *	softreset(M) -> postreset(M) -> postreset(S)
5774  *
5775  *	Note that softreset is called only for the master.  Softreset
5776  *	resets both M/S by definition, so SRST on master should handle
5777  *	both (the standard method will work just fine).
5778  *
5779  *	LOCKING:
5780  *	Should be called before host is registered.
5781  *
5782  *	RETURNS:
5783  *	0 on success, -errno on failure.
5784  */
ata_slave_link_init(struct ata_port * ap)5785 int ata_slave_link_init(struct ata_port *ap)
5786 {
5787 	struct ata_link *link;
5788 
5789 	WARN_ON(ap->slave_link);
5790 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5791 
5792 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5793 	if (!link)
5794 		return -ENOMEM;
5795 
5796 	ata_link_init(ap, link, 1);
5797 	ap->slave_link = link;
5798 	return 0;
5799 }
5800 
ata_host_stop(struct device * gendev,void * res)5801 static void ata_host_stop(struct device *gendev, void *res)
5802 {
5803 	struct ata_host *host = dev_get_drvdata(gendev);
5804 	int i;
5805 
5806 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5807 
5808 	for (i = 0; i < host->n_ports; i++) {
5809 		struct ata_port *ap = host->ports[i];
5810 
5811 		if (ap->ops->port_stop)
5812 			ap->ops->port_stop(ap);
5813 	}
5814 
5815 	if (host->ops->host_stop)
5816 		host->ops->host_stop(host);
5817 }
5818 
5819 /**
5820  *	ata_finalize_port_ops - finalize ata_port_operations
5821  *	@ops: ata_port_operations to finalize
5822  *
5823  *	An ata_port_operations can inherit from another ops and that
5824  *	ops can again inherit from another.  This can go on as many
5825  *	times as necessary as long as there is no loop in the
5826  *	inheritance chain.
5827  *
5828  *	Ops tables are finalized when the host is started.  NULL or
5829  *	unspecified entries are inherited from the closet ancestor
5830  *	which has the method and the entry is populated with it.
5831  *	After finalization, the ops table directly points to all the
5832  *	methods and ->inherits is no longer necessary and cleared.
5833  *
5834  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5835  *
5836  *	LOCKING:
5837  *	None.
5838  */
ata_finalize_port_ops(struct ata_port_operations * ops)5839 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5840 {
5841 	static DEFINE_SPINLOCK(lock);
5842 	const struct ata_port_operations *cur;
5843 	void **begin = (void **)ops;
5844 	void **end = (void **)&ops->inherits;
5845 	void **pp;
5846 
5847 	if (!ops || !ops->inherits)
5848 		return;
5849 
5850 	spin_lock(&lock);
5851 
5852 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5853 		void **inherit = (void **)cur;
5854 
5855 		for (pp = begin; pp < end; pp++, inherit++)
5856 			if (!*pp)
5857 				*pp = *inherit;
5858 	}
5859 
5860 	for (pp = begin; pp < end; pp++)
5861 		if (IS_ERR(*pp))
5862 			*pp = NULL;
5863 
5864 	ops->inherits = NULL;
5865 
5866 	spin_unlock(&lock);
5867 }
5868 
5869 /**
5870  *	ata_host_start - start and freeze ports of an ATA host
5871  *	@host: ATA host to start ports for
5872  *
5873  *	Start and then freeze ports of @host.  Started status is
5874  *	recorded in host->flags, so this function can be called
5875  *	multiple times.  Ports are guaranteed to get started only
5876  *	once.  If host->ops isn't initialized yet, its set to the
5877  *	first non-dummy port ops.
5878  *
5879  *	LOCKING:
5880  *	Inherited from calling layer (may sleep).
5881  *
5882  *	RETURNS:
5883  *	0 if all ports are started successfully, -errno otherwise.
5884  */
ata_host_start(struct ata_host * host)5885 int ata_host_start(struct ata_host *host)
5886 {
5887 	int have_stop = 0;
5888 	void *start_dr = NULL;
5889 	int i, rc;
5890 
5891 	if (host->flags & ATA_HOST_STARTED)
5892 		return 0;
5893 
5894 	ata_finalize_port_ops(host->ops);
5895 
5896 	for (i = 0; i < host->n_ports; i++) {
5897 		struct ata_port *ap = host->ports[i];
5898 
5899 		ata_finalize_port_ops(ap->ops);
5900 
5901 		if (!host->ops && !ata_port_is_dummy(ap))
5902 			host->ops = ap->ops;
5903 
5904 		if (ap->ops->port_stop)
5905 			have_stop = 1;
5906 	}
5907 
5908 	if (host->ops->host_stop)
5909 		have_stop = 1;
5910 
5911 	if (have_stop) {
5912 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5913 		if (!start_dr)
5914 			return -ENOMEM;
5915 	}
5916 
5917 	for (i = 0; i < host->n_ports; i++) {
5918 		struct ata_port *ap = host->ports[i];
5919 
5920 		if (ap->ops->port_start) {
5921 			rc = ap->ops->port_start(ap);
5922 			if (rc) {
5923 				if (rc != -ENODEV)
5924 					dev_printk(KERN_ERR, host->dev,
5925 						"failed to start port %d "
5926 						"(errno=%d)\n", i, rc);
5927 				goto err_out;
5928 			}
5929 		}
5930 		ata_eh_freeze_port(ap);
5931 	}
5932 
5933 	if (start_dr)
5934 		devres_add(host->dev, start_dr);
5935 	host->flags |= ATA_HOST_STARTED;
5936 	return 0;
5937 
5938  err_out:
5939 	while (--i >= 0) {
5940 		struct ata_port *ap = host->ports[i];
5941 
5942 		if (ap->ops->port_stop)
5943 			ap->ops->port_stop(ap);
5944 	}
5945 	devres_free(start_dr);
5946 	return rc;
5947 }
5948 
5949 /**
5950  *	ata_sas_host_init - Initialize a host struct
5951  *	@host:	host to initialize
5952  *	@dev:	device host is attached to
5953  *	@flags:	host flags
5954  *	@ops:	port_ops
5955  *
5956  *	LOCKING:
5957  *	PCI/etc. bus probe sem.
5958  *
5959  */
5960 /* KILLME - the only user left is ipr */
ata_host_init(struct ata_host * host,struct device * dev,unsigned long flags,struct ata_port_operations * ops)5961 void ata_host_init(struct ata_host *host, struct device *dev,
5962 		   unsigned long flags, struct ata_port_operations *ops)
5963 {
5964 	spin_lock_init(&host->lock);
5965 	host->dev = dev;
5966 	host->flags = flags;
5967 	host->ops = ops;
5968 }
5969 
5970 
async_port_probe(void * data,async_cookie_t cookie)5971 static void async_port_probe(void *data, async_cookie_t cookie)
5972 {
5973 	int rc;
5974 	struct ata_port *ap = data;
5975 
5976 	/*
5977 	 * If we're not allowed to scan this host in parallel,
5978 	 * we need to wait until all previous scans have completed
5979 	 * before going further.
5980 	 * Jeff Garzik says this is only within a controller, so we
5981 	 * don't need to wait for port 0, only for later ports.
5982 	 */
5983 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5984 		async_synchronize_cookie(cookie);
5985 
5986 	/* probe */
5987 	if (ap->ops->error_handler) {
5988 		struct ata_eh_info *ehi = &ap->link.eh_info;
5989 		unsigned long flags;
5990 
5991 		ata_port_probe(ap);
5992 
5993 		/* kick EH for boot probing */
5994 		spin_lock_irqsave(ap->lock, flags);
5995 
5996 		ehi->probe_mask |= ATA_ALL_DEVICES;
5997 		ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5998 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5999 
6000 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6001 		ap->pflags |= ATA_PFLAG_LOADING;
6002 		ata_port_schedule_eh(ap);
6003 
6004 		spin_unlock_irqrestore(ap->lock, flags);
6005 
6006 		/* wait for EH to finish */
6007 		ata_port_wait_eh(ap);
6008 	} else {
6009 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6010 		rc = ata_bus_probe(ap);
6011 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6012 
6013 		if (rc) {
6014 			/* FIXME: do something useful here?
6015 			 * Current libata behavior will
6016 			 * tear down everything when
6017 			 * the module is removed
6018 			 * or the h/w is unplugged.
6019 			 */
6020 		}
6021 	}
6022 
6023 	/* in order to keep device order, we need to synchronize at this point */
6024 	async_synchronize_cookie(cookie);
6025 
6026 	ata_scsi_scan_host(ap, 1);
6027 
6028 }
6029 /**
6030  *	ata_host_register - register initialized ATA host
6031  *	@host: ATA host to register
6032  *	@sht: template for SCSI host
6033  *
6034  *	Register initialized ATA host.  @host is allocated using
6035  *	ata_host_alloc() and fully initialized by LLD.  This function
6036  *	starts ports, registers @host with ATA and SCSI layers and
6037  *	probe registered devices.
6038  *
6039  *	LOCKING:
6040  *	Inherited from calling layer (may sleep).
6041  *
6042  *	RETURNS:
6043  *	0 on success, -errno otherwise.
6044  */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)6045 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6046 {
6047 	int i, rc;
6048 
6049 	/* host must have been started */
6050 	if (!(host->flags & ATA_HOST_STARTED)) {
6051 		dev_printk(KERN_ERR, host->dev,
6052 			   "BUG: trying to register unstarted host\n");
6053 		WARN_ON(1);
6054 		return -EINVAL;
6055 	}
6056 
6057 	/* Blow away unused ports.  This happens when LLD can't
6058 	 * determine the exact number of ports to allocate at
6059 	 * allocation time.
6060 	 */
6061 	for (i = host->n_ports; host->ports[i]; i++)
6062 		kfree(host->ports[i]);
6063 
6064 	/* give ports names and add SCSI hosts */
6065 	for (i = 0; i < host->n_ports; i++)
6066 		host->ports[i]->print_id = ata_print_id++;
6067 
6068 	rc = ata_scsi_add_hosts(host, sht);
6069 	if (rc)
6070 		return rc;
6071 
6072 	/* associate with ACPI nodes */
6073 	ata_acpi_associate(host);
6074 
6075 	/* set cable, sata_spd_limit and report */
6076 	for (i = 0; i < host->n_ports; i++) {
6077 		struct ata_port *ap = host->ports[i];
6078 		unsigned long xfer_mask;
6079 
6080 		/* set SATA cable type if still unset */
6081 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6082 			ap->cbl = ATA_CBL_SATA;
6083 
6084 		/* init sata_spd_limit to the current value */
6085 		sata_link_init_spd(&ap->link);
6086 		if (ap->slave_link)
6087 			sata_link_init_spd(ap->slave_link);
6088 
6089 		/* print per-port info to dmesg */
6090 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6091 					      ap->udma_mask);
6092 
6093 		if (!ata_port_is_dummy(ap)) {
6094 			ata_port_printk(ap, KERN_INFO,
6095 					"%cATA max %s %s\n",
6096 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6097 					ata_mode_string(xfer_mask),
6098 					ap->link.eh_info.desc);
6099 			ata_ehi_clear_desc(&ap->link.eh_info);
6100 		} else
6101 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6102 	}
6103 
6104 	/* perform each probe synchronously */
6105 	DPRINTK("probe begin\n");
6106 	for (i = 0; i < host->n_ports; i++) {
6107 		struct ata_port *ap = host->ports[i];
6108 		async_schedule(async_port_probe, ap);
6109 	}
6110 	DPRINTK("probe end\n");
6111 
6112 	return 0;
6113 }
6114 
6115 /**
6116  *	ata_host_activate - start host, request IRQ and register it
6117  *	@host: target ATA host
6118  *	@irq: IRQ to request
6119  *	@irq_handler: irq_handler used when requesting IRQ
6120  *	@irq_flags: irq_flags used when requesting IRQ
6121  *	@sht: scsi_host_template to use when registering the host
6122  *
6123  *	After allocating an ATA host and initializing it, most libata
6124  *	LLDs perform three steps to activate the host - start host,
6125  *	request IRQ and register it.  This helper takes necessasry
6126  *	arguments and performs the three steps in one go.
6127  *
6128  *	An invalid IRQ skips the IRQ registration and expects the host to
6129  *	have set polling mode on the port. In this case, @irq_handler
6130  *	should be NULL.
6131  *
6132  *	LOCKING:
6133  *	Inherited from calling layer (may sleep).
6134  *
6135  *	RETURNS:
6136  *	0 on success, -errno otherwise.
6137  */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)6138 int ata_host_activate(struct ata_host *host, int irq,
6139 		      irq_handler_t irq_handler, unsigned long irq_flags,
6140 		      struct scsi_host_template *sht)
6141 {
6142 	int i, rc;
6143 
6144 	rc = ata_host_start(host);
6145 	if (rc)
6146 		return rc;
6147 
6148 	/* Special case for polling mode */
6149 	if (!irq) {
6150 		WARN_ON(irq_handler);
6151 		return ata_host_register(host, sht);
6152 	}
6153 
6154 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6155 			      dev_driver_string(host->dev), host);
6156 	if (rc)
6157 		return rc;
6158 
6159 	for (i = 0; i < host->n_ports; i++)
6160 		ata_port_desc(host->ports[i], "irq %d", irq);
6161 
6162 	rc = ata_host_register(host, sht);
6163 	/* if failed, just free the IRQ and leave ports alone */
6164 	if (rc)
6165 		devm_free_irq(host->dev, irq, host);
6166 
6167 	return rc;
6168 }
6169 
6170 /**
6171  *	ata_port_detach - Detach ATA port in prepration of device removal
6172  *	@ap: ATA port to be detached
6173  *
6174  *	Detach all ATA devices and the associated SCSI devices of @ap;
6175  *	then, remove the associated SCSI host.  @ap is guaranteed to
6176  *	be quiescent on return from this function.
6177  *
6178  *	LOCKING:
6179  *	Kernel thread context (may sleep).
6180  */
ata_port_detach(struct ata_port * ap)6181 static void ata_port_detach(struct ata_port *ap)
6182 {
6183 	unsigned long flags;
6184 
6185 	if (!ap->ops->error_handler)
6186 		goto skip_eh;
6187 
6188 	/* tell EH we're leaving & flush EH */
6189 	spin_lock_irqsave(ap->lock, flags);
6190 	ap->pflags |= ATA_PFLAG_UNLOADING;
6191 	ata_port_schedule_eh(ap);
6192 	spin_unlock_irqrestore(ap->lock, flags);
6193 
6194 	/* wait till EH commits suicide */
6195 	ata_port_wait_eh(ap);
6196 
6197 	/* it better be dead now */
6198 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6199 
6200 	cancel_rearming_delayed_work(&ap->hotplug_task);
6201 
6202  skip_eh:
6203 	/* remove the associated SCSI host */
6204 	scsi_remove_host(ap->scsi_host);
6205 }
6206 
6207 /**
6208  *	ata_host_detach - Detach all ports of an ATA host
6209  *	@host: Host to detach
6210  *
6211  *	Detach all ports of @host.
6212  *
6213  *	LOCKING:
6214  *	Kernel thread context (may sleep).
6215  */
ata_host_detach(struct ata_host * host)6216 void ata_host_detach(struct ata_host *host)
6217 {
6218 	int i;
6219 
6220 	for (i = 0; i < host->n_ports; i++)
6221 		ata_port_detach(host->ports[i]);
6222 
6223 	/* the host is dead now, dissociate ACPI */
6224 	ata_acpi_dissociate(host);
6225 }
6226 
6227 #ifdef CONFIG_PCI
6228 
6229 /**
6230  *	ata_pci_remove_one - PCI layer callback for device removal
6231  *	@pdev: PCI device that was removed
6232  *
6233  *	PCI layer indicates to libata via this hook that hot-unplug or
6234  *	module unload event has occurred.  Detach all ports.  Resource
6235  *	release is handled via devres.
6236  *
6237  *	LOCKING:
6238  *	Inherited from PCI layer (may sleep).
6239  */
ata_pci_remove_one(struct pci_dev * pdev)6240 void ata_pci_remove_one(struct pci_dev *pdev)
6241 {
6242 	struct device *dev = &pdev->dev;
6243 	struct ata_host *host = dev_get_drvdata(dev);
6244 
6245 	ata_host_detach(host);
6246 }
6247 
6248 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6249 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6250 {
6251 	unsigned long tmp = 0;
6252 
6253 	switch (bits->width) {
6254 	case 1: {
6255 		u8 tmp8 = 0;
6256 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6257 		tmp = tmp8;
6258 		break;
6259 	}
6260 	case 2: {
6261 		u16 tmp16 = 0;
6262 		pci_read_config_word(pdev, bits->reg, &tmp16);
6263 		tmp = tmp16;
6264 		break;
6265 	}
6266 	case 4: {
6267 		u32 tmp32 = 0;
6268 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6269 		tmp = tmp32;
6270 		break;
6271 	}
6272 
6273 	default:
6274 		return -EINVAL;
6275 	}
6276 
6277 	tmp &= bits->mask;
6278 
6279 	return (tmp == bits->val) ? 1 : 0;
6280 }
6281 
6282 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6283 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6284 {
6285 	pci_save_state(pdev);
6286 	pci_disable_device(pdev);
6287 
6288 	if (mesg.event & PM_EVENT_SLEEP)
6289 		pci_set_power_state(pdev, PCI_D3hot);
6290 }
6291 
ata_pci_device_do_resume(struct pci_dev * pdev)6292 int ata_pci_device_do_resume(struct pci_dev *pdev)
6293 {
6294 	int rc;
6295 
6296 	pci_set_power_state(pdev, PCI_D0);
6297 	pci_restore_state(pdev);
6298 
6299 	rc = pcim_enable_device(pdev);
6300 	if (rc) {
6301 		dev_printk(KERN_ERR, &pdev->dev,
6302 			   "failed to enable device after resume (%d)\n", rc);
6303 		return rc;
6304 	}
6305 
6306 	pci_set_master(pdev);
6307 	return 0;
6308 }
6309 
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6310 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6311 {
6312 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6313 	int rc = 0;
6314 
6315 	rc = ata_host_suspend(host, mesg);
6316 	if (rc)
6317 		return rc;
6318 
6319 	ata_pci_device_do_suspend(pdev, mesg);
6320 
6321 	return 0;
6322 }
6323 
ata_pci_device_resume(struct pci_dev * pdev)6324 int ata_pci_device_resume(struct pci_dev *pdev)
6325 {
6326 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6327 	int rc;
6328 
6329 	rc = ata_pci_device_do_resume(pdev);
6330 	if (rc == 0)
6331 		ata_host_resume(host);
6332 	return rc;
6333 }
6334 #endif /* CONFIG_PM */
6335 
6336 #endif /* CONFIG_PCI */
6337 
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6338 static int __init ata_parse_force_one(char **cur,
6339 				      struct ata_force_ent *force_ent,
6340 				      const char **reason)
6341 {
6342 	/* FIXME: Currently, there's no way to tag init const data and
6343 	 * using __initdata causes build failure on some versions of
6344 	 * gcc.  Once __initdataconst is implemented, add const to the
6345 	 * following structure.
6346 	 */
6347 	static struct ata_force_param force_tbl[] __initdata = {
6348 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6349 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6350 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6351 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6352 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6353 		{ "sata",	.cbl		= ATA_CBL_SATA },
6354 		{ "1.5Gbps",	.spd_limit	= 1 },
6355 		{ "3.0Gbps",	.spd_limit	= 2 },
6356 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6357 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6358 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6359 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6360 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6361 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6362 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6363 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6364 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6365 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6366 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6367 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6368 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6369 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6370 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6371 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6372 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6373 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6374 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6375 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6376 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6377 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6378 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6379 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6380 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6381 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6382 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6383 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6384 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6385 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6386 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6387 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6388 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6389 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6390 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6391 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6392 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6393 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6394 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6395 	};
6396 	char *start = *cur, *p = *cur;
6397 	char *id, *val, *endp;
6398 	const struct ata_force_param *match_fp = NULL;
6399 	int nr_matches = 0, i;
6400 
6401 	/* find where this param ends and update *cur */
6402 	while (*p != '\0' && *p != ',')
6403 		p++;
6404 
6405 	if (*p == '\0')
6406 		*cur = p;
6407 	else
6408 		*cur = p + 1;
6409 
6410 	*p = '\0';
6411 
6412 	/* parse */
6413 	p = strchr(start, ':');
6414 	if (!p) {
6415 		val = strstrip(start);
6416 		goto parse_val;
6417 	}
6418 	*p = '\0';
6419 
6420 	id = strstrip(start);
6421 	val = strstrip(p + 1);
6422 
6423 	/* parse id */
6424 	p = strchr(id, '.');
6425 	if (p) {
6426 		*p++ = '\0';
6427 		force_ent->device = simple_strtoul(p, &endp, 10);
6428 		if (p == endp || *endp != '\0') {
6429 			*reason = "invalid device";
6430 			return -EINVAL;
6431 		}
6432 	}
6433 
6434 	force_ent->port = simple_strtoul(id, &endp, 10);
6435 	if (p == endp || *endp != '\0') {
6436 		*reason = "invalid port/link";
6437 		return -EINVAL;
6438 	}
6439 
6440  parse_val:
6441 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6442 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6443 		const struct ata_force_param *fp = &force_tbl[i];
6444 
6445 		if (strncasecmp(val, fp->name, strlen(val)))
6446 			continue;
6447 
6448 		nr_matches++;
6449 		match_fp = fp;
6450 
6451 		if (strcasecmp(val, fp->name) == 0) {
6452 			nr_matches = 1;
6453 			break;
6454 		}
6455 	}
6456 
6457 	if (!nr_matches) {
6458 		*reason = "unknown value";
6459 		return -EINVAL;
6460 	}
6461 	if (nr_matches > 1) {
6462 		*reason = "ambigious value";
6463 		return -EINVAL;
6464 	}
6465 
6466 	force_ent->param = *match_fp;
6467 
6468 	return 0;
6469 }
6470 
ata_parse_force_param(void)6471 static void __init ata_parse_force_param(void)
6472 {
6473 	int idx = 0, size = 1;
6474 	int last_port = -1, last_device = -1;
6475 	char *p, *cur, *next;
6476 
6477 	/* calculate maximum number of params and allocate force_tbl */
6478 	for (p = ata_force_param_buf; *p; p++)
6479 		if (*p == ',')
6480 			size++;
6481 
6482 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6483 	if (!ata_force_tbl) {
6484 		printk(KERN_WARNING "ata: failed to extend force table, "
6485 		       "libata.force ignored\n");
6486 		return;
6487 	}
6488 
6489 	/* parse and populate the table */
6490 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6491 		const char *reason = "";
6492 		struct ata_force_ent te = { .port = -1, .device = -1 };
6493 
6494 		next = cur;
6495 		if (ata_parse_force_one(&next, &te, &reason)) {
6496 			printk(KERN_WARNING "ata: failed to parse force "
6497 			       "parameter \"%s\" (%s)\n",
6498 			       cur, reason);
6499 			continue;
6500 		}
6501 
6502 		if (te.port == -1) {
6503 			te.port = last_port;
6504 			te.device = last_device;
6505 		}
6506 
6507 		ata_force_tbl[idx++] = te;
6508 
6509 		last_port = te.port;
6510 		last_device = te.device;
6511 	}
6512 
6513 	ata_force_tbl_size = idx;
6514 }
6515 
ata_init(void)6516 static int __init ata_init(void)
6517 {
6518 	ata_parse_force_param();
6519 
6520 	ata_wq = create_workqueue("ata");
6521 	if (!ata_wq)
6522 		goto free_force_tbl;
6523 
6524 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6525 	if (!ata_aux_wq)
6526 		goto free_wq;
6527 
6528 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6529 	return 0;
6530 
6531 free_wq:
6532 	destroy_workqueue(ata_wq);
6533 free_force_tbl:
6534 	kfree(ata_force_tbl);
6535 	return -ENOMEM;
6536 }
6537 
ata_exit(void)6538 static void __exit ata_exit(void)
6539 {
6540 	kfree(ata_force_tbl);
6541 	destroy_workqueue(ata_wq);
6542 	destroy_workqueue(ata_aux_wq);
6543 }
6544 
6545 subsys_initcall(ata_init);
6546 module_exit(ata_exit);
6547 
6548 static unsigned long ratelimit_time;
6549 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6550 
ata_ratelimit(void)6551 int ata_ratelimit(void)
6552 {
6553 	int rc;
6554 	unsigned long flags;
6555 
6556 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6557 
6558 	if (time_after(jiffies, ratelimit_time)) {
6559 		rc = 1;
6560 		ratelimit_time = jiffies + (HZ/5);
6561 	} else
6562 		rc = 0;
6563 
6564 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6565 
6566 	return rc;
6567 }
6568 
6569 /**
6570  *	ata_wait_register - wait until register value changes
6571  *	@reg: IO-mapped register
6572  *	@mask: Mask to apply to read register value
6573  *	@val: Wait condition
6574  *	@interval: polling interval in milliseconds
6575  *	@timeout: timeout in milliseconds
6576  *
6577  *	Waiting for some bits of register to change is a common
6578  *	operation for ATA controllers.  This function reads 32bit LE
6579  *	IO-mapped register @reg and tests for the following condition.
6580  *
6581  *	(*@reg & mask) != val
6582  *
6583  *	If the condition is met, it returns; otherwise, the process is
6584  *	repeated after @interval_msec until timeout.
6585  *
6586  *	LOCKING:
6587  *	Kernel thread context (may sleep)
6588  *
6589  *	RETURNS:
6590  *	The final register value.
6591  */
ata_wait_register(void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6592 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6593 		      unsigned long interval, unsigned long timeout)
6594 {
6595 	unsigned long deadline;
6596 	u32 tmp;
6597 
6598 	tmp = ioread32(reg);
6599 
6600 	/* Calculate timeout _after_ the first read to make sure
6601 	 * preceding writes reach the controller before starting to
6602 	 * eat away the timeout.
6603 	 */
6604 	deadline = ata_deadline(jiffies, timeout);
6605 
6606 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6607 		msleep(interval);
6608 		tmp = ioread32(reg);
6609 	}
6610 
6611 	return tmp;
6612 }
6613 
6614 /*
6615  * Dummy port_ops
6616  */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6617 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6618 {
6619 	return AC_ERR_SYSTEM;
6620 }
6621 
ata_dummy_error_handler(struct ata_port * ap)6622 static void ata_dummy_error_handler(struct ata_port *ap)
6623 {
6624 	/* truly dummy */
6625 }
6626 
6627 struct ata_port_operations ata_dummy_port_ops = {
6628 	.qc_prep		= ata_noop_qc_prep,
6629 	.qc_issue		= ata_dummy_qc_issue,
6630 	.error_handler		= ata_dummy_error_handler,
6631 };
6632 
6633 const struct ata_port_info ata_dummy_port_info = {
6634 	.port_ops		= &ata_dummy_port_ops,
6635 };
6636 
6637 /*
6638  * libata is essentially a library of internal helper functions for
6639  * low-level ATA host controller drivers.  As such, the API/ABI is
6640  * likely to change as new drivers are added and updated.
6641  * Do not depend on ABI/API stability.
6642  */
6643 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6644 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6645 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6646 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6647 EXPORT_SYMBOL_GPL(sata_port_ops);
6648 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6649 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6650 EXPORT_SYMBOL_GPL(ata_link_next);
6651 EXPORT_SYMBOL_GPL(ata_dev_next);
6652 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6653 EXPORT_SYMBOL_GPL(ata_host_init);
6654 EXPORT_SYMBOL_GPL(ata_host_alloc);
6655 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6656 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6657 EXPORT_SYMBOL_GPL(ata_host_start);
6658 EXPORT_SYMBOL_GPL(ata_host_register);
6659 EXPORT_SYMBOL_GPL(ata_host_activate);
6660 EXPORT_SYMBOL_GPL(ata_host_detach);
6661 EXPORT_SYMBOL_GPL(ata_sg_init);
6662 EXPORT_SYMBOL_GPL(ata_qc_complete);
6663 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6664 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6665 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6666 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6667 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6668 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6669 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6670 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6671 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6672 EXPORT_SYMBOL_GPL(ata_mode_string);
6673 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6674 EXPORT_SYMBOL_GPL(ata_port_start);
6675 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6676 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6677 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6678 EXPORT_SYMBOL_GPL(ata_port_probe);
6679 EXPORT_SYMBOL_GPL(ata_dev_disable);
6680 EXPORT_SYMBOL_GPL(sata_set_spd);
6681 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6682 EXPORT_SYMBOL_GPL(sata_link_debounce);
6683 EXPORT_SYMBOL_GPL(sata_link_resume);
6684 EXPORT_SYMBOL_GPL(ata_std_prereset);
6685 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6686 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6687 EXPORT_SYMBOL_GPL(ata_std_postreset);
6688 EXPORT_SYMBOL_GPL(ata_dev_classify);
6689 EXPORT_SYMBOL_GPL(ata_dev_pair);
6690 EXPORT_SYMBOL_GPL(ata_port_disable);
6691 EXPORT_SYMBOL_GPL(ata_ratelimit);
6692 EXPORT_SYMBOL_GPL(ata_wait_register);
6693 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6694 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6695 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6696 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6697 EXPORT_SYMBOL_GPL(sata_scr_valid);
6698 EXPORT_SYMBOL_GPL(sata_scr_read);
6699 EXPORT_SYMBOL_GPL(sata_scr_write);
6700 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6701 EXPORT_SYMBOL_GPL(ata_link_online);
6702 EXPORT_SYMBOL_GPL(ata_link_offline);
6703 #ifdef CONFIG_PM
6704 EXPORT_SYMBOL_GPL(ata_host_suspend);
6705 EXPORT_SYMBOL_GPL(ata_host_resume);
6706 #endif /* CONFIG_PM */
6707 EXPORT_SYMBOL_GPL(ata_id_string);
6708 EXPORT_SYMBOL_GPL(ata_id_c_string);
6709 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6710 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6711 
6712 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6713 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6714 EXPORT_SYMBOL_GPL(ata_timing_compute);
6715 EXPORT_SYMBOL_GPL(ata_timing_merge);
6716 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6717 
6718 #ifdef CONFIG_PCI
6719 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6720 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6721 #ifdef CONFIG_PM
6722 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6723 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6724 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6725 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6726 #endif /* CONFIG_PM */
6727 #endif /* CONFIG_PCI */
6728 
6729 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6730 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6731 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6732 EXPORT_SYMBOL_GPL(ata_port_desc);
6733 #ifdef CONFIG_PCI
6734 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6735 #endif /* CONFIG_PCI */
6736 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6737 EXPORT_SYMBOL_GPL(ata_link_abort);
6738 EXPORT_SYMBOL_GPL(ata_port_abort);
6739 EXPORT_SYMBOL_GPL(ata_port_freeze);
6740 EXPORT_SYMBOL_GPL(sata_async_notification);
6741 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6742 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6743 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6744 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6745 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6746 EXPORT_SYMBOL_GPL(ata_do_eh);
6747 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6748 
6749 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6750 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6751 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6752 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6753 EXPORT_SYMBOL_GPL(ata_cable_sata);
6754