• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44 
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 					      loff_t new_size)
49 {
50 	return jbd2_journal_begin_ordered_truncate(
51 					EXT4_SB(inode->i_sb)->s_journal,
52 					&EXT4_I(inode)->jinode,
53 					new_size);
54 }
55 
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57 
58 /*
59  * Test whether an inode is a fast symlink.
60  */
ext4_inode_is_fast_symlink(struct inode * inode)61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 		(inode->i_sb->s_blocksize >> 9) : 0;
65 
66 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68 
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
ext4_forget(handle_t * handle,int is_metadata,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t blocknr)80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 			struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 	int err;
84 
85 	if (!ext4_handle_valid(handle))
86 		return 0;
87 
88 	might_sleep();
89 
90 	BUFFER_TRACE(bh, "enter");
91 
92 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 		  "data mode %lx\n",
94 		  bh, is_metadata, inode->i_mode,
95 		  test_opt(inode->i_sb, DATA_FLAGS));
96 
97 	/* Never use the revoke function if we are doing full data
98 	 * journaling: there is no need to, and a V1 superblock won't
99 	 * support it.  Otherwise, only skip the revoke on un-journaled
100 	 * data blocks. */
101 
102 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 	    (!is_metadata && !ext4_should_journal_data(inode))) {
104 		if (bh) {
105 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 			return ext4_journal_forget(handle, bh);
107 		}
108 		return 0;
109 	}
110 
111 	/*
112 	 * data!=journal && (is_metadata || should_journal_data(inode))
113 	 */
114 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 	err = ext4_journal_revoke(handle, blocknr, bh);
116 	if (err)
117 		ext4_abort(inode->i_sb, __func__,
118 			   "error %d when attempting revoke", err);
119 	BUFFER_TRACE(bh, "exit");
120 	return err;
121 }
122 
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
blocks_for_truncate(struct inode * inode)127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 	ext4_lblk_t needed;
130 
131 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132 
133 	/* Give ourselves just enough room to cope with inodes in which
134 	 * i_blocks is corrupt: we've seen disk corruptions in the past
135 	 * which resulted in random data in an inode which looked enough
136 	 * like a regular file for ext4 to try to delete it.  Things
137 	 * will go a bit crazy if that happens, but at least we should
138 	 * try not to panic the whole kernel. */
139 	if (needed < 2)
140 		needed = 2;
141 
142 	/* But we need to bound the transaction so we don't overflow the
143 	 * journal. */
144 	if (needed > EXT4_MAX_TRANS_DATA)
145 		needed = EXT4_MAX_TRANS_DATA;
146 
147 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149 
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
start_transaction(struct inode * inode)160 static handle_t *start_transaction(struct inode *inode)
161 {
162 	handle_t *result;
163 
164 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 	if (!IS_ERR(result))
166 		return result;
167 
168 	ext4_std_error(inode->i_sb, PTR_ERR(result));
169 	return result;
170 }
171 
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 	if (!ext4_handle_valid(handle))
181 		return 0;
182 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 		return 0;
184 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 		return 0;
186 	return 1;
187 }
188 
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
ext4_journal_test_restart(handle_t * handle,struct inode * inode)194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 	jbd_debug(2, "restarting handle %p\n", handle);
198 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200 
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
ext4_delete_inode(struct inode * inode)204 void ext4_delete_inode(struct inode *inode)
205 {
206 	handle_t *handle;
207 	int err;
208 
209 	if (ext4_should_order_data(inode))
210 		ext4_begin_ordered_truncate(inode, 0);
211 	truncate_inode_pages(&inode->i_data, 0);
212 
213 	if (is_bad_inode(inode))
214 		goto no_delete;
215 
216 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 	if (IS_ERR(handle)) {
218 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 		/*
220 		 * If we're going to skip the normal cleanup, we still need to
221 		 * make sure that the in-core orphan linked list is properly
222 		 * cleaned up.
223 		 */
224 		ext4_orphan_del(NULL, inode);
225 		goto no_delete;
226 	}
227 
228 	if (IS_SYNC(inode))
229 		ext4_handle_sync(handle);
230 	inode->i_size = 0;
231 	err = ext4_mark_inode_dirty(handle, inode);
232 	if (err) {
233 		ext4_warning(inode->i_sb, __func__,
234 			     "couldn't mark inode dirty (err %d)", err);
235 		goto stop_handle;
236 	}
237 	if (inode->i_blocks)
238 		ext4_truncate(inode);
239 
240 	/*
241 	 * ext4_ext_truncate() doesn't reserve any slop when it
242 	 * restarts journal transactions; therefore there may not be
243 	 * enough credits left in the handle to remove the inode from
244 	 * the orphan list and set the dtime field.
245 	 */
246 	if (!ext4_handle_has_enough_credits(handle, 3)) {
247 		err = ext4_journal_extend(handle, 3);
248 		if (err > 0)
249 			err = ext4_journal_restart(handle, 3);
250 		if (err != 0) {
251 			ext4_warning(inode->i_sb, __func__,
252 				     "couldn't extend journal (err %d)", err);
253 		stop_handle:
254 			ext4_journal_stop(handle);
255 			goto no_delete;
256 		}
257 	}
258 
259 	/*
260 	 * Kill off the orphan record which ext4_truncate created.
261 	 * AKPM: I think this can be inside the above `if'.
262 	 * Note that ext4_orphan_del() has to be able to cope with the
263 	 * deletion of a non-existent orphan - this is because we don't
264 	 * know if ext4_truncate() actually created an orphan record.
265 	 * (Well, we could do this if we need to, but heck - it works)
266 	 */
267 	ext4_orphan_del(handle, inode);
268 	EXT4_I(inode)->i_dtime	= get_seconds();
269 
270 	/*
271 	 * One subtle ordering requirement: if anything has gone wrong
272 	 * (transaction abort, IO errors, whatever), then we can still
273 	 * do these next steps (the fs will already have been marked as
274 	 * having errors), but we can't free the inode if the mark_dirty
275 	 * fails.
276 	 */
277 	if (ext4_mark_inode_dirty(handle, inode))
278 		/* If that failed, just do the required in-core inode clear. */
279 		clear_inode(inode);
280 	else
281 		ext4_free_inode(handle, inode);
282 	ext4_journal_stop(handle);
283 	return;
284 no_delete:
285 	clear_inode(inode);	/* We must guarantee clearing of inode... */
286 }
287 
288 typedef struct {
289 	__le32	*p;
290 	__le32	key;
291 	struct buffer_head *bh;
292 } Indirect;
293 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 	p->key = *(p->p = v);
297 	p->bh = bh;
298 }
299 
300 /**
301  *	ext4_block_to_path - parse the block number into array of offsets
302  *	@inode: inode in question (we are only interested in its superblock)
303  *	@i_block: block number to be parsed
304  *	@offsets: array to store the offsets in
305  *	@boundary: set this non-zero if the referred-to block is likely to be
306  *	       followed (on disk) by an indirect block.
307  *
308  *	To store the locations of file's data ext4 uses a data structure common
309  *	for UNIX filesystems - tree of pointers anchored in the inode, with
310  *	data blocks at leaves and indirect blocks in intermediate nodes.
311  *	This function translates the block number into path in that tree -
312  *	return value is the path length and @offsets[n] is the offset of
313  *	pointer to (n+1)th node in the nth one. If @block is out of range
314  *	(negative or too large) warning is printed and zero returned.
315  *
316  *	Note: function doesn't find node addresses, so no IO is needed. All
317  *	we need to know is the capacity of indirect blocks (taken from the
318  *	inode->i_sb).
319  */
320 
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330 
ext4_block_to_path(struct inode * inode,ext4_lblk_t i_block,ext4_lblk_t offsets[4],int * boundary)331 static int ext4_block_to_path(struct inode *inode,
332 			ext4_lblk_t i_block,
333 			ext4_lblk_t offsets[4], int *boundary)
334 {
335 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 	const long direct_blocks = EXT4_NDIR_BLOCKS,
338 		indirect_blocks = ptrs,
339 		double_blocks = (1 << (ptrs_bits * 2));
340 	int n = 0;
341 	int final = 0;
342 
343 	if (i_block < 0) {
344 		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 	} else if (i_block < direct_blocks) {
346 		offsets[n++] = i_block;
347 		final = direct_blocks;
348 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349 		offsets[n++] = EXT4_IND_BLOCK;
350 		offsets[n++] = i_block;
351 		final = ptrs;
352 	} else if ((i_block -= indirect_blocks) < double_blocks) {
353 		offsets[n++] = EXT4_DIND_BLOCK;
354 		offsets[n++] = i_block >> ptrs_bits;
355 		offsets[n++] = i_block & (ptrs - 1);
356 		final = ptrs;
357 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 		offsets[n++] = EXT4_TIND_BLOCK;
359 		offsets[n++] = i_block >> (ptrs_bits * 2);
360 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 		offsets[n++] = i_block & (ptrs - 1);
362 		final = ptrs;
363 	} else {
364 		ext4_warning(inode->i_sb, "ext4_block_to_path",
365 				"block %lu > max in inode %lu",
366 				i_block + direct_blocks +
367 				indirect_blocks + double_blocks, inode->i_ino);
368 	}
369 	if (boundary)
370 		*boundary = final - 1 - (i_block & (ptrs - 1));
371 	return n;
372 }
373 
374 /**
375  *	ext4_get_branch - read the chain of indirect blocks leading to data
376  *	@inode: inode in question
377  *	@depth: depth of the chain (1 - direct pointer, etc.)
378  *	@offsets: offsets of pointers in inode/indirect blocks
379  *	@chain: place to store the result
380  *	@err: here we store the error value
381  *
382  *	Function fills the array of triples <key, p, bh> and returns %NULL
383  *	if everything went OK or the pointer to the last filled triple
384  *	(incomplete one) otherwise. Upon the return chain[i].key contains
385  *	the number of (i+1)-th block in the chain (as it is stored in memory,
386  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
387  *	number (it points into struct inode for i==0 and into the bh->b_data
388  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389  *	block for i>0 and NULL for i==0. In other words, it holds the block
390  *	numbers of the chain, addresses they were taken from (and where we can
391  *	verify that chain did not change) and buffer_heads hosting these
392  *	numbers.
393  *
394  *	Function stops when it stumbles upon zero pointer (absent block)
395  *		(pointer to last triple returned, *@err == 0)
396  *	or when it gets an IO error reading an indirect block
397  *		(ditto, *@err == -EIO)
398  *	or when it reads all @depth-1 indirect blocks successfully and finds
399  *	the whole chain, all way to the data (returns %NULL, *err == 0).
400  *
401  *      Need to be called with
402  *      down_read(&EXT4_I(inode)->i_data_sem)
403  */
ext4_get_branch(struct inode * inode,int depth,ext4_lblk_t * offsets,Indirect chain[4],int * err)404 static Indirect *ext4_get_branch(struct inode *inode, int depth,
405 				 ext4_lblk_t  *offsets,
406 				 Indirect chain[4], int *err)
407 {
408 	struct super_block *sb = inode->i_sb;
409 	Indirect *p = chain;
410 	struct buffer_head *bh;
411 
412 	*err = 0;
413 	/* i_data is not going away, no lock needed */
414 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415 	if (!p->key)
416 		goto no_block;
417 	while (--depth) {
418 		bh = sb_bread(sb, le32_to_cpu(p->key));
419 		if (!bh)
420 			goto failure;
421 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422 		/* Reader: end */
423 		if (!p->key)
424 			goto no_block;
425 	}
426 	return NULL;
427 
428 failure:
429 	*err = -EIO;
430 no_block:
431 	return p;
432 }
433 
434 /**
435  *	ext4_find_near - find a place for allocation with sufficient locality
436  *	@inode: owner
437  *	@ind: descriptor of indirect block.
438  *
439  *	This function returns the preferred place for block allocation.
440  *	It is used when heuristic for sequential allocation fails.
441  *	Rules are:
442  *	  + if there is a block to the left of our position - allocate near it.
443  *	  + if pointer will live in indirect block - allocate near that block.
444  *	  + if pointer will live in inode - allocate in the same
445  *	    cylinder group.
446  *
447  * In the latter case we colour the starting block by the callers PID to
448  * prevent it from clashing with concurrent allocations for a different inode
449  * in the same block group.   The PID is used here so that functionally related
450  * files will be close-by on-disk.
451  *
452  *	Caller must make sure that @ind is valid and will stay that way.
453  */
ext4_find_near(struct inode * inode,Indirect * ind)454 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455 {
456 	struct ext4_inode_info *ei = EXT4_I(inode);
457 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458 	__le32 *p;
459 	ext4_fsblk_t bg_start;
460 	ext4_fsblk_t last_block;
461 	ext4_grpblk_t colour;
462 
463 	/* Try to find previous block */
464 	for (p = ind->p - 1; p >= start; p--) {
465 		if (*p)
466 			return le32_to_cpu(*p);
467 	}
468 
469 	/* No such thing, so let's try location of indirect block */
470 	if (ind->bh)
471 		return ind->bh->b_blocknr;
472 
473 	/*
474 	 * It is going to be referred to from the inode itself? OK, just put it
475 	 * into the same cylinder group then.
476 	 */
477 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
478 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
479 
480 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
481 		colour = (current->pid % 16) *
482 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
483 	else
484 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
485 	return bg_start + colour;
486 }
487 
488 /**
489  *	ext4_find_goal - find a preferred place for allocation.
490  *	@inode: owner
491  *	@block:  block we want
492  *	@partial: pointer to the last triple within a chain
493  *
494  *	Normally this function find the preferred place for block allocation,
495  *	returns it.
496  */
ext4_find_goal(struct inode * inode,ext4_lblk_t block,Indirect * partial)497 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
498 		Indirect *partial)
499 {
500 	/*
501 	 * XXX need to get goal block from mballoc's data structures
502 	 */
503 
504 	return ext4_find_near(inode, partial);
505 }
506 
507 /**
508  *	ext4_blks_to_allocate: Look up the block map and count the number
509  *	of direct blocks need to be allocated for the given branch.
510  *
511  *	@branch: chain of indirect blocks
512  *	@k: number of blocks need for indirect blocks
513  *	@blks: number of data blocks to be mapped.
514  *	@blocks_to_boundary:  the offset in the indirect block
515  *
516  *	return the total number of blocks to be allocate, including the
517  *	direct and indirect blocks.
518  */
ext4_blks_to_allocate(Indirect * branch,int k,unsigned int blks,int blocks_to_boundary)519 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
520 		int blocks_to_boundary)
521 {
522 	unsigned int count = 0;
523 
524 	/*
525 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
526 	 * then it's clear blocks on that path have not allocated
527 	 */
528 	if (k > 0) {
529 		/* right now we don't handle cross boundary allocation */
530 		if (blks < blocks_to_boundary + 1)
531 			count += blks;
532 		else
533 			count += blocks_to_boundary + 1;
534 		return count;
535 	}
536 
537 	count++;
538 	while (count < blks && count <= blocks_to_boundary &&
539 		le32_to_cpu(*(branch[0].p + count)) == 0) {
540 		count++;
541 	}
542 	return count;
543 }
544 
545 /**
546  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
547  *	@indirect_blks: the number of blocks need to allocate for indirect
548  *			blocks
549  *
550  *	@new_blocks: on return it will store the new block numbers for
551  *	the indirect blocks(if needed) and the first direct block,
552  *	@blks:	on return it will store the total number of allocated
553  *		direct blocks
554  */
ext4_alloc_blocks(handle_t * handle,struct inode * inode,ext4_lblk_t iblock,ext4_fsblk_t goal,int indirect_blks,int blks,ext4_fsblk_t new_blocks[4],int * err)555 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
556 				ext4_lblk_t iblock, ext4_fsblk_t goal,
557 				int indirect_blks, int blks,
558 				ext4_fsblk_t new_blocks[4], int *err)
559 {
560 	struct ext4_allocation_request ar;
561 	int target, i;
562 	unsigned long count = 0, blk_allocated = 0;
563 	int index = 0;
564 	ext4_fsblk_t current_block = 0;
565 	int ret = 0;
566 
567 	/*
568 	 * Here we try to allocate the requested multiple blocks at once,
569 	 * on a best-effort basis.
570 	 * To build a branch, we should allocate blocks for
571 	 * the indirect blocks(if not allocated yet), and at least
572 	 * the first direct block of this branch.  That's the
573 	 * minimum number of blocks need to allocate(required)
574 	 */
575 	/* first we try to allocate the indirect blocks */
576 	target = indirect_blks;
577 	while (target > 0) {
578 		count = target;
579 		/* allocating blocks for indirect blocks and direct blocks */
580 		current_block = ext4_new_meta_blocks(handle, inode,
581 							goal, &count, err);
582 		if (*err)
583 			goto failed_out;
584 
585 		target -= count;
586 		/* allocate blocks for indirect blocks */
587 		while (index < indirect_blks && count) {
588 			new_blocks[index++] = current_block++;
589 			count--;
590 		}
591 		if (count > 0) {
592 			/*
593 			 * save the new block number
594 			 * for the first direct block
595 			 */
596 			new_blocks[index] = current_block;
597 			printk(KERN_INFO "%s returned more blocks than "
598 						"requested\n", __func__);
599 			WARN_ON(1);
600 			break;
601 		}
602 	}
603 
604 	target = blks - count ;
605 	blk_allocated = count;
606 	if (!target)
607 		goto allocated;
608 	/* Now allocate data blocks */
609 	memset(&ar, 0, sizeof(ar));
610 	ar.inode = inode;
611 	ar.goal = goal;
612 	ar.len = target;
613 	ar.logical = iblock;
614 	if (S_ISREG(inode->i_mode))
615 		/* enable in-core preallocation only for regular files */
616 		ar.flags = EXT4_MB_HINT_DATA;
617 
618 	current_block = ext4_mb_new_blocks(handle, &ar, err);
619 
620 	if (*err && (target == blks)) {
621 		/*
622 		 * if the allocation failed and we didn't allocate
623 		 * any blocks before
624 		 */
625 		goto failed_out;
626 	}
627 	if (!*err) {
628 		if (target == blks) {
629 		/*
630 		 * save the new block number
631 		 * for the first direct block
632 		 */
633 			new_blocks[index] = current_block;
634 		}
635 		blk_allocated += ar.len;
636 	}
637 allocated:
638 	/* total number of blocks allocated for direct blocks */
639 	ret = blk_allocated;
640 	*err = 0;
641 	return ret;
642 failed_out:
643 	for (i = 0; i < index; i++)
644 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
645 	return ret;
646 }
647 
648 /**
649  *	ext4_alloc_branch - allocate and set up a chain of blocks.
650  *	@inode: owner
651  *	@indirect_blks: number of allocated indirect blocks
652  *	@blks: number of allocated direct blocks
653  *	@offsets: offsets (in the blocks) to store the pointers to next.
654  *	@branch: place to store the chain in.
655  *
656  *	This function allocates blocks, zeroes out all but the last one,
657  *	links them into chain and (if we are synchronous) writes them to disk.
658  *	In other words, it prepares a branch that can be spliced onto the
659  *	inode. It stores the information about that chain in the branch[], in
660  *	the same format as ext4_get_branch() would do. We are calling it after
661  *	we had read the existing part of chain and partial points to the last
662  *	triple of that (one with zero ->key). Upon the exit we have the same
663  *	picture as after the successful ext4_get_block(), except that in one
664  *	place chain is disconnected - *branch->p is still zero (we did not
665  *	set the last link), but branch->key contains the number that should
666  *	be placed into *branch->p to fill that gap.
667  *
668  *	If allocation fails we free all blocks we've allocated (and forget
669  *	their buffer_heads) and return the error value the from failed
670  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
671  *	as described above and return 0.
672  */
ext4_alloc_branch(handle_t * handle,struct inode * inode,ext4_lblk_t iblock,int indirect_blks,int * blks,ext4_fsblk_t goal,ext4_lblk_t * offsets,Indirect * branch)673 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
674 				ext4_lblk_t iblock, int indirect_blks,
675 				int *blks, ext4_fsblk_t goal,
676 				ext4_lblk_t *offsets, Indirect *branch)
677 {
678 	int blocksize = inode->i_sb->s_blocksize;
679 	int i, n = 0;
680 	int err = 0;
681 	struct buffer_head *bh;
682 	int num;
683 	ext4_fsblk_t new_blocks[4];
684 	ext4_fsblk_t current_block;
685 
686 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
687 				*blks, new_blocks, &err);
688 	if (err)
689 		return err;
690 
691 	branch[0].key = cpu_to_le32(new_blocks[0]);
692 	/*
693 	 * metadata blocks and data blocks are allocated.
694 	 */
695 	for (n = 1; n <= indirect_blks;  n++) {
696 		/*
697 		 * Get buffer_head for parent block, zero it out
698 		 * and set the pointer to new one, then send
699 		 * parent to disk.
700 		 */
701 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
702 		branch[n].bh = bh;
703 		lock_buffer(bh);
704 		BUFFER_TRACE(bh, "call get_create_access");
705 		err = ext4_journal_get_create_access(handle, bh);
706 		if (err) {
707 			unlock_buffer(bh);
708 			brelse(bh);
709 			goto failed;
710 		}
711 
712 		memset(bh->b_data, 0, blocksize);
713 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
714 		branch[n].key = cpu_to_le32(new_blocks[n]);
715 		*branch[n].p = branch[n].key;
716 		if (n == indirect_blks) {
717 			current_block = new_blocks[n];
718 			/*
719 			 * End of chain, update the last new metablock of
720 			 * the chain to point to the new allocated
721 			 * data blocks numbers
722 			 */
723 			for (i=1; i < num; i++)
724 				*(branch[n].p + i) = cpu_to_le32(++current_block);
725 		}
726 		BUFFER_TRACE(bh, "marking uptodate");
727 		set_buffer_uptodate(bh);
728 		unlock_buffer(bh);
729 
730 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
731 		err = ext4_handle_dirty_metadata(handle, inode, bh);
732 		if (err)
733 			goto failed;
734 	}
735 	*blks = num;
736 	return err;
737 failed:
738 	/* Allocation failed, free what we already allocated */
739 	for (i = 1; i <= n ; i++) {
740 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
741 		ext4_journal_forget(handle, branch[i].bh);
742 	}
743 	for (i = 0; i < indirect_blks; i++)
744 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
745 
746 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
747 
748 	return err;
749 }
750 
751 /**
752  * ext4_splice_branch - splice the allocated branch onto inode.
753  * @inode: owner
754  * @block: (logical) number of block we are adding
755  * @chain: chain of indirect blocks (with a missing link - see
756  *	ext4_alloc_branch)
757  * @where: location of missing link
758  * @num:   number of indirect blocks we are adding
759  * @blks:  number of direct blocks we are adding
760  *
761  * This function fills the missing link and does all housekeeping needed in
762  * inode (->i_blocks, etc.). In case of success we end up with the full
763  * chain to new block and return 0.
764  */
ext4_splice_branch(handle_t * handle,struct inode * inode,ext4_lblk_t block,Indirect * where,int num,int blks)765 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
766 			ext4_lblk_t block, Indirect *where, int num, int blks)
767 {
768 	int i;
769 	int err = 0;
770 	ext4_fsblk_t current_block;
771 
772 	/*
773 	 * If we're splicing into a [td]indirect block (as opposed to the
774 	 * inode) then we need to get write access to the [td]indirect block
775 	 * before the splice.
776 	 */
777 	if (where->bh) {
778 		BUFFER_TRACE(where->bh, "get_write_access");
779 		err = ext4_journal_get_write_access(handle, where->bh);
780 		if (err)
781 			goto err_out;
782 	}
783 	/* That's it */
784 
785 	*where->p = where->key;
786 
787 	/*
788 	 * Update the host buffer_head or inode to point to more just allocated
789 	 * direct blocks blocks
790 	 */
791 	if (num == 0 && blks > 1) {
792 		current_block = le32_to_cpu(where->key) + 1;
793 		for (i = 1; i < blks; i++)
794 			*(where->p + i) = cpu_to_le32(current_block++);
795 	}
796 
797 	/* We are done with atomic stuff, now do the rest of housekeeping */
798 
799 	inode->i_ctime = ext4_current_time(inode);
800 	ext4_mark_inode_dirty(handle, inode);
801 
802 	/* had we spliced it onto indirect block? */
803 	if (where->bh) {
804 		/*
805 		 * If we spliced it onto an indirect block, we haven't
806 		 * altered the inode.  Note however that if it is being spliced
807 		 * onto an indirect block at the very end of the file (the
808 		 * file is growing) then we *will* alter the inode to reflect
809 		 * the new i_size.  But that is not done here - it is done in
810 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
811 		 */
812 		jbd_debug(5, "splicing indirect only\n");
813 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
814 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
815 		if (err)
816 			goto err_out;
817 	} else {
818 		/*
819 		 * OK, we spliced it into the inode itself on a direct block.
820 		 * Inode was dirtied above.
821 		 */
822 		jbd_debug(5, "splicing direct\n");
823 	}
824 	return err;
825 
826 err_out:
827 	for (i = 1; i <= num; i++) {
828 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
829 		ext4_journal_forget(handle, where[i].bh);
830 		ext4_free_blocks(handle, inode,
831 					le32_to_cpu(where[i-1].key), 1, 0);
832 	}
833 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
834 
835 	return err;
836 }
837 
838 /*
839  * Allocation strategy is simple: if we have to allocate something, we will
840  * have to go the whole way to leaf. So let's do it before attaching anything
841  * to tree, set linkage between the newborn blocks, write them if sync is
842  * required, recheck the path, free and repeat if check fails, otherwise
843  * set the last missing link (that will protect us from any truncate-generated
844  * removals - all blocks on the path are immune now) and possibly force the
845  * write on the parent block.
846  * That has a nice additional property: no special recovery from the failed
847  * allocations is needed - we simply release blocks and do not touch anything
848  * reachable from inode.
849  *
850  * `handle' can be NULL if create == 0.
851  *
852  * return > 0, # of blocks mapped or allocated.
853  * return = 0, if plain lookup failed.
854  * return < 0, error case.
855  *
856  *
857  * Need to be called with
858  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
859  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
860  */
ext4_get_blocks_handle(handle_t * handle,struct inode * inode,ext4_lblk_t iblock,unsigned int maxblocks,struct buffer_head * bh_result,int create,int extend_disksize)861 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
862 				  ext4_lblk_t iblock, unsigned int maxblocks,
863 				  struct buffer_head *bh_result,
864 				  int create, int extend_disksize)
865 {
866 	int err = -EIO;
867 	ext4_lblk_t offsets[4];
868 	Indirect chain[4];
869 	Indirect *partial;
870 	ext4_fsblk_t goal;
871 	int indirect_blks;
872 	int blocks_to_boundary = 0;
873 	int depth;
874 	struct ext4_inode_info *ei = EXT4_I(inode);
875 	int count = 0;
876 	ext4_fsblk_t first_block = 0;
877 	loff_t disksize;
878 
879 
880 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
881 	J_ASSERT(handle != NULL || create == 0);
882 	depth = ext4_block_to_path(inode, iblock, offsets,
883 					&blocks_to_boundary);
884 
885 	if (depth == 0)
886 		goto out;
887 
888 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
889 
890 	/* Simplest case - block found, no allocation needed */
891 	if (!partial) {
892 		first_block = le32_to_cpu(chain[depth - 1].key);
893 		clear_buffer_new(bh_result);
894 		count++;
895 		/*map more blocks*/
896 		while (count < maxblocks && count <= blocks_to_boundary) {
897 			ext4_fsblk_t blk;
898 
899 			blk = le32_to_cpu(*(chain[depth-1].p + count));
900 
901 			if (blk == first_block + count)
902 				count++;
903 			else
904 				break;
905 		}
906 		goto got_it;
907 	}
908 
909 	/* Next simple case - plain lookup or failed read of indirect block */
910 	if (!create || err == -EIO)
911 		goto cleanup;
912 
913 	/*
914 	 * Okay, we need to do block allocation.
915 	*/
916 	goal = ext4_find_goal(inode, iblock, partial);
917 
918 	/* the number of blocks need to allocate for [d,t]indirect blocks */
919 	indirect_blks = (chain + depth) - partial - 1;
920 
921 	/*
922 	 * Next look up the indirect map to count the totoal number of
923 	 * direct blocks to allocate for this branch.
924 	 */
925 	count = ext4_blks_to_allocate(partial, indirect_blks,
926 					maxblocks, blocks_to_boundary);
927 	/*
928 	 * Block out ext4_truncate while we alter the tree
929 	 */
930 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
931 					&count, goal,
932 					offsets + (partial - chain), partial);
933 
934 	/*
935 	 * The ext4_splice_branch call will free and forget any buffers
936 	 * on the new chain if there is a failure, but that risks using
937 	 * up transaction credits, especially for bitmaps where the
938 	 * credits cannot be returned.  Can we handle this somehow?  We
939 	 * may need to return -EAGAIN upwards in the worst case.  --sct
940 	 */
941 	if (!err)
942 		err = ext4_splice_branch(handle, inode, iblock,
943 					partial, indirect_blks, count);
944 	/*
945 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
946 	 * protect it if you're about to implement concurrent
947 	 * ext4_get_block() -bzzz
948 	*/
949 	if (!err && extend_disksize) {
950 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
951 		if (disksize > i_size_read(inode))
952 			disksize = i_size_read(inode);
953 		if (disksize > ei->i_disksize)
954 			ei->i_disksize = disksize;
955 	}
956 	if (err)
957 		goto cleanup;
958 
959 	set_buffer_new(bh_result);
960 got_it:
961 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
962 	if (count > blocks_to_boundary)
963 		set_buffer_boundary(bh_result);
964 	err = count;
965 	/* Clean up and exit */
966 	partial = chain + depth - 1;	/* the whole chain */
967 cleanup:
968 	while (partial > chain) {
969 		BUFFER_TRACE(partial->bh, "call brelse");
970 		brelse(partial->bh);
971 		partial--;
972 	}
973 	BUFFER_TRACE(bh_result, "returned");
974 out:
975 	return err;
976 }
977 
978 /*
979  * Calculate the number of metadata blocks need to reserve
980  * to allocate @blocks for non extent file based file
981  */
ext4_indirect_calc_metadata_amount(struct inode * inode,int blocks)982 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
983 {
984 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
985 	int ind_blks, dind_blks, tind_blks;
986 
987 	/* number of new indirect blocks needed */
988 	ind_blks = (blocks + icap - 1) / icap;
989 
990 	dind_blks = (ind_blks + icap - 1) / icap;
991 
992 	tind_blks = 1;
993 
994 	return ind_blks + dind_blks + tind_blks;
995 }
996 
997 /*
998  * Calculate the number of metadata blocks need to reserve
999  * to allocate given number of blocks
1000  */
ext4_calc_metadata_amount(struct inode * inode,int blocks)1001 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1002 {
1003 	if (!blocks)
1004 		return 0;
1005 
1006 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1007 		return ext4_ext_calc_metadata_amount(inode, blocks);
1008 
1009 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1010 }
1011 
ext4_da_update_reserve_space(struct inode * inode,int used)1012 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1013 {
1014 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1015 	int total, mdb, mdb_free;
1016 
1017 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1018 	/* recalculate the number of metablocks still need to be reserved */
1019 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1020 	mdb = ext4_calc_metadata_amount(inode, total);
1021 
1022 	/* figure out how many metablocks to release */
1023 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1024 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1025 
1026 	if (mdb_free) {
1027 		/* Account for allocated meta_blocks */
1028 		mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1029 
1030 		/* update fs dirty blocks counter */
1031 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1032 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1033 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1034 	}
1035 
1036 	/* update per-inode reservations */
1037 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1038 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1039 
1040 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1041 }
1042 
1043 /*
1044  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1045  * and returns if the blocks are already mapped.
1046  *
1047  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1048  * and store the allocated blocks in the result buffer head and mark it
1049  * mapped.
1050  *
1051  * If file type is extents based, it will call ext4_ext_get_blocks(),
1052  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1053  * based files
1054  *
1055  * On success, it returns the number of blocks being mapped or allocate.
1056  * if create==0 and the blocks are pre-allocated and uninitialized block,
1057  * the result buffer head is unmapped. If the create ==1, it will make sure
1058  * the buffer head is mapped.
1059  *
1060  * It returns 0 if plain look up failed (blocks have not been allocated), in
1061  * that casem, buffer head is unmapped
1062  *
1063  * It returns the error in case of allocation failure.
1064  */
ext4_get_blocks_wrap(handle_t * handle,struct inode * inode,sector_t block,unsigned int max_blocks,struct buffer_head * bh,int create,int extend_disksize,int flag)1065 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1066 			unsigned int max_blocks, struct buffer_head *bh,
1067 			int create, int extend_disksize, int flag)
1068 {
1069 	int retval;
1070 
1071 	clear_buffer_mapped(bh);
1072 
1073 	/*
1074 	 * Try to see if we can get  the block without requesting
1075 	 * for new file system block.
1076 	 */
1077 	down_read((&EXT4_I(inode)->i_data_sem));
1078 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1079 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1080 				bh, 0, 0);
1081 	} else {
1082 		retval = ext4_get_blocks_handle(handle,
1083 				inode, block, max_blocks, bh, 0, 0);
1084 	}
1085 	up_read((&EXT4_I(inode)->i_data_sem));
1086 
1087 	/* If it is only a block(s) look up */
1088 	if (!create)
1089 		return retval;
1090 
1091 	/*
1092 	 * Returns if the blocks have already allocated
1093 	 *
1094 	 * Note that if blocks have been preallocated
1095 	 * ext4_ext_get_block() returns th create = 0
1096 	 * with buffer head unmapped.
1097 	 */
1098 	if (retval > 0 && buffer_mapped(bh))
1099 		return retval;
1100 
1101 	/*
1102 	 * New blocks allocate and/or writing to uninitialized extent
1103 	 * will possibly result in updating i_data, so we take
1104 	 * the write lock of i_data_sem, and call get_blocks()
1105 	 * with create == 1 flag.
1106 	 */
1107 	down_write((&EXT4_I(inode)->i_data_sem));
1108 
1109 	/*
1110 	 * if the caller is from delayed allocation writeout path
1111 	 * we have already reserved fs blocks for allocation
1112 	 * let the underlying get_block() function know to
1113 	 * avoid double accounting
1114 	 */
1115 	if (flag)
1116 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1117 	/*
1118 	 * We need to check for EXT4 here because migrate
1119 	 * could have changed the inode type in between
1120 	 */
1121 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1122 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1123 				bh, create, extend_disksize);
1124 	} else {
1125 		retval = ext4_get_blocks_handle(handle, inode, block,
1126 				max_blocks, bh, create, extend_disksize);
1127 
1128 		if (retval > 0 && buffer_new(bh)) {
1129 			/*
1130 			 * We allocated new blocks which will result in
1131 			 * i_data's format changing.  Force the migrate
1132 			 * to fail by clearing migrate flags
1133 			 */
1134 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1135 							~EXT4_EXT_MIGRATE;
1136 		}
1137 	}
1138 
1139 	if (flag) {
1140 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1141 		/*
1142 		 * Update reserved blocks/metadata blocks
1143 		 * after successful block allocation
1144 		 * which were deferred till now
1145 		 */
1146 		if ((retval > 0) && buffer_delay(bh))
1147 			ext4_da_update_reserve_space(inode, retval);
1148 	}
1149 
1150 	up_write((&EXT4_I(inode)->i_data_sem));
1151 	return retval;
1152 }
1153 
1154 /* Maximum number of blocks we map for direct IO at once. */
1155 #define DIO_MAX_BLOCKS 4096
1156 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1157 int ext4_get_block(struct inode *inode, sector_t iblock,
1158 		   struct buffer_head *bh_result, int create)
1159 {
1160 	handle_t *handle = ext4_journal_current_handle();
1161 	int ret = 0, started = 0;
1162 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1163 	int dio_credits;
1164 
1165 	if (create && !handle) {
1166 		/* Direct IO write... */
1167 		if (max_blocks > DIO_MAX_BLOCKS)
1168 			max_blocks = DIO_MAX_BLOCKS;
1169 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1170 		handle = ext4_journal_start(inode, dio_credits);
1171 		if (IS_ERR(handle)) {
1172 			ret = PTR_ERR(handle);
1173 			goto out;
1174 		}
1175 		started = 1;
1176 	}
1177 
1178 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1179 					max_blocks, bh_result, create, 0, 0);
1180 	if (ret > 0) {
1181 		bh_result->b_size = (ret << inode->i_blkbits);
1182 		ret = 0;
1183 	}
1184 	if (started)
1185 		ext4_journal_stop(handle);
1186 out:
1187 	return ret;
1188 }
1189 
1190 /*
1191  * `handle' can be NULL if create is zero
1192  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create,int * errp)1193 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1194 				ext4_lblk_t block, int create, int *errp)
1195 {
1196 	struct buffer_head dummy;
1197 	int fatal = 0, err;
1198 
1199 	J_ASSERT(handle != NULL || create == 0);
1200 
1201 	dummy.b_state = 0;
1202 	dummy.b_blocknr = -1000;
1203 	buffer_trace_init(&dummy.b_history);
1204 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1205 					&dummy, create, 1, 0);
1206 	/*
1207 	 * ext4_get_blocks_handle() returns number of blocks
1208 	 * mapped. 0 in case of a HOLE.
1209 	 */
1210 	if (err > 0) {
1211 		if (err > 1)
1212 			WARN_ON(1);
1213 		err = 0;
1214 	}
1215 	*errp = err;
1216 	if (!err && buffer_mapped(&dummy)) {
1217 		struct buffer_head *bh;
1218 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1219 		if (!bh) {
1220 			*errp = -EIO;
1221 			goto err;
1222 		}
1223 		if (buffer_new(&dummy)) {
1224 			J_ASSERT(create != 0);
1225 			J_ASSERT(handle != NULL);
1226 
1227 			/*
1228 			 * Now that we do not always journal data, we should
1229 			 * keep in mind whether this should always journal the
1230 			 * new buffer as metadata.  For now, regular file
1231 			 * writes use ext4_get_block instead, so it's not a
1232 			 * problem.
1233 			 */
1234 			lock_buffer(bh);
1235 			BUFFER_TRACE(bh, "call get_create_access");
1236 			fatal = ext4_journal_get_create_access(handle, bh);
1237 			if (!fatal && !buffer_uptodate(bh)) {
1238 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1239 				set_buffer_uptodate(bh);
1240 			}
1241 			unlock_buffer(bh);
1242 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1243 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1244 			if (!fatal)
1245 				fatal = err;
1246 		} else {
1247 			BUFFER_TRACE(bh, "not a new buffer");
1248 		}
1249 		if (fatal) {
1250 			*errp = fatal;
1251 			brelse(bh);
1252 			bh = NULL;
1253 		}
1254 		return bh;
1255 	}
1256 err:
1257 	return NULL;
1258 }
1259 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create,int * err)1260 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1261 			       ext4_lblk_t block, int create, int *err)
1262 {
1263 	struct buffer_head *bh;
1264 
1265 	bh = ext4_getblk(handle, inode, block, create, err);
1266 	if (!bh)
1267 		return bh;
1268 	if (buffer_uptodate(bh))
1269 		return bh;
1270 	ll_rw_block(READ_META, 1, &bh);
1271 	wait_on_buffer(bh);
1272 	if (buffer_uptodate(bh))
1273 		return bh;
1274 	put_bh(bh);
1275 	*err = -EIO;
1276 	return NULL;
1277 }
1278 
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1279 static int walk_page_buffers(handle_t *handle,
1280 			     struct buffer_head *head,
1281 			     unsigned from,
1282 			     unsigned to,
1283 			     int *partial,
1284 			     int (*fn)(handle_t *handle,
1285 				       struct buffer_head *bh))
1286 {
1287 	struct buffer_head *bh;
1288 	unsigned block_start, block_end;
1289 	unsigned blocksize = head->b_size;
1290 	int err, ret = 0;
1291 	struct buffer_head *next;
1292 
1293 	for (bh = head, block_start = 0;
1294 	     ret == 0 && (bh != head || !block_start);
1295 	     block_start = block_end, bh = next)
1296 	{
1297 		next = bh->b_this_page;
1298 		block_end = block_start + blocksize;
1299 		if (block_end <= from || block_start >= to) {
1300 			if (partial && !buffer_uptodate(bh))
1301 				*partial = 1;
1302 			continue;
1303 		}
1304 		err = (*fn)(handle, bh);
1305 		if (!ret)
1306 			ret = err;
1307 	}
1308 	return ret;
1309 }
1310 
1311 /*
1312  * To preserve ordering, it is essential that the hole instantiation and
1313  * the data write be encapsulated in a single transaction.  We cannot
1314  * close off a transaction and start a new one between the ext4_get_block()
1315  * and the commit_write().  So doing the jbd2_journal_start at the start of
1316  * prepare_write() is the right place.
1317  *
1318  * Also, this function can nest inside ext4_writepage() ->
1319  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1320  * has generated enough buffer credits to do the whole page.  So we won't
1321  * block on the journal in that case, which is good, because the caller may
1322  * be PF_MEMALLOC.
1323  *
1324  * By accident, ext4 can be reentered when a transaction is open via
1325  * quota file writes.  If we were to commit the transaction while thus
1326  * reentered, there can be a deadlock - we would be holding a quota
1327  * lock, and the commit would never complete if another thread had a
1328  * transaction open and was blocking on the quota lock - a ranking
1329  * violation.
1330  *
1331  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1332  * will _not_ run commit under these circumstances because handle->h_ref
1333  * is elevated.  We'll still have enough credits for the tiny quotafile
1334  * write.
1335  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1336 static int do_journal_get_write_access(handle_t *handle,
1337 					struct buffer_head *bh)
1338 {
1339 	if (!buffer_mapped(bh) || buffer_freed(bh))
1340 		return 0;
1341 	return ext4_journal_get_write_access(handle, bh);
1342 }
1343 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1344 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1345 				loff_t pos, unsigned len, unsigned flags,
1346 				struct page **pagep, void **fsdata)
1347 {
1348 	struct inode *inode = mapping->host;
1349 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1350 	handle_t *handle;
1351 	int retries = 0;
1352 	struct page *page;
1353  	pgoff_t index;
1354 	unsigned from, to;
1355 
1356 	trace_mark(ext4_write_begin,
1357 		   "dev %s ino %lu pos %llu len %u flags %u",
1358 		   inode->i_sb->s_id, inode->i_ino,
1359 		   (unsigned long long) pos, len, flags);
1360  	index = pos >> PAGE_CACHE_SHIFT;
1361 	from = pos & (PAGE_CACHE_SIZE - 1);
1362 	to = from + len;
1363 
1364 retry:
1365 	handle = ext4_journal_start(inode, needed_blocks);
1366 	if (IS_ERR(handle)) {
1367 		ret = PTR_ERR(handle);
1368 		goto out;
1369 	}
1370 
1371 	/* We cannot recurse into the filesystem as the transaction is already
1372 	 * started */
1373 	flags |= AOP_FLAG_NOFS;
1374 
1375 	page = grab_cache_page_write_begin(mapping, index, flags);
1376 	if (!page) {
1377 		ext4_journal_stop(handle);
1378 		ret = -ENOMEM;
1379 		goto out;
1380 	}
1381 	*pagep = page;
1382 
1383 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1384 				ext4_get_block);
1385 
1386 	if (!ret && ext4_should_journal_data(inode)) {
1387 		ret = walk_page_buffers(handle, page_buffers(page),
1388 				from, to, NULL, do_journal_get_write_access);
1389 	}
1390 
1391 	if (ret) {
1392 		unlock_page(page);
1393 		ext4_journal_stop(handle);
1394 		page_cache_release(page);
1395 		/*
1396 		 * block_write_begin may have instantiated a few blocks
1397 		 * outside i_size.  Trim these off again. Don't need
1398 		 * i_size_read because we hold i_mutex.
1399 		 */
1400 		if (pos + len > inode->i_size)
1401 			vmtruncate(inode, inode->i_size);
1402 	}
1403 
1404 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1405 		goto retry;
1406 out:
1407 	return ret;
1408 }
1409 
1410 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1411 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1412 {
1413 	if (!buffer_mapped(bh) || buffer_freed(bh))
1414 		return 0;
1415 	set_buffer_uptodate(bh);
1416 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1417 }
1418 
1419 /*
1420  * We need to pick up the new inode size which generic_commit_write gave us
1421  * `file' can be NULL - eg, when called from page_symlink().
1422  *
1423  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1424  * buffers are managed internally.
1425  */
ext4_ordered_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1426 static int ext4_ordered_write_end(struct file *file,
1427 				struct address_space *mapping,
1428 				loff_t pos, unsigned len, unsigned copied,
1429 				struct page *page, void *fsdata)
1430 {
1431 	handle_t *handle = ext4_journal_current_handle();
1432 	struct inode *inode = mapping->host;
1433 	int ret = 0, ret2;
1434 
1435 	trace_mark(ext4_ordered_write_end,
1436 		   "dev %s ino %lu pos %llu len %u copied %u",
1437 		   inode->i_sb->s_id, inode->i_ino,
1438 		   (unsigned long long) pos, len, copied);
1439 	ret = ext4_jbd2_file_inode(handle, inode);
1440 
1441 	if (ret == 0) {
1442 		loff_t new_i_size;
1443 
1444 		new_i_size = pos + copied;
1445 		if (new_i_size > EXT4_I(inode)->i_disksize) {
1446 			ext4_update_i_disksize(inode, new_i_size);
1447 			/* We need to mark inode dirty even if
1448 			 * new_i_size is less that inode->i_size
1449 			 * bu greater than i_disksize.(hint delalloc)
1450 			 */
1451 			ext4_mark_inode_dirty(handle, inode);
1452 		}
1453 
1454 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1455 							page, fsdata);
1456 		copied = ret2;
1457 		if (ret2 < 0)
1458 			ret = ret2;
1459 	}
1460 	ret2 = ext4_journal_stop(handle);
1461 	if (!ret)
1462 		ret = ret2;
1463 
1464 	return ret ? ret : copied;
1465 }
1466 
ext4_writeback_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1467 static int ext4_writeback_write_end(struct file *file,
1468 				struct address_space *mapping,
1469 				loff_t pos, unsigned len, unsigned copied,
1470 				struct page *page, void *fsdata)
1471 {
1472 	handle_t *handle = ext4_journal_current_handle();
1473 	struct inode *inode = mapping->host;
1474 	int ret = 0, ret2;
1475 	loff_t new_i_size;
1476 
1477 	trace_mark(ext4_writeback_write_end,
1478 		   "dev %s ino %lu pos %llu len %u copied %u",
1479 		   inode->i_sb->s_id, inode->i_ino,
1480 		   (unsigned long long) pos, len, copied);
1481 	new_i_size = pos + copied;
1482 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1483 		ext4_update_i_disksize(inode, new_i_size);
1484 		/* We need to mark inode dirty even if
1485 		 * new_i_size is less that inode->i_size
1486 		 * bu greater than i_disksize.(hint delalloc)
1487 		 */
1488 		ext4_mark_inode_dirty(handle, inode);
1489 	}
1490 
1491 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1492 							page, fsdata);
1493 	copied = ret2;
1494 	if (ret2 < 0)
1495 		ret = ret2;
1496 
1497 	ret2 = ext4_journal_stop(handle);
1498 	if (!ret)
1499 		ret = ret2;
1500 
1501 	return ret ? ret : copied;
1502 }
1503 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1504 static int ext4_journalled_write_end(struct file *file,
1505 				struct address_space *mapping,
1506 				loff_t pos, unsigned len, unsigned copied,
1507 				struct page *page, void *fsdata)
1508 {
1509 	handle_t *handle = ext4_journal_current_handle();
1510 	struct inode *inode = mapping->host;
1511 	int ret = 0, ret2;
1512 	int partial = 0;
1513 	unsigned from, to;
1514 	loff_t new_i_size;
1515 
1516 	trace_mark(ext4_journalled_write_end,
1517 		   "dev %s ino %lu pos %llu len %u copied %u",
1518 		   inode->i_sb->s_id, inode->i_ino,
1519 		   (unsigned long long) pos, len, copied);
1520 	from = pos & (PAGE_CACHE_SIZE - 1);
1521 	to = from + len;
1522 
1523 	if (copied < len) {
1524 		if (!PageUptodate(page))
1525 			copied = 0;
1526 		page_zero_new_buffers(page, from+copied, to);
1527 	}
1528 
1529 	ret = walk_page_buffers(handle, page_buffers(page), from,
1530 				to, &partial, write_end_fn);
1531 	if (!partial)
1532 		SetPageUptodate(page);
1533 	new_i_size = pos + copied;
1534 	if (new_i_size > inode->i_size)
1535 		i_size_write(inode, pos+copied);
1536 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1537 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1538 		ext4_update_i_disksize(inode, new_i_size);
1539 		ret2 = ext4_mark_inode_dirty(handle, inode);
1540 		if (!ret)
1541 			ret = ret2;
1542 	}
1543 
1544 	unlock_page(page);
1545 	ret2 = ext4_journal_stop(handle);
1546 	if (!ret)
1547 		ret = ret2;
1548 	page_cache_release(page);
1549 
1550 	return ret ? ret : copied;
1551 }
1552 
ext4_da_reserve_space(struct inode * inode,int nrblocks)1553 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1554 {
1555 	int retries = 0;
1556        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1557        unsigned long md_needed, mdblocks, total = 0;
1558 
1559 	/*
1560 	 * recalculate the amount of metadata blocks to reserve
1561 	 * in order to allocate nrblocks
1562 	 * worse case is one extent per block
1563 	 */
1564 repeat:
1565 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1566 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1567 	mdblocks = ext4_calc_metadata_amount(inode, total);
1568 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1569 
1570 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1571 	total = md_needed + nrblocks;
1572 
1573 	if (ext4_claim_free_blocks(sbi, total)) {
1574 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1575 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1576 			yield();
1577 			goto repeat;
1578 		}
1579 		return -ENOSPC;
1580 	}
1581 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1582 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1583 
1584 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1585 	return 0;       /* success */
1586 }
1587 
ext4_da_release_space(struct inode * inode,int to_free)1588 static void ext4_da_release_space(struct inode *inode, int to_free)
1589 {
1590 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1591 	int total, mdb, mdb_free, release;
1592 
1593 	if (!to_free)
1594 		return;		/* Nothing to release, exit */
1595 
1596 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1597 
1598 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1599 		/*
1600 		 * if there is no reserved blocks, but we try to free some
1601 		 * then the counter is messed up somewhere.
1602 		 * but since this function is called from invalidate
1603 		 * page, it's harmless to return without any action
1604 		 */
1605 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1606 			    "blocks for inode %lu, but there is no reserved "
1607 			    "data blocks\n", to_free, inode->i_ino);
1608 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1609 		return;
1610 	}
1611 
1612 	/* recalculate the number of metablocks still need to be reserved */
1613 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1614 	mdb = ext4_calc_metadata_amount(inode, total);
1615 
1616 	/* figure out how many metablocks to release */
1617 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1618 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1619 
1620 	release = to_free + mdb_free;
1621 
1622 	/* update fs dirty blocks counter for truncate case */
1623 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1624 
1625 	/* update per-inode reservations */
1626 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1627 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1628 
1629 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1630 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1631 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1632 }
1633 
ext4_da_page_release_reservation(struct page * page,unsigned long offset)1634 static void ext4_da_page_release_reservation(struct page *page,
1635 						unsigned long offset)
1636 {
1637 	int to_release = 0;
1638 	struct buffer_head *head, *bh;
1639 	unsigned int curr_off = 0;
1640 
1641 	head = page_buffers(page);
1642 	bh = head;
1643 	do {
1644 		unsigned int next_off = curr_off + bh->b_size;
1645 
1646 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1647 			to_release++;
1648 			clear_buffer_delay(bh);
1649 		}
1650 		curr_off = next_off;
1651 	} while ((bh = bh->b_this_page) != head);
1652 	ext4_da_release_space(page->mapping->host, to_release);
1653 }
1654 
1655 /*
1656  * Delayed allocation stuff
1657  */
1658 
1659 struct mpage_da_data {
1660 	struct inode *inode;
1661 	struct buffer_head lbh;			/* extent of blocks */
1662 	unsigned long first_page, next_page;	/* extent of pages */
1663 	get_block_t *get_block;
1664 	struct writeback_control *wbc;
1665 	int io_done;
1666 	int pages_written;
1667 	int retval;
1668 };
1669 
1670 /*
1671  * mpage_da_submit_io - walks through extent of pages and try to write
1672  * them with writepage() call back
1673  *
1674  * @mpd->inode: inode
1675  * @mpd->first_page: first page of the extent
1676  * @mpd->next_page: page after the last page of the extent
1677  * @mpd->get_block: the filesystem's block mapper function
1678  *
1679  * By the time mpage_da_submit_io() is called we expect all blocks
1680  * to be allocated. this may be wrong if allocation failed.
1681  *
1682  * As pages are already locked by write_cache_pages(), we can't use it
1683  */
mpage_da_submit_io(struct mpage_da_data * mpd)1684 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1685 {
1686 	long pages_skipped;
1687 	struct pagevec pvec;
1688 	unsigned long index, end;
1689 	int ret = 0, err, nr_pages, i;
1690 	struct inode *inode = mpd->inode;
1691 	struct address_space *mapping = inode->i_mapping;
1692 
1693 	BUG_ON(mpd->next_page <= mpd->first_page);
1694 	/*
1695 	 * We need to start from the first_page to the next_page - 1
1696 	 * to make sure we also write the mapped dirty buffer_heads.
1697 	 * If we look at mpd->lbh.b_blocknr we would only be looking
1698 	 * at the currently mapped buffer_heads.
1699 	 */
1700 	index = mpd->first_page;
1701 	end = mpd->next_page - 1;
1702 
1703 	pagevec_init(&pvec, 0);
1704 	while (index <= end) {
1705 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1706 		if (nr_pages == 0)
1707 			break;
1708 		for (i = 0; i < nr_pages; i++) {
1709 			struct page *page = pvec.pages[i];
1710 
1711 			index = page->index;
1712 			if (index > end)
1713 				break;
1714 			index++;
1715 
1716 			BUG_ON(!PageLocked(page));
1717 			BUG_ON(PageWriteback(page));
1718 
1719 			pages_skipped = mpd->wbc->pages_skipped;
1720 			err = mapping->a_ops->writepage(page, mpd->wbc);
1721 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1722 				/*
1723 				 * have successfully written the page
1724 				 * without skipping the same
1725 				 */
1726 				mpd->pages_written++;
1727 			/*
1728 			 * In error case, we have to continue because
1729 			 * remaining pages are still locked
1730 			 * XXX: unlock and re-dirty them?
1731 			 */
1732 			if (ret == 0)
1733 				ret = err;
1734 		}
1735 		pagevec_release(&pvec);
1736 	}
1737 	return ret;
1738 }
1739 
1740 /*
1741  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1742  *
1743  * @mpd->inode - inode to walk through
1744  * @exbh->b_blocknr - first block on a disk
1745  * @exbh->b_size - amount of space in bytes
1746  * @logical - first logical block to start assignment with
1747  *
1748  * the function goes through all passed space and put actual disk
1749  * block numbers into buffer heads, dropping BH_Delay
1750  */
mpage_put_bnr_to_bhs(struct mpage_da_data * mpd,sector_t logical,struct buffer_head * exbh)1751 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1752 				 struct buffer_head *exbh)
1753 {
1754 	struct inode *inode = mpd->inode;
1755 	struct address_space *mapping = inode->i_mapping;
1756 	int blocks = exbh->b_size >> inode->i_blkbits;
1757 	sector_t pblock = exbh->b_blocknr, cur_logical;
1758 	struct buffer_head *head, *bh;
1759 	pgoff_t index, end;
1760 	struct pagevec pvec;
1761 	int nr_pages, i;
1762 
1763 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1764 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1765 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1766 
1767 	pagevec_init(&pvec, 0);
1768 
1769 	while (index <= end) {
1770 		/* XXX: optimize tail */
1771 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1772 		if (nr_pages == 0)
1773 			break;
1774 		for (i = 0; i < nr_pages; i++) {
1775 			struct page *page = pvec.pages[i];
1776 
1777 			index = page->index;
1778 			if (index > end)
1779 				break;
1780 			index++;
1781 
1782 			BUG_ON(!PageLocked(page));
1783 			BUG_ON(PageWriteback(page));
1784 			BUG_ON(!page_has_buffers(page));
1785 
1786 			bh = page_buffers(page);
1787 			head = bh;
1788 
1789 			/* skip blocks out of the range */
1790 			do {
1791 				if (cur_logical >= logical)
1792 					break;
1793 				cur_logical++;
1794 			} while ((bh = bh->b_this_page) != head);
1795 
1796 			do {
1797 				if (cur_logical >= logical + blocks)
1798 					break;
1799 				if (buffer_delay(bh)) {
1800 					bh->b_blocknr = pblock;
1801 					clear_buffer_delay(bh);
1802 					bh->b_bdev = inode->i_sb->s_bdev;
1803 				} else if (buffer_unwritten(bh)) {
1804 					bh->b_blocknr = pblock;
1805 					clear_buffer_unwritten(bh);
1806 					set_buffer_mapped(bh);
1807 					set_buffer_new(bh);
1808 					bh->b_bdev = inode->i_sb->s_bdev;
1809 				} else if (buffer_mapped(bh))
1810 					BUG_ON(bh->b_blocknr != pblock);
1811 
1812 				cur_logical++;
1813 				pblock++;
1814 			} while ((bh = bh->b_this_page) != head);
1815 		}
1816 		pagevec_release(&pvec);
1817 	}
1818 }
1819 
1820 
1821 /*
1822  * __unmap_underlying_blocks - just a helper function to unmap
1823  * set of blocks described by @bh
1824  */
__unmap_underlying_blocks(struct inode * inode,struct buffer_head * bh)1825 static inline void __unmap_underlying_blocks(struct inode *inode,
1826 					     struct buffer_head *bh)
1827 {
1828 	struct block_device *bdev = inode->i_sb->s_bdev;
1829 	int blocks, i;
1830 
1831 	blocks = bh->b_size >> inode->i_blkbits;
1832 	for (i = 0; i < blocks; i++)
1833 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1834 }
1835 
ext4_da_block_invalidatepages(struct mpage_da_data * mpd,sector_t logical,long blk_cnt)1836 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1837 					sector_t logical, long blk_cnt)
1838 {
1839 	int nr_pages, i;
1840 	pgoff_t index, end;
1841 	struct pagevec pvec;
1842 	struct inode *inode = mpd->inode;
1843 	struct address_space *mapping = inode->i_mapping;
1844 
1845 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1846 	end   = (logical + blk_cnt - 1) >>
1847 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
1848 	while (index <= end) {
1849 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1850 		if (nr_pages == 0)
1851 			break;
1852 		for (i = 0; i < nr_pages; i++) {
1853 			struct page *page = pvec.pages[i];
1854 			index = page->index;
1855 			if (index > end)
1856 				break;
1857 			index++;
1858 
1859 			BUG_ON(!PageLocked(page));
1860 			BUG_ON(PageWriteback(page));
1861 			block_invalidatepage(page, 0);
1862 			ClearPageUptodate(page);
1863 			unlock_page(page);
1864 		}
1865 	}
1866 	return;
1867 }
1868 
ext4_print_free_blocks(struct inode * inode)1869 static void ext4_print_free_blocks(struct inode *inode)
1870 {
1871 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1872 	printk(KERN_EMERG "Total free blocks count %lld\n",
1873 			ext4_count_free_blocks(inode->i_sb));
1874 	printk(KERN_EMERG "Free/Dirty block details\n");
1875 	printk(KERN_EMERG "free_blocks=%lld\n",
1876 			(long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1877 	printk(KERN_EMERG "dirty_blocks=%lld\n",
1878 			(long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1879 	printk(KERN_EMERG "Block reservation details\n");
1880 	printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1881 			EXT4_I(inode)->i_reserved_data_blocks);
1882 	printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1883 			EXT4_I(inode)->i_reserved_meta_blocks);
1884 	return;
1885 }
1886 
1887 /*
1888  * mpage_da_map_blocks - go through given space
1889  *
1890  * @mpd->lbh - bh describing space
1891  * @mpd->get_block - the filesystem's block mapper function
1892  *
1893  * The function skips space we know is already mapped to disk blocks.
1894  *
1895  */
mpage_da_map_blocks(struct mpage_da_data * mpd)1896 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1897 {
1898 	int err = 0;
1899 	struct buffer_head new;
1900 	struct buffer_head *lbh = &mpd->lbh;
1901 	sector_t next;
1902 
1903 	/*
1904 	 * We consider only non-mapped and non-allocated blocks
1905 	 */
1906 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1907 		return 0;
1908 	new.b_state = lbh->b_state;
1909 	new.b_blocknr = 0;
1910 	new.b_size = lbh->b_size;
1911 	next = lbh->b_blocknr;
1912 	/*
1913 	 * If we didn't accumulate anything
1914 	 * to write simply return
1915 	 */
1916 	if (!new.b_size)
1917 		return 0;
1918 	err = mpd->get_block(mpd->inode, next, &new, 1);
1919 	if (err) {
1920 
1921 		/* If get block returns with error
1922 		 * we simply return. Later writepage
1923 		 * will redirty the page and writepages
1924 		 * will find the dirty page again
1925 		 */
1926 		if (err == -EAGAIN)
1927 			return 0;
1928 
1929 		if (err == -ENOSPC &&
1930 				ext4_count_free_blocks(mpd->inode->i_sb)) {
1931 			mpd->retval = err;
1932 			return 0;
1933 		}
1934 
1935 		/*
1936 		 * get block failure will cause us
1937 		 * to loop in writepages. Because
1938 		 * a_ops->writepage won't be able to
1939 		 * make progress. The page will be redirtied
1940 		 * by writepage and writepages will again
1941 		 * try to write the same.
1942 		 */
1943 		printk(KERN_EMERG "%s block allocation failed for inode %lu "
1944 				  "at logical offset %llu with max blocks "
1945 				  "%zd with error %d\n",
1946 				  __func__, mpd->inode->i_ino,
1947 				  (unsigned long long)next,
1948 				  lbh->b_size >> mpd->inode->i_blkbits, err);
1949 		printk(KERN_EMERG "This should not happen.!! "
1950 					"Data will be lost\n");
1951 		if (err == -ENOSPC) {
1952 			ext4_print_free_blocks(mpd->inode);
1953 		}
1954 		/* invlaidate all the pages */
1955 		ext4_da_block_invalidatepages(mpd, next,
1956 				lbh->b_size >> mpd->inode->i_blkbits);
1957 		return err;
1958 	}
1959 	BUG_ON(new.b_size == 0);
1960 
1961 	if (buffer_new(&new))
1962 		__unmap_underlying_blocks(mpd->inode, &new);
1963 
1964 	/*
1965 	 * If blocks are delayed marked, we need to
1966 	 * put actual blocknr and drop delayed bit
1967 	 */
1968 	if (buffer_delay(lbh) || buffer_unwritten(lbh))
1969 		mpage_put_bnr_to_bhs(mpd, next, &new);
1970 
1971 	return 0;
1972 }
1973 
1974 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1975 		(1 << BH_Delay) | (1 << BH_Unwritten))
1976 
1977 /*
1978  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1979  *
1980  * @mpd->lbh - extent of blocks
1981  * @logical - logical number of the block in the file
1982  * @bh - bh of the block (used to access block's state)
1983  *
1984  * the function is used to collect contig. blocks in same state
1985  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,sector_t logical,struct buffer_head * bh)1986 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1987 				   sector_t logical, struct buffer_head *bh)
1988 {
1989 	sector_t next;
1990 	size_t b_size = bh->b_size;
1991 	struct buffer_head *lbh = &mpd->lbh;
1992 	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1993 
1994 	/* check if thereserved journal credits might overflow */
1995 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1996 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1997 			/*
1998 			 * With non-extent format we are limited by the journal
1999 			 * credit available.  Total credit needed to insert
2000 			 * nrblocks contiguous blocks is dependent on the
2001 			 * nrblocks.  So limit nrblocks.
2002 			 */
2003 			goto flush_it;
2004 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2005 				EXT4_MAX_TRANS_DATA) {
2006 			/*
2007 			 * Adding the new buffer_head would make it cross the
2008 			 * allowed limit for which we have journal credit
2009 			 * reserved. So limit the new bh->b_size
2010 			 */
2011 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2012 						mpd->inode->i_blkbits;
2013 			/* we will do mpage_da_submit_io in the next loop */
2014 		}
2015 	}
2016 	/*
2017 	 * First block in the extent
2018 	 */
2019 	if (lbh->b_size == 0) {
2020 		lbh->b_blocknr = logical;
2021 		lbh->b_size = b_size;
2022 		lbh->b_state = bh->b_state & BH_FLAGS;
2023 		return;
2024 	}
2025 
2026 	next = lbh->b_blocknr + nrblocks;
2027 	/*
2028 	 * Can we merge the block to our big extent?
2029 	 */
2030 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
2031 		lbh->b_size += b_size;
2032 		return;
2033 	}
2034 
2035 flush_it:
2036 	/*
2037 	 * We couldn't merge the block to our extent, so we
2038 	 * need to flush current  extent and start new one
2039 	 */
2040 	if (mpage_da_map_blocks(mpd) == 0)
2041 		mpage_da_submit_io(mpd);
2042 	mpd->io_done = 1;
2043 	return;
2044 }
2045 
2046 /*
2047  * __mpage_da_writepage - finds extent of pages and blocks
2048  *
2049  * @page: page to consider
2050  * @wbc: not used, we just follow rules
2051  * @data: context
2052  *
2053  * The function finds extents of pages and scan them for all blocks.
2054  */
__mpage_da_writepage(struct page * page,struct writeback_control * wbc,void * data)2055 static int __mpage_da_writepage(struct page *page,
2056 				struct writeback_control *wbc, void *data)
2057 {
2058 	struct mpage_da_data *mpd = data;
2059 	struct inode *inode = mpd->inode;
2060 	struct buffer_head *bh, *head, fake;
2061 	sector_t logical;
2062 
2063 	if (mpd->io_done) {
2064 		/*
2065 		 * Rest of the page in the page_vec
2066 		 * redirty then and skip then. We will
2067 		 * try to to write them again after
2068 		 * starting a new transaction
2069 		 */
2070 		redirty_page_for_writepage(wbc, page);
2071 		unlock_page(page);
2072 		return MPAGE_DA_EXTENT_TAIL;
2073 	}
2074 	/*
2075 	 * Can we merge this page to current extent?
2076 	 */
2077 	if (mpd->next_page != page->index) {
2078 		/*
2079 		 * Nope, we can't. So, we map non-allocated blocks
2080 		 * and start IO on them using writepage()
2081 		 */
2082 		if (mpd->next_page != mpd->first_page) {
2083 			if (mpage_da_map_blocks(mpd) == 0)
2084 				mpage_da_submit_io(mpd);
2085 			/*
2086 			 * skip rest of the page in the page_vec
2087 			 */
2088 			mpd->io_done = 1;
2089 			redirty_page_for_writepage(wbc, page);
2090 			unlock_page(page);
2091 			return MPAGE_DA_EXTENT_TAIL;
2092 		}
2093 
2094 		/*
2095 		 * Start next extent of pages ...
2096 		 */
2097 		mpd->first_page = page->index;
2098 
2099 		/*
2100 		 * ... and blocks
2101 		 */
2102 		mpd->lbh.b_size = 0;
2103 		mpd->lbh.b_state = 0;
2104 		mpd->lbh.b_blocknr = 0;
2105 	}
2106 
2107 	mpd->next_page = page->index + 1;
2108 	logical = (sector_t) page->index <<
2109 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2110 
2111 	if (!page_has_buffers(page)) {
2112 		/*
2113 		 * There is no attached buffer heads yet (mmap?)
2114 		 * we treat the page asfull of dirty blocks
2115 		 */
2116 		bh = &fake;
2117 		bh->b_size = PAGE_CACHE_SIZE;
2118 		bh->b_state = 0;
2119 		set_buffer_dirty(bh);
2120 		set_buffer_uptodate(bh);
2121 		mpage_add_bh_to_extent(mpd, logical, bh);
2122 		if (mpd->io_done)
2123 			return MPAGE_DA_EXTENT_TAIL;
2124 	} else {
2125 		/*
2126 		 * Page with regular buffer heads, just add all dirty ones
2127 		 */
2128 		head = page_buffers(page);
2129 		bh = head;
2130 		do {
2131 			BUG_ON(buffer_locked(bh));
2132 			/*
2133 			 * We need to try to allocate
2134 			 * unmapped blocks in the same page.
2135 			 * Otherwise we won't make progress
2136 			 * with the page in ext4_da_writepage
2137 			 */
2138 			if (buffer_dirty(bh) &&
2139 				(!buffer_mapped(bh) || buffer_delay(bh))) {
2140 				mpage_add_bh_to_extent(mpd, logical, bh);
2141 				if (mpd->io_done)
2142 					return MPAGE_DA_EXTENT_TAIL;
2143 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2144 				/*
2145 				 * mapped dirty buffer. We need to update
2146 				 * the b_state because we look at
2147 				 * b_state in mpage_da_map_blocks. We don't
2148 				 * update b_size because if we find an
2149 				 * unmapped buffer_head later we need to
2150 				 * use the b_state flag of that buffer_head.
2151 				 */
2152 				if (mpd->lbh.b_size == 0)
2153 					mpd->lbh.b_state =
2154 						bh->b_state & BH_FLAGS;
2155 			}
2156 			logical++;
2157 		} while ((bh = bh->b_this_page) != head);
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 /*
2164  * mpage_da_writepages - walk the list of dirty pages of the given
2165  * address space, allocates non-allocated blocks, maps newly-allocated
2166  * blocks to existing bhs and issue IO them
2167  *
2168  * @mapping: address space structure to write
2169  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2170  * @get_block: the filesystem's block mapper function.
2171  *
2172  * This is a library function, which implements the writepages()
2173  * address_space_operation.
2174  */
mpage_da_writepages(struct address_space * mapping,struct writeback_control * wbc,struct mpage_da_data * mpd)2175 static int mpage_da_writepages(struct address_space *mapping,
2176 			       struct writeback_control *wbc,
2177 			       struct mpage_da_data *mpd)
2178 {
2179 	int ret;
2180 
2181 	if (!mpd->get_block)
2182 		return generic_writepages(mapping, wbc);
2183 
2184 	mpd->lbh.b_size = 0;
2185 	mpd->lbh.b_state = 0;
2186 	mpd->lbh.b_blocknr = 0;
2187 	mpd->first_page = 0;
2188 	mpd->next_page = 0;
2189 	mpd->io_done = 0;
2190 	mpd->pages_written = 0;
2191 	mpd->retval = 0;
2192 
2193 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2194 	/*
2195 	 * Handle last extent of pages
2196 	 */
2197 	if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2198 		if (mpage_da_map_blocks(mpd) == 0)
2199 			mpage_da_submit_io(mpd);
2200 
2201 		mpd->io_done = 1;
2202 		ret = MPAGE_DA_EXTENT_TAIL;
2203 	}
2204 	wbc->nr_to_write -= mpd->pages_written;
2205 	return ret;
2206 }
2207 
2208 /*
2209  * this is a special callback for ->write_begin() only
2210  * it's intention is to return mapped block or reserve space
2211  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2212 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2213 				  struct buffer_head *bh_result, int create)
2214 {
2215 	int ret = 0;
2216 
2217 	BUG_ON(create == 0);
2218 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2219 
2220 	/*
2221 	 * first, we need to know whether the block is allocated already
2222 	 * preallocated blocks are unmapped but should treated
2223 	 * the same as allocated blocks.
2224 	 */
2225 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2226 	if ((ret == 0) && !buffer_delay(bh_result)) {
2227 		/* the block isn't (pre)allocated yet, let's reserve space */
2228 		/*
2229 		 * XXX: __block_prepare_write() unmaps passed block,
2230 		 * is it OK?
2231 		 */
2232 		ret = ext4_da_reserve_space(inode, 1);
2233 		if (ret)
2234 			/* not enough space to reserve */
2235 			return ret;
2236 
2237 		map_bh(bh_result, inode->i_sb, 0);
2238 		set_buffer_new(bh_result);
2239 		set_buffer_delay(bh_result);
2240 	} else if (ret > 0) {
2241 		bh_result->b_size = (ret << inode->i_blkbits);
2242 		ret = 0;
2243 	}
2244 
2245 	return ret;
2246 }
2247 #define		EXT4_DELALLOC_RSVED	1
ext4_da_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2248 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2249 				   struct buffer_head *bh_result, int create)
2250 {
2251 	int ret;
2252 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2253 	loff_t disksize = EXT4_I(inode)->i_disksize;
2254 	handle_t *handle = NULL;
2255 
2256 	handle = ext4_journal_current_handle();
2257 	BUG_ON(!handle);
2258 	ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2259 			bh_result, create, 0, EXT4_DELALLOC_RSVED);
2260 	if (ret > 0) {
2261 
2262 		bh_result->b_size = (ret << inode->i_blkbits);
2263 
2264 		if (ext4_should_order_data(inode)) {
2265 			int retval;
2266 			retval = ext4_jbd2_file_inode(handle, inode);
2267 			if (retval)
2268 				/*
2269 				 * Failed to add inode for ordered
2270 				 * mode. Don't update file size
2271 				 */
2272 				return retval;
2273 		}
2274 
2275 		/*
2276 		 * Update on-disk size along with block allocation
2277 		 * we don't use 'extend_disksize' as size may change
2278 		 * within already allocated block -bzzz
2279 		 */
2280 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2281 		if (disksize > i_size_read(inode))
2282 			disksize = i_size_read(inode);
2283 		if (disksize > EXT4_I(inode)->i_disksize) {
2284 			ext4_update_i_disksize(inode, disksize);
2285 			ret = ext4_mark_inode_dirty(handle, inode);
2286 			return ret;
2287 		}
2288 		ret = 0;
2289 	}
2290 	return ret;
2291 }
2292 
ext4_bh_unmapped_or_delay(handle_t * handle,struct buffer_head * bh)2293 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2294 {
2295 	/*
2296 	 * unmapped buffer is possible for holes.
2297 	 * delay buffer is possible with delayed allocation
2298 	 */
2299 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2300 }
2301 
ext4_normal_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2302 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2303 				   struct buffer_head *bh_result, int create)
2304 {
2305 	int ret = 0;
2306 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2307 
2308 	/*
2309 	 * we don't want to do block allocation in writepage
2310 	 * so call get_block_wrap with create = 0
2311 	 */
2312 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2313 				   bh_result, 0, 0, 0);
2314 	if (ret > 0) {
2315 		bh_result->b_size = (ret << inode->i_blkbits);
2316 		ret = 0;
2317 	}
2318 	return ret;
2319 }
2320 
2321 /*
2322  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2323  * get called via journal_submit_inode_data_buffers (no journal handle)
2324  * get called via shrink_page_list via pdflush (no journal handle)
2325  * or grab_page_cache when doing write_begin (have journal handle)
2326  */
ext4_da_writepage(struct page * page,struct writeback_control * wbc)2327 static int ext4_da_writepage(struct page *page,
2328 				struct writeback_control *wbc)
2329 {
2330 	int ret = 0;
2331 	loff_t size;
2332 	unsigned int len;
2333 	struct buffer_head *page_bufs;
2334 	struct inode *inode = page->mapping->host;
2335 
2336 	trace_mark(ext4_da_writepage,
2337 		   "dev %s ino %lu page_index %lu",
2338 		   inode->i_sb->s_id, inode->i_ino, page->index);
2339 	size = i_size_read(inode);
2340 	if (page->index == size >> PAGE_CACHE_SHIFT)
2341 		len = size & ~PAGE_CACHE_MASK;
2342 	else
2343 		len = PAGE_CACHE_SIZE;
2344 
2345 	if (page_has_buffers(page)) {
2346 		page_bufs = page_buffers(page);
2347 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2348 					ext4_bh_unmapped_or_delay)) {
2349 			/*
2350 			 * We don't want to do  block allocation
2351 			 * So redirty the page and return
2352 			 * We may reach here when we do a journal commit
2353 			 * via journal_submit_inode_data_buffers.
2354 			 * If we don't have mapping block we just ignore
2355 			 * them. We can also reach here via shrink_page_list
2356 			 */
2357 			redirty_page_for_writepage(wbc, page);
2358 			unlock_page(page);
2359 			return 0;
2360 		}
2361 	} else {
2362 		/*
2363 		 * The test for page_has_buffers() is subtle:
2364 		 * We know the page is dirty but it lost buffers. That means
2365 		 * that at some moment in time after write_begin()/write_end()
2366 		 * has been called all buffers have been clean and thus they
2367 		 * must have been written at least once. So they are all
2368 		 * mapped and we can happily proceed with mapping them
2369 		 * and writing the page.
2370 		 *
2371 		 * Try to initialize the buffer_heads and check whether
2372 		 * all are mapped and non delay. We don't want to
2373 		 * do block allocation here.
2374 		 */
2375 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2376 						ext4_normal_get_block_write);
2377 		if (!ret) {
2378 			page_bufs = page_buffers(page);
2379 			/* check whether all are mapped and non delay */
2380 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2381 						ext4_bh_unmapped_or_delay)) {
2382 				redirty_page_for_writepage(wbc, page);
2383 				unlock_page(page);
2384 				return 0;
2385 			}
2386 		} else {
2387 			/*
2388 			 * We can't do block allocation here
2389 			 * so just redity the page and unlock
2390 			 * and return
2391 			 */
2392 			redirty_page_for_writepage(wbc, page);
2393 			unlock_page(page);
2394 			return 0;
2395 		}
2396 		/* now mark the buffer_heads as dirty and uptodate */
2397 		block_commit_write(page, 0, PAGE_CACHE_SIZE);
2398 	}
2399 
2400 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2401 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2402 	else
2403 		ret = block_write_full_page(page,
2404 						ext4_normal_get_block_write,
2405 						wbc);
2406 
2407 	return ret;
2408 }
2409 
2410 /*
2411  * This is called via ext4_da_writepages() to
2412  * calulate the total number of credits to reserve to fit
2413  * a single extent allocation into a single transaction,
2414  * ext4_da_writpeages() will loop calling this before
2415  * the block allocation.
2416  */
2417 
ext4_da_writepages_trans_blocks(struct inode * inode)2418 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2419 {
2420 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2421 
2422 	/*
2423 	 * With non-extent format the journal credit needed to
2424 	 * insert nrblocks contiguous block is dependent on
2425 	 * number of contiguous block. So we will limit
2426 	 * number of contiguous block to a sane value
2427 	 */
2428 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2429 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2430 		max_blocks = EXT4_MAX_TRANS_DATA;
2431 
2432 	return ext4_chunk_trans_blocks(inode, max_blocks);
2433 }
2434 
ext4_da_writepages(struct address_space * mapping,struct writeback_control * wbc)2435 static int ext4_da_writepages(struct address_space *mapping,
2436 			      struct writeback_control *wbc)
2437 {
2438 	pgoff_t	index;
2439 	int range_whole = 0;
2440 	handle_t *handle = NULL;
2441 	struct mpage_da_data mpd;
2442 	struct inode *inode = mapping->host;
2443 	int no_nrwrite_index_update;
2444 	int pages_written = 0;
2445 	long pages_skipped;
2446 	int range_cyclic, cycled = 1, io_done = 0;
2447 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2448 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2449 
2450 	trace_mark(ext4_da_writepages,
2451 		   "dev %s ino %lu nr_t_write %ld "
2452 		   "pages_skipped %ld range_start %llu "
2453 		   "range_end %llu nonblocking %d "
2454 		   "for_kupdate %d for_reclaim %d "
2455 		   "for_writepages %d range_cyclic %d",
2456 		   inode->i_sb->s_id, inode->i_ino,
2457 		   wbc->nr_to_write, wbc->pages_skipped,
2458 		   (unsigned long long) wbc->range_start,
2459 		   (unsigned long long) wbc->range_end,
2460 		   wbc->nonblocking, wbc->for_kupdate,
2461 		   wbc->for_reclaim, wbc->for_writepages,
2462 		   wbc->range_cyclic);
2463 
2464 	/*
2465 	 * No pages to write? This is mainly a kludge to avoid starting
2466 	 * a transaction for special inodes like journal inode on last iput()
2467 	 * because that could violate lock ordering on umount
2468 	 */
2469 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2470 		return 0;
2471 
2472 	/*
2473 	 * If the filesystem has aborted, it is read-only, so return
2474 	 * right away instead of dumping stack traces later on that
2475 	 * will obscure the real source of the problem.  We test
2476 	 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2477 	 * the latter could be true if the filesystem is mounted
2478 	 * read-only, and in that case, ext4_da_writepages should
2479 	 * *never* be called, so if that ever happens, we would want
2480 	 * the stack trace.
2481 	 */
2482 	if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2483 		return -EROFS;
2484 
2485 	/*
2486 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2487 	 * This make sure small files blocks are allocated in
2488 	 * single attempt. This ensure that small files
2489 	 * get less fragmented.
2490 	 */
2491 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2492 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2493 		wbc->nr_to_write = sbi->s_mb_stream_request;
2494 	}
2495 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2496 		range_whole = 1;
2497 
2498 	range_cyclic = wbc->range_cyclic;
2499 	if (wbc->range_cyclic) {
2500 		index = mapping->writeback_index;
2501 		if (index)
2502 			cycled = 0;
2503 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2504 		wbc->range_end  = LLONG_MAX;
2505 		wbc->range_cyclic = 0;
2506 	} else
2507 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2508 
2509 	mpd.wbc = wbc;
2510 	mpd.inode = mapping->host;
2511 
2512 	/*
2513 	 * we don't want write_cache_pages to update
2514 	 * nr_to_write and writeback_index
2515 	 */
2516 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2517 	wbc->no_nrwrite_index_update = 1;
2518 	pages_skipped = wbc->pages_skipped;
2519 
2520 retry:
2521 	while (!ret && wbc->nr_to_write > 0) {
2522 
2523 		/*
2524 		 * we  insert one extent at a time. So we need
2525 		 * credit needed for single extent allocation.
2526 		 * journalled mode is currently not supported
2527 		 * by delalloc
2528 		 */
2529 		BUG_ON(ext4_should_journal_data(inode));
2530 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2531 
2532 		/* start a new transaction*/
2533 		handle = ext4_journal_start(inode, needed_blocks);
2534 		if (IS_ERR(handle)) {
2535 			ret = PTR_ERR(handle);
2536 			printk(KERN_CRIT "%s: jbd2_start: "
2537 			       "%ld pages, ino %lu; err %d\n", __func__,
2538 				wbc->nr_to_write, inode->i_ino, ret);
2539 			dump_stack();
2540 			goto out_writepages;
2541 		}
2542 		mpd.get_block = ext4_da_get_block_write;
2543 		ret = mpage_da_writepages(mapping, wbc, &mpd);
2544 
2545 		ext4_journal_stop(handle);
2546 
2547 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2548 			/* commit the transaction which would
2549 			 * free blocks released in the transaction
2550 			 * and try again
2551 			 */
2552 			jbd2_journal_force_commit_nested(sbi->s_journal);
2553 			wbc->pages_skipped = pages_skipped;
2554 			ret = 0;
2555 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2556 			/*
2557 			 * got one extent now try with
2558 			 * rest of the pages
2559 			 */
2560 			pages_written += mpd.pages_written;
2561 			wbc->pages_skipped = pages_skipped;
2562 			ret = 0;
2563 			io_done = 1;
2564 		} else if (wbc->nr_to_write)
2565 			/*
2566 			 * There is no more writeout needed
2567 			 * or we requested for a noblocking writeout
2568 			 * and we found the device congested
2569 			 */
2570 			break;
2571 	}
2572 	if (!io_done && !cycled) {
2573 		cycled = 1;
2574 		index = 0;
2575 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2576 		wbc->range_end  = mapping->writeback_index - 1;
2577 		goto retry;
2578 	}
2579 	if (pages_skipped != wbc->pages_skipped)
2580 		printk(KERN_EMERG "This should not happen leaving %s "
2581 				"with nr_to_write = %ld ret = %d\n",
2582 				__func__, wbc->nr_to_write, ret);
2583 
2584 	/* Update index */
2585 	index += pages_written;
2586 	wbc->range_cyclic = range_cyclic;
2587 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2588 		/*
2589 		 * set the writeback_index so that range_cyclic
2590 		 * mode will write it back later
2591 		 */
2592 		mapping->writeback_index = index;
2593 
2594 out_writepages:
2595 	if (!no_nrwrite_index_update)
2596 		wbc->no_nrwrite_index_update = 0;
2597 	wbc->nr_to_write -= nr_to_writebump;
2598 	trace_mark(ext4_da_writepage_result,
2599 		   "dev %s ino %lu ret %d pages_written %d "
2600 		   "pages_skipped %ld congestion %d "
2601 		   "more_io %d no_nrwrite_index_update %d",
2602 		   inode->i_sb->s_id, inode->i_ino, ret,
2603 		   pages_written, wbc->pages_skipped,
2604 		   wbc->encountered_congestion, wbc->more_io,
2605 		   wbc->no_nrwrite_index_update);
2606 	return ret;
2607 }
2608 
2609 #define FALL_BACK_TO_NONDELALLOC 1
ext4_nonda_switch(struct super_block * sb)2610 static int ext4_nonda_switch(struct super_block *sb)
2611 {
2612 	s64 free_blocks, dirty_blocks;
2613 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2614 
2615 	/*
2616 	 * switch to non delalloc mode if we are running low
2617 	 * on free block. The free block accounting via percpu
2618 	 * counters can get slightly wrong with percpu_counter_batch getting
2619 	 * accumulated on each CPU without updating global counters
2620 	 * Delalloc need an accurate free block accounting. So switch
2621 	 * to non delalloc when we are near to error range.
2622 	 */
2623 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2624 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2625 	if (2 * free_blocks < 3 * dirty_blocks ||
2626 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2627 		/*
2628 		 * free block count is less that 150% of dirty blocks
2629 		 * or free blocks is less that watermark
2630 		 */
2631 		return 1;
2632 	}
2633 	return 0;
2634 }
2635 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2636 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2637 				loff_t pos, unsigned len, unsigned flags,
2638 				struct page **pagep, void **fsdata)
2639 {
2640 	int ret, retries = 0;
2641 	struct page *page;
2642 	pgoff_t index;
2643 	unsigned from, to;
2644 	struct inode *inode = mapping->host;
2645 	handle_t *handle;
2646 
2647 	index = pos >> PAGE_CACHE_SHIFT;
2648 	from = pos & (PAGE_CACHE_SIZE - 1);
2649 	to = from + len;
2650 
2651 	if (ext4_nonda_switch(inode->i_sb)) {
2652 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653 		return ext4_write_begin(file, mapping, pos,
2654 					len, flags, pagep, fsdata);
2655 	}
2656 	*fsdata = (void *)0;
2657 
2658 	trace_mark(ext4_da_write_begin,
2659 		   "dev %s ino %lu pos %llu len %u flags %u",
2660 		   inode->i_sb->s_id, inode->i_ino,
2661 		   (unsigned long long) pos, len, flags);
2662 retry:
2663 	/*
2664 	 * With delayed allocation, we don't log the i_disksize update
2665 	 * if there is delayed block allocation. But we still need
2666 	 * to journalling the i_disksize update if writes to the end
2667 	 * of file which has an already mapped buffer.
2668 	 */
2669 	handle = ext4_journal_start(inode, 1);
2670 	if (IS_ERR(handle)) {
2671 		ret = PTR_ERR(handle);
2672 		goto out;
2673 	}
2674 	/* We cannot recurse into the filesystem as the transaction is already
2675 	 * started */
2676 	flags |= AOP_FLAG_NOFS;
2677 
2678 	page = grab_cache_page_write_begin(mapping, index, flags);
2679 	if (!page) {
2680 		ext4_journal_stop(handle);
2681 		ret = -ENOMEM;
2682 		goto out;
2683 	}
2684 	*pagep = page;
2685 
2686 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2687 							ext4_da_get_block_prep);
2688 	if (ret < 0) {
2689 		unlock_page(page);
2690 		ext4_journal_stop(handle);
2691 		page_cache_release(page);
2692 		/*
2693 		 * block_write_begin may have instantiated a few blocks
2694 		 * outside i_size.  Trim these off again. Don't need
2695 		 * i_size_read because we hold i_mutex.
2696 		 */
2697 		if (pos + len > inode->i_size)
2698 			vmtruncate(inode, inode->i_size);
2699 	}
2700 
2701 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2702 		goto retry;
2703 out:
2704 	return ret;
2705 }
2706 
2707 /*
2708  * Check if we should update i_disksize
2709  * when write to the end of file but not require block allocation
2710  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2711 static int ext4_da_should_update_i_disksize(struct page *page,
2712 					 unsigned long offset)
2713 {
2714 	struct buffer_head *bh;
2715 	struct inode *inode = page->mapping->host;
2716 	unsigned int idx;
2717 	int i;
2718 
2719 	bh = page_buffers(page);
2720 	idx = offset >> inode->i_blkbits;
2721 
2722 	for (i = 0; i < idx; i++)
2723 		bh = bh->b_this_page;
2724 
2725 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2726 		return 0;
2727 	return 1;
2728 }
2729 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2730 static int ext4_da_write_end(struct file *file,
2731 				struct address_space *mapping,
2732 				loff_t pos, unsigned len, unsigned copied,
2733 				struct page *page, void *fsdata)
2734 {
2735 	struct inode *inode = mapping->host;
2736 	int ret = 0, ret2;
2737 	handle_t *handle = ext4_journal_current_handle();
2738 	loff_t new_i_size;
2739 	unsigned long start, end;
2740 	int write_mode = (int)(unsigned long)fsdata;
2741 
2742 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2743 		if (ext4_should_order_data(inode)) {
2744 			return ext4_ordered_write_end(file, mapping, pos,
2745 					len, copied, page, fsdata);
2746 		} else if (ext4_should_writeback_data(inode)) {
2747 			return ext4_writeback_write_end(file, mapping, pos,
2748 					len, copied, page, fsdata);
2749 		} else {
2750 			BUG();
2751 		}
2752 	}
2753 
2754 	trace_mark(ext4_da_write_end,
2755 		   "dev %s ino %lu pos %llu len %u copied %u",
2756 		   inode->i_sb->s_id, inode->i_ino,
2757 		   (unsigned long long) pos, len, copied);
2758 	start = pos & (PAGE_CACHE_SIZE - 1);
2759 	end = start + copied - 1;
2760 
2761 	/*
2762 	 * generic_write_end() will run mark_inode_dirty() if i_size
2763 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2764 	 * into that.
2765 	 */
2766 
2767 	new_i_size = pos + copied;
2768 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2769 		if (ext4_da_should_update_i_disksize(page, end)) {
2770 			down_write(&EXT4_I(inode)->i_data_sem);
2771 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2772 				/*
2773 				 * Updating i_disksize when extending file
2774 				 * without needing block allocation
2775 				 */
2776 				if (ext4_should_order_data(inode))
2777 					ret = ext4_jbd2_file_inode(handle,
2778 								   inode);
2779 
2780 				EXT4_I(inode)->i_disksize = new_i_size;
2781 			}
2782 			up_write(&EXT4_I(inode)->i_data_sem);
2783 			/* We need to mark inode dirty even if
2784 			 * new_i_size is less that inode->i_size
2785 			 * bu greater than i_disksize.(hint delalloc)
2786 			 */
2787 			ext4_mark_inode_dirty(handle, inode);
2788 		}
2789 	}
2790 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2791 							page, fsdata);
2792 	copied = ret2;
2793 	if (ret2 < 0)
2794 		ret = ret2;
2795 	ret2 = ext4_journal_stop(handle);
2796 	if (!ret)
2797 		ret = ret2;
2798 
2799 	return ret ? ret : copied;
2800 }
2801 
ext4_da_invalidatepage(struct page * page,unsigned long offset)2802 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2803 {
2804 	/*
2805 	 * Drop reserved blocks
2806 	 */
2807 	BUG_ON(!PageLocked(page));
2808 	if (!page_has_buffers(page))
2809 		goto out;
2810 
2811 	ext4_da_page_release_reservation(page, offset);
2812 
2813 out:
2814 	ext4_invalidatepage(page, offset);
2815 
2816 	return;
2817 }
2818 
2819 
2820 /*
2821  * bmap() is special.  It gets used by applications such as lilo and by
2822  * the swapper to find the on-disk block of a specific piece of data.
2823  *
2824  * Naturally, this is dangerous if the block concerned is still in the
2825  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2826  * filesystem and enables swap, then they may get a nasty shock when the
2827  * data getting swapped to that swapfile suddenly gets overwritten by
2828  * the original zero's written out previously to the journal and
2829  * awaiting writeback in the kernel's buffer cache.
2830  *
2831  * So, if we see any bmap calls here on a modified, data-journaled file,
2832  * take extra steps to flush any blocks which might be in the cache.
2833  */
ext4_bmap(struct address_space * mapping,sector_t block)2834 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2835 {
2836 	struct inode *inode = mapping->host;
2837 	journal_t *journal;
2838 	int err;
2839 
2840 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2841 			test_opt(inode->i_sb, DELALLOC)) {
2842 		/*
2843 		 * With delalloc we want to sync the file
2844 		 * so that we can make sure we allocate
2845 		 * blocks for file
2846 		 */
2847 		filemap_write_and_wait(mapping);
2848 	}
2849 
2850 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2851 		/*
2852 		 * This is a REALLY heavyweight approach, but the use of
2853 		 * bmap on dirty files is expected to be extremely rare:
2854 		 * only if we run lilo or swapon on a freshly made file
2855 		 * do we expect this to happen.
2856 		 *
2857 		 * (bmap requires CAP_SYS_RAWIO so this does not
2858 		 * represent an unprivileged user DOS attack --- we'd be
2859 		 * in trouble if mortal users could trigger this path at
2860 		 * will.)
2861 		 *
2862 		 * NB. EXT4_STATE_JDATA is not set on files other than
2863 		 * regular files.  If somebody wants to bmap a directory
2864 		 * or symlink and gets confused because the buffer
2865 		 * hasn't yet been flushed to disk, they deserve
2866 		 * everything they get.
2867 		 */
2868 
2869 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2870 		journal = EXT4_JOURNAL(inode);
2871 		jbd2_journal_lock_updates(journal);
2872 		err = jbd2_journal_flush(journal);
2873 		jbd2_journal_unlock_updates(journal);
2874 
2875 		if (err)
2876 			return 0;
2877 	}
2878 
2879 	return generic_block_bmap(mapping, block, ext4_get_block);
2880 }
2881 
bget_one(handle_t * handle,struct buffer_head * bh)2882 static int bget_one(handle_t *handle, struct buffer_head *bh)
2883 {
2884 	get_bh(bh);
2885 	return 0;
2886 }
2887 
bput_one(handle_t * handle,struct buffer_head * bh)2888 static int bput_one(handle_t *handle, struct buffer_head *bh)
2889 {
2890 	put_bh(bh);
2891 	return 0;
2892 }
2893 
2894 /*
2895  * Note that we don't need to start a transaction unless we're journaling data
2896  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2897  * need to file the inode to the transaction's list in ordered mode because if
2898  * we are writing back data added by write(), the inode is already there and if
2899  * we are writing back data modified via mmap(), noone guarantees in which
2900  * transaction the data will hit the disk. In case we are journaling data, we
2901  * cannot start transaction directly because transaction start ranks above page
2902  * lock so we have to do some magic.
2903  *
2904  * In all journaling modes block_write_full_page() will start the I/O.
2905  *
2906  * Problem:
2907  *
2908  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2909  *		ext4_writepage()
2910  *
2911  * Similar for:
2912  *
2913  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2914  *
2915  * Same applies to ext4_get_block().  We will deadlock on various things like
2916  * lock_journal and i_data_sem
2917  *
2918  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2919  * allocations fail.
2920  *
2921  * 16May01: If we're reentered then journal_current_handle() will be
2922  *	    non-zero. We simply *return*.
2923  *
2924  * 1 July 2001: @@@ FIXME:
2925  *   In journalled data mode, a data buffer may be metadata against the
2926  *   current transaction.  But the same file is part of a shared mapping
2927  *   and someone does a writepage() on it.
2928  *
2929  *   We will move the buffer onto the async_data list, but *after* it has
2930  *   been dirtied. So there's a small window where we have dirty data on
2931  *   BJ_Metadata.
2932  *
2933  *   Note that this only applies to the last partial page in the file.  The
2934  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2935  *   broken code anyway: it's wrong for msync()).
2936  *
2937  *   It's a rare case: affects the final partial page, for journalled data
2938  *   where the file is subject to bith write() and writepage() in the same
2939  *   transction.  To fix it we'll need a custom block_write_full_page().
2940  *   We'll probably need that anyway for journalling writepage() output.
2941  *
2942  * We don't honour synchronous mounts for writepage().  That would be
2943  * disastrous.  Any write() or metadata operation will sync the fs for
2944  * us.
2945  *
2946  */
__ext4_normal_writepage(struct page * page,struct writeback_control * wbc)2947 static int __ext4_normal_writepage(struct page *page,
2948 				struct writeback_control *wbc)
2949 {
2950 	struct inode *inode = page->mapping->host;
2951 
2952 	if (test_opt(inode->i_sb, NOBH))
2953 		return nobh_writepage(page,
2954 					ext4_normal_get_block_write, wbc);
2955 	else
2956 		return block_write_full_page(page,
2957 						ext4_normal_get_block_write,
2958 						wbc);
2959 }
2960 
ext4_normal_writepage(struct page * page,struct writeback_control * wbc)2961 static int ext4_normal_writepage(struct page *page,
2962 				struct writeback_control *wbc)
2963 {
2964 	struct inode *inode = page->mapping->host;
2965 	loff_t size = i_size_read(inode);
2966 	loff_t len;
2967 
2968 	trace_mark(ext4_normal_writepage,
2969 		   "dev %s ino %lu page_index %lu",
2970 		   inode->i_sb->s_id, inode->i_ino, page->index);
2971 	J_ASSERT(PageLocked(page));
2972 	if (page->index == size >> PAGE_CACHE_SHIFT)
2973 		len = size & ~PAGE_CACHE_MASK;
2974 	else
2975 		len = PAGE_CACHE_SIZE;
2976 
2977 	if (page_has_buffers(page)) {
2978 		/* if page has buffers it should all be mapped
2979 		 * and allocated. If there are not buffers attached
2980 		 * to the page we know the page is dirty but it lost
2981 		 * buffers. That means that at some moment in time
2982 		 * after write_begin() / write_end() has been called
2983 		 * all buffers have been clean and thus they must have been
2984 		 * written at least once. So they are all mapped and we can
2985 		 * happily proceed with mapping them and writing the page.
2986 		 */
2987 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2988 					ext4_bh_unmapped_or_delay));
2989 	}
2990 
2991 	if (!ext4_journal_current_handle())
2992 		return __ext4_normal_writepage(page, wbc);
2993 
2994 	redirty_page_for_writepage(wbc, page);
2995 	unlock_page(page);
2996 	return 0;
2997 }
2998 
__ext4_journalled_writepage(struct page * page,struct writeback_control * wbc)2999 static int __ext4_journalled_writepage(struct page *page,
3000 				struct writeback_control *wbc)
3001 {
3002 	struct address_space *mapping = page->mapping;
3003 	struct inode *inode = mapping->host;
3004 	struct buffer_head *page_bufs;
3005 	handle_t *handle = NULL;
3006 	int ret = 0;
3007 	int err;
3008 
3009 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3010 					ext4_normal_get_block_write);
3011 	if (ret != 0)
3012 		goto out_unlock;
3013 
3014 	page_bufs = page_buffers(page);
3015 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3016 								bget_one);
3017 	/* As soon as we unlock the page, it can go away, but we have
3018 	 * references to buffers so we are safe */
3019 	unlock_page(page);
3020 
3021 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3022 	if (IS_ERR(handle)) {
3023 		ret = PTR_ERR(handle);
3024 		goto out;
3025 	}
3026 
3027 	ret = walk_page_buffers(handle, page_bufs, 0,
3028 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3029 
3030 	err = walk_page_buffers(handle, page_bufs, 0,
3031 				PAGE_CACHE_SIZE, NULL, write_end_fn);
3032 	if (ret == 0)
3033 		ret = err;
3034 	err = ext4_journal_stop(handle);
3035 	if (!ret)
3036 		ret = err;
3037 
3038 	walk_page_buffers(handle, page_bufs, 0,
3039 				PAGE_CACHE_SIZE, NULL, bput_one);
3040 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3041 	goto out;
3042 
3043 out_unlock:
3044 	unlock_page(page);
3045 out:
3046 	return ret;
3047 }
3048 
ext4_journalled_writepage(struct page * page,struct writeback_control * wbc)3049 static int ext4_journalled_writepage(struct page *page,
3050 				struct writeback_control *wbc)
3051 {
3052 	struct inode *inode = page->mapping->host;
3053 	loff_t size = i_size_read(inode);
3054 	loff_t len;
3055 
3056 	trace_mark(ext4_journalled_writepage,
3057 		   "dev %s ino %lu page_index %lu",
3058 		   inode->i_sb->s_id, inode->i_ino, page->index);
3059 	J_ASSERT(PageLocked(page));
3060 	if (page->index == size >> PAGE_CACHE_SHIFT)
3061 		len = size & ~PAGE_CACHE_MASK;
3062 	else
3063 		len = PAGE_CACHE_SIZE;
3064 
3065 	if (page_has_buffers(page)) {
3066 		/* if page has buffers it should all be mapped
3067 		 * and allocated. If there are not buffers attached
3068 		 * to the page we know the page is dirty but it lost
3069 		 * buffers. That means that at some moment in time
3070 		 * after write_begin() / write_end() has been called
3071 		 * all buffers have been clean and thus they must have been
3072 		 * written at least once. So they are all mapped and we can
3073 		 * happily proceed with mapping them and writing the page.
3074 		 */
3075 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3076 					ext4_bh_unmapped_or_delay));
3077 	}
3078 
3079 	if (ext4_journal_current_handle())
3080 		goto no_write;
3081 
3082 	if (PageChecked(page)) {
3083 		/*
3084 		 * It's mmapped pagecache.  Add buffers and journal it.  There
3085 		 * doesn't seem much point in redirtying the page here.
3086 		 */
3087 		ClearPageChecked(page);
3088 		return __ext4_journalled_writepage(page, wbc);
3089 	} else {
3090 		/*
3091 		 * It may be a page full of checkpoint-mode buffers.  We don't
3092 		 * really know unless we go poke around in the buffer_heads.
3093 		 * But block_write_full_page will do the right thing.
3094 		 */
3095 		return block_write_full_page(page,
3096 						ext4_normal_get_block_write,
3097 						wbc);
3098 	}
3099 no_write:
3100 	redirty_page_for_writepage(wbc, page);
3101 	unlock_page(page);
3102 	return 0;
3103 }
3104 
ext4_readpage(struct file * file,struct page * page)3105 static int ext4_readpage(struct file *file, struct page *page)
3106 {
3107 	return mpage_readpage(page, ext4_get_block);
3108 }
3109 
3110 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3111 ext4_readpages(struct file *file, struct address_space *mapping,
3112 		struct list_head *pages, unsigned nr_pages)
3113 {
3114 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3115 }
3116 
ext4_invalidatepage(struct page * page,unsigned long offset)3117 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3118 {
3119 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3120 
3121 	/*
3122 	 * If it's a full truncate we just forget about the pending dirtying
3123 	 */
3124 	if (offset == 0)
3125 		ClearPageChecked(page);
3126 
3127 	if (journal)
3128 		jbd2_journal_invalidatepage(journal, page, offset);
3129 	else
3130 		block_invalidatepage(page, offset);
3131 }
3132 
ext4_releasepage(struct page * page,gfp_t wait)3133 static int ext4_releasepage(struct page *page, gfp_t wait)
3134 {
3135 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3136 
3137 	WARN_ON(PageChecked(page));
3138 	if (!page_has_buffers(page))
3139 		return 0;
3140 	if (journal)
3141 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3142 	else
3143 		return try_to_free_buffers(page);
3144 }
3145 
3146 /*
3147  * If the O_DIRECT write will extend the file then add this inode to the
3148  * orphan list.  So recovery will truncate it back to the original size
3149  * if the machine crashes during the write.
3150  *
3151  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3152  * crashes then stale disk data _may_ be exposed inside the file. But current
3153  * VFS code falls back into buffered path in that case so we are safe.
3154  */
ext4_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3155 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3156 			const struct iovec *iov, loff_t offset,
3157 			unsigned long nr_segs)
3158 {
3159 	struct file *file = iocb->ki_filp;
3160 	struct inode *inode = file->f_mapping->host;
3161 	struct ext4_inode_info *ei = EXT4_I(inode);
3162 	handle_t *handle;
3163 	ssize_t ret;
3164 	int orphan = 0;
3165 	size_t count = iov_length(iov, nr_segs);
3166 
3167 	if (rw == WRITE) {
3168 		loff_t final_size = offset + count;
3169 
3170 		if (final_size > inode->i_size) {
3171 			/* Credits for sb + inode write */
3172 			handle = ext4_journal_start(inode, 2);
3173 			if (IS_ERR(handle)) {
3174 				ret = PTR_ERR(handle);
3175 				goto out;
3176 			}
3177 			ret = ext4_orphan_add(handle, inode);
3178 			if (ret) {
3179 				ext4_journal_stop(handle);
3180 				goto out;
3181 			}
3182 			orphan = 1;
3183 			ei->i_disksize = inode->i_size;
3184 			ext4_journal_stop(handle);
3185 		}
3186 	}
3187 
3188 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3189 				 offset, nr_segs,
3190 				 ext4_get_block, NULL);
3191 
3192 	if (orphan) {
3193 		int err;
3194 
3195 		/* Credits for sb + inode write */
3196 		handle = ext4_journal_start(inode, 2);
3197 		if (IS_ERR(handle)) {
3198 			/* This is really bad luck. We've written the data
3199 			 * but cannot extend i_size. Bail out and pretend
3200 			 * the write failed... */
3201 			ret = PTR_ERR(handle);
3202 			goto out;
3203 		}
3204 		if (inode->i_nlink)
3205 			ext4_orphan_del(handle, inode);
3206 		if (ret > 0) {
3207 			loff_t end = offset + ret;
3208 			if (end > inode->i_size) {
3209 				ei->i_disksize = end;
3210 				i_size_write(inode, end);
3211 				/*
3212 				 * We're going to return a positive `ret'
3213 				 * here due to non-zero-length I/O, so there's
3214 				 * no way of reporting error returns from
3215 				 * ext4_mark_inode_dirty() to userspace.  So
3216 				 * ignore it.
3217 				 */
3218 				ext4_mark_inode_dirty(handle, inode);
3219 			}
3220 		}
3221 		err = ext4_journal_stop(handle);
3222 		if (ret == 0)
3223 			ret = err;
3224 	}
3225 out:
3226 	return ret;
3227 }
3228 
3229 /*
3230  * Pages can be marked dirty completely asynchronously from ext4's journalling
3231  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3232  * much here because ->set_page_dirty is called under VFS locks.  The page is
3233  * not necessarily locked.
3234  *
3235  * We cannot just dirty the page and leave attached buffers clean, because the
3236  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3237  * or jbddirty because all the journalling code will explode.
3238  *
3239  * So what we do is to mark the page "pending dirty" and next time writepage
3240  * is called, propagate that into the buffers appropriately.
3241  */
ext4_journalled_set_page_dirty(struct page * page)3242 static int ext4_journalled_set_page_dirty(struct page *page)
3243 {
3244 	SetPageChecked(page);
3245 	return __set_page_dirty_nobuffers(page);
3246 }
3247 
3248 static const struct address_space_operations ext4_ordered_aops = {
3249 	.readpage		= ext4_readpage,
3250 	.readpages		= ext4_readpages,
3251 	.writepage		= ext4_normal_writepage,
3252 	.sync_page		= block_sync_page,
3253 	.write_begin		= ext4_write_begin,
3254 	.write_end		= ext4_ordered_write_end,
3255 	.bmap			= ext4_bmap,
3256 	.invalidatepage		= ext4_invalidatepage,
3257 	.releasepage		= ext4_releasepage,
3258 	.direct_IO		= ext4_direct_IO,
3259 	.migratepage		= buffer_migrate_page,
3260 	.is_partially_uptodate  = block_is_partially_uptodate,
3261 };
3262 
3263 static const struct address_space_operations ext4_writeback_aops = {
3264 	.readpage		= ext4_readpage,
3265 	.readpages		= ext4_readpages,
3266 	.writepage		= ext4_normal_writepage,
3267 	.sync_page		= block_sync_page,
3268 	.write_begin		= ext4_write_begin,
3269 	.write_end		= ext4_writeback_write_end,
3270 	.bmap			= ext4_bmap,
3271 	.invalidatepage		= ext4_invalidatepage,
3272 	.releasepage		= ext4_releasepage,
3273 	.direct_IO		= ext4_direct_IO,
3274 	.migratepage		= buffer_migrate_page,
3275 	.is_partially_uptodate  = block_is_partially_uptodate,
3276 };
3277 
3278 static const struct address_space_operations ext4_journalled_aops = {
3279 	.readpage		= ext4_readpage,
3280 	.readpages		= ext4_readpages,
3281 	.writepage		= ext4_journalled_writepage,
3282 	.sync_page		= block_sync_page,
3283 	.write_begin		= ext4_write_begin,
3284 	.write_end		= ext4_journalled_write_end,
3285 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3286 	.bmap			= ext4_bmap,
3287 	.invalidatepage		= ext4_invalidatepage,
3288 	.releasepage		= ext4_releasepage,
3289 	.is_partially_uptodate  = block_is_partially_uptodate,
3290 };
3291 
3292 static const struct address_space_operations ext4_da_aops = {
3293 	.readpage		= ext4_readpage,
3294 	.readpages		= ext4_readpages,
3295 	.writepage		= ext4_da_writepage,
3296 	.writepages		= ext4_da_writepages,
3297 	.sync_page		= block_sync_page,
3298 	.write_begin		= ext4_da_write_begin,
3299 	.write_end		= ext4_da_write_end,
3300 	.bmap			= ext4_bmap,
3301 	.invalidatepage		= ext4_da_invalidatepage,
3302 	.releasepage		= ext4_releasepage,
3303 	.direct_IO		= ext4_direct_IO,
3304 	.migratepage		= buffer_migrate_page,
3305 	.is_partially_uptodate  = block_is_partially_uptodate,
3306 };
3307 
ext4_set_aops(struct inode * inode)3308 void ext4_set_aops(struct inode *inode)
3309 {
3310 	if (ext4_should_order_data(inode) &&
3311 		test_opt(inode->i_sb, DELALLOC))
3312 		inode->i_mapping->a_ops = &ext4_da_aops;
3313 	else if (ext4_should_order_data(inode))
3314 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3315 	else if (ext4_should_writeback_data(inode) &&
3316 		 test_opt(inode->i_sb, DELALLOC))
3317 		inode->i_mapping->a_ops = &ext4_da_aops;
3318 	else if (ext4_should_writeback_data(inode))
3319 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3320 	else
3321 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3322 }
3323 
3324 /*
3325  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3326  * up to the end of the block which corresponds to `from'.
3327  * This required during truncate. We need to physically zero the tail end
3328  * of that block so it doesn't yield old data if the file is later grown.
3329  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3330 int ext4_block_truncate_page(handle_t *handle,
3331 		struct address_space *mapping, loff_t from)
3332 {
3333 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3334 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3335 	unsigned blocksize, length, pos;
3336 	ext4_lblk_t iblock;
3337 	struct inode *inode = mapping->host;
3338 	struct buffer_head *bh;
3339 	struct page *page;
3340 	int err = 0;
3341 
3342 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3343 	if (!page)
3344 		return -EINVAL;
3345 
3346 	blocksize = inode->i_sb->s_blocksize;
3347 	length = blocksize - (offset & (blocksize - 1));
3348 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3349 
3350 	/*
3351 	 * For "nobh" option,  we can only work if we don't need to
3352 	 * read-in the page - otherwise we create buffers to do the IO.
3353 	 */
3354 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3355 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3356 		zero_user(page, offset, length);
3357 		set_page_dirty(page);
3358 		goto unlock;
3359 	}
3360 
3361 	if (!page_has_buffers(page))
3362 		create_empty_buffers(page, blocksize, 0);
3363 
3364 	/* Find the buffer that contains "offset" */
3365 	bh = page_buffers(page);
3366 	pos = blocksize;
3367 	while (offset >= pos) {
3368 		bh = bh->b_this_page;
3369 		iblock++;
3370 		pos += blocksize;
3371 	}
3372 
3373 	err = 0;
3374 	if (buffer_freed(bh)) {
3375 		BUFFER_TRACE(bh, "freed: skip");
3376 		goto unlock;
3377 	}
3378 
3379 	if (!buffer_mapped(bh)) {
3380 		BUFFER_TRACE(bh, "unmapped");
3381 		ext4_get_block(inode, iblock, bh, 0);
3382 		/* unmapped? It's a hole - nothing to do */
3383 		if (!buffer_mapped(bh)) {
3384 			BUFFER_TRACE(bh, "still unmapped");
3385 			goto unlock;
3386 		}
3387 	}
3388 
3389 	/* Ok, it's mapped. Make sure it's up-to-date */
3390 	if (PageUptodate(page))
3391 		set_buffer_uptodate(bh);
3392 
3393 	if (!buffer_uptodate(bh)) {
3394 		err = -EIO;
3395 		ll_rw_block(READ, 1, &bh);
3396 		wait_on_buffer(bh);
3397 		/* Uhhuh. Read error. Complain and punt. */
3398 		if (!buffer_uptodate(bh))
3399 			goto unlock;
3400 	}
3401 
3402 	if (ext4_should_journal_data(inode)) {
3403 		BUFFER_TRACE(bh, "get write access");
3404 		err = ext4_journal_get_write_access(handle, bh);
3405 		if (err)
3406 			goto unlock;
3407 	}
3408 
3409 	zero_user(page, offset, length);
3410 
3411 	BUFFER_TRACE(bh, "zeroed end of block");
3412 
3413 	err = 0;
3414 	if (ext4_should_journal_data(inode)) {
3415 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3416 	} else {
3417 		if (ext4_should_order_data(inode))
3418 			err = ext4_jbd2_file_inode(handle, inode);
3419 		mark_buffer_dirty(bh);
3420 	}
3421 
3422 unlock:
3423 	unlock_page(page);
3424 	page_cache_release(page);
3425 	return err;
3426 }
3427 
3428 /*
3429  * Probably it should be a library function... search for first non-zero word
3430  * or memcmp with zero_page, whatever is better for particular architecture.
3431  * Linus?
3432  */
all_zeroes(__le32 * p,__le32 * q)3433 static inline int all_zeroes(__le32 *p, __le32 *q)
3434 {
3435 	while (p < q)
3436 		if (*p++)
3437 			return 0;
3438 	return 1;
3439 }
3440 
3441 /**
3442  *	ext4_find_shared - find the indirect blocks for partial truncation.
3443  *	@inode:	  inode in question
3444  *	@depth:	  depth of the affected branch
3445  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3446  *	@chain:	  place to store the pointers to partial indirect blocks
3447  *	@top:	  place to the (detached) top of branch
3448  *
3449  *	This is a helper function used by ext4_truncate().
3450  *
3451  *	When we do truncate() we may have to clean the ends of several
3452  *	indirect blocks but leave the blocks themselves alive. Block is
3453  *	partially truncated if some data below the new i_size is refered
3454  *	from it (and it is on the path to the first completely truncated
3455  *	data block, indeed).  We have to free the top of that path along
3456  *	with everything to the right of the path. Since no allocation
3457  *	past the truncation point is possible until ext4_truncate()
3458  *	finishes, we may safely do the latter, but top of branch may
3459  *	require special attention - pageout below the truncation point
3460  *	might try to populate it.
3461  *
3462  *	We atomically detach the top of branch from the tree, store the
3463  *	block number of its root in *@top, pointers to buffer_heads of
3464  *	partially truncated blocks - in @chain[].bh and pointers to
3465  *	their last elements that should not be removed - in
3466  *	@chain[].p. Return value is the pointer to last filled element
3467  *	of @chain.
3468  *
3469  *	The work left to caller to do the actual freeing of subtrees:
3470  *		a) free the subtree starting from *@top
3471  *		b) free the subtrees whose roots are stored in
3472  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3473  *		c) free the subtrees growing from the inode past the @chain[0].
3474  *			(no partially truncated stuff there).  */
3475 
ext4_find_shared(struct inode * inode,int depth,ext4_lblk_t offsets[4],Indirect chain[4],__le32 * top)3476 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3477 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3478 {
3479 	Indirect *partial, *p;
3480 	int k, err;
3481 
3482 	*top = 0;
3483 	/* Make k index the deepest non-null offest + 1 */
3484 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3485 		;
3486 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3487 	/* Writer: pointers */
3488 	if (!partial)
3489 		partial = chain + k-1;
3490 	/*
3491 	 * If the branch acquired continuation since we've looked at it -
3492 	 * fine, it should all survive and (new) top doesn't belong to us.
3493 	 */
3494 	if (!partial->key && *partial->p)
3495 		/* Writer: end */
3496 		goto no_top;
3497 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3498 		;
3499 	/*
3500 	 * OK, we've found the last block that must survive. The rest of our
3501 	 * branch should be detached before unlocking. However, if that rest
3502 	 * of branch is all ours and does not grow immediately from the inode
3503 	 * it's easier to cheat and just decrement partial->p.
3504 	 */
3505 	if (p == chain + k - 1 && p > chain) {
3506 		p->p--;
3507 	} else {
3508 		*top = *p->p;
3509 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3510 #if 0
3511 		*p->p = 0;
3512 #endif
3513 	}
3514 	/* Writer: end */
3515 
3516 	while (partial > p) {
3517 		brelse(partial->bh);
3518 		partial--;
3519 	}
3520 no_top:
3521 	return partial;
3522 }
3523 
3524 /*
3525  * Zero a number of block pointers in either an inode or an indirect block.
3526  * If we restart the transaction we must again get write access to the
3527  * indirect block for further modification.
3528  *
3529  * We release `count' blocks on disk, but (last - first) may be greater
3530  * than `count' because there can be holes in there.
3531  */
ext4_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)3532 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3533 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3534 		unsigned long count, __le32 *first, __le32 *last)
3535 {
3536 	__le32 *p;
3537 	if (try_to_extend_transaction(handle, inode)) {
3538 		if (bh) {
3539 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3540 			ext4_handle_dirty_metadata(handle, inode, bh);
3541 		}
3542 		ext4_mark_inode_dirty(handle, inode);
3543 		ext4_journal_test_restart(handle, inode);
3544 		if (bh) {
3545 			BUFFER_TRACE(bh, "retaking write access");
3546 			ext4_journal_get_write_access(handle, bh);
3547 		}
3548 	}
3549 
3550 	/*
3551 	 * Any buffers which are on the journal will be in memory. We find
3552 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3553 	 * on them.  We've already detached each block from the file, so
3554 	 * bforget() in jbd2_journal_forget() should be safe.
3555 	 *
3556 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3557 	 */
3558 	for (p = first; p < last; p++) {
3559 		u32 nr = le32_to_cpu(*p);
3560 		if (nr) {
3561 			struct buffer_head *tbh;
3562 
3563 			*p = 0;
3564 			tbh = sb_find_get_block(inode->i_sb, nr);
3565 			ext4_forget(handle, 0, inode, tbh, nr);
3566 		}
3567 	}
3568 
3569 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3570 }
3571 
3572 /**
3573  * ext4_free_data - free a list of data blocks
3574  * @handle:	handle for this transaction
3575  * @inode:	inode we are dealing with
3576  * @this_bh:	indirect buffer_head which contains *@first and *@last
3577  * @first:	array of block numbers
3578  * @last:	points immediately past the end of array
3579  *
3580  * We are freeing all blocks refered from that array (numbers are stored as
3581  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3582  *
3583  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3584  * blocks are contiguous then releasing them at one time will only affect one
3585  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3586  * actually use a lot of journal space.
3587  *
3588  * @this_bh will be %NULL if @first and @last point into the inode's direct
3589  * block pointers.
3590  */
ext4_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)3591 static void ext4_free_data(handle_t *handle, struct inode *inode,
3592 			   struct buffer_head *this_bh,
3593 			   __le32 *first, __le32 *last)
3594 {
3595 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3596 	unsigned long count = 0;	    /* Number of blocks in the run */
3597 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3598 					       corresponding to
3599 					       block_to_free */
3600 	ext4_fsblk_t nr;		    /* Current block # */
3601 	__le32 *p;			    /* Pointer into inode/ind
3602 					       for current block */
3603 	int err;
3604 
3605 	if (this_bh) {				/* For indirect block */
3606 		BUFFER_TRACE(this_bh, "get_write_access");
3607 		err = ext4_journal_get_write_access(handle, this_bh);
3608 		/* Important: if we can't update the indirect pointers
3609 		 * to the blocks, we can't free them. */
3610 		if (err)
3611 			return;
3612 	}
3613 
3614 	for (p = first; p < last; p++) {
3615 		nr = le32_to_cpu(*p);
3616 		if (nr) {
3617 			/* accumulate blocks to free if they're contiguous */
3618 			if (count == 0) {
3619 				block_to_free = nr;
3620 				block_to_free_p = p;
3621 				count = 1;
3622 			} else if (nr == block_to_free + count) {
3623 				count++;
3624 			} else {
3625 				ext4_clear_blocks(handle, inode, this_bh,
3626 						  block_to_free,
3627 						  count, block_to_free_p, p);
3628 				block_to_free = nr;
3629 				block_to_free_p = p;
3630 				count = 1;
3631 			}
3632 		}
3633 	}
3634 
3635 	if (count > 0)
3636 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3637 				  count, block_to_free_p, p);
3638 
3639 	if (this_bh) {
3640 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3641 
3642 		/*
3643 		 * The buffer head should have an attached journal head at this
3644 		 * point. However, if the data is corrupted and an indirect
3645 		 * block pointed to itself, it would have been detached when
3646 		 * the block was cleared. Check for this instead of OOPSing.
3647 		 */
3648 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3649 			ext4_handle_dirty_metadata(handle, inode, this_bh);
3650 		else
3651 			ext4_error(inode->i_sb, __func__,
3652 				   "circular indirect block detected, "
3653 				   "inode=%lu, block=%llu",
3654 				   inode->i_ino,
3655 				   (unsigned long long) this_bh->b_blocknr);
3656 	}
3657 }
3658 
3659 /**
3660  *	ext4_free_branches - free an array of branches
3661  *	@handle: JBD handle for this transaction
3662  *	@inode:	inode we are dealing with
3663  *	@parent_bh: the buffer_head which contains *@first and *@last
3664  *	@first:	array of block numbers
3665  *	@last:	pointer immediately past the end of array
3666  *	@depth:	depth of the branches to free
3667  *
3668  *	We are freeing all blocks refered from these branches (numbers are
3669  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3670  *	appropriately.
3671  */
ext4_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)3672 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3673 			       struct buffer_head *parent_bh,
3674 			       __le32 *first, __le32 *last, int depth)
3675 {
3676 	ext4_fsblk_t nr;
3677 	__le32 *p;
3678 
3679 	if (ext4_handle_is_aborted(handle))
3680 		return;
3681 
3682 	if (depth--) {
3683 		struct buffer_head *bh;
3684 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3685 		p = last;
3686 		while (--p >= first) {
3687 			nr = le32_to_cpu(*p);
3688 			if (!nr)
3689 				continue;		/* A hole */
3690 
3691 			/* Go read the buffer for the next level down */
3692 			bh = sb_bread(inode->i_sb, nr);
3693 
3694 			/*
3695 			 * A read failure? Report error and clear slot
3696 			 * (should be rare).
3697 			 */
3698 			if (!bh) {
3699 				ext4_error(inode->i_sb, "ext4_free_branches",
3700 					   "Read failure, inode=%lu, block=%llu",
3701 					   inode->i_ino, nr);
3702 				continue;
3703 			}
3704 
3705 			/* This zaps the entire block.  Bottom up. */
3706 			BUFFER_TRACE(bh, "free child branches");
3707 			ext4_free_branches(handle, inode, bh,
3708 					(__le32 *) bh->b_data,
3709 					(__le32 *) bh->b_data + addr_per_block,
3710 					depth);
3711 
3712 			/*
3713 			 * We've probably journalled the indirect block several
3714 			 * times during the truncate.  But it's no longer
3715 			 * needed and we now drop it from the transaction via
3716 			 * jbd2_journal_revoke().
3717 			 *
3718 			 * That's easy if it's exclusively part of this
3719 			 * transaction.  But if it's part of the committing
3720 			 * transaction then jbd2_journal_forget() will simply
3721 			 * brelse() it.  That means that if the underlying
3722 			 * block is reallocated in ext4_get_block(),
3723 			 * unmap_underlying_metadata() will find this block
3724 			 * and will try to get rid of it.  damn, damn.
3725 			 *
3726 			 * If this block has already been committed to the
3727 			 * journal, a revoke record will be written.  And
3728 			 * revoke records must be emitted *before* clearing
3729 			 * this block's bit in the bitmaps.
3730 			 */
3731 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3732 
3733 			/*
3734 			 * Everything below this this pointer has been
3735 			 * released.  Now let this top-of-subtree go.
3736 			 *
3737 			 * We want the freeing of this indirect block to be
3738 			 * atomic in the journal with the updating of the
3739 			 * bitmap block which owns it.  So make some room in
3740 			 * the journal.
3741 			 *
3742 			 * We zero the parent pointer *after* freeing its
3743 			 * pointee in the bitmaps, so if extend_transaction()
3744 			 * for some reason fails to put the bitmap changes and
3745 			 * the release into the same transaction, recovery
3746 			 * will merely complain about releasing a free block,
3747 			 * rather than leaking blocks.
3748 			 */
3749 			if (ext4_handle_is_aborted(handle))
3750 				return;
3751 			if (try_to_extend_transaction(handle, inode)) {
3752 				ext4_mark_inode_dirty(handle, inode);
3753 				ext4_journal_test_restart(handle, inode);
3754 			}
3755 
3756 			ext4_free_blocks(handle, inode, nr, 1, 1);
3757 
3758 			if (parent_bh) {
3759 				/*
3760 				 * The block which we have just freed is
3761 				 * pointed to by an indirect block: journal it
3762 				 */
3763 				BUFFER_TRACE(parent_bh, "get_write_access");
3764 				if (!ext4_journal_get_write_access(handle,
3765 								   parent_bh)){
3766 					*p = 0;
3767 					BUFFER_TRACE(parent_bh,
3768 					"call ext4_handle_dirty_metadata");
3769 					ext4_handle_dirty_metadata(handle,
3770 								   inode,
3771 								   parent_bh);
3772 				}
3773 			}
3774 		}
3775 	} else {
3776 		/* We have reached the bottom of the tree. */
3777 		BUFFER_TRACE(parent_bh, "free data blocks");
3778 		ext4_free_data(handle, inode, parent_bh, first, last);
3779 	}
3780 }
3781 
ext4_can_truncate(struct inode * inode)3782 int ext4_can_truncate(struct inode *inode)
3783 {
3784 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3785 		return 0;
3786 	if (S_ISREG(inode->i_mode))
3787 		return 1;
3788 	if (S_ISDIR(inode->i_mode))
3789 		return 1;
3790 	if (S_ISLNK(inode->i_mode))
3791 		return !ext4_inode_is_fast_symlink(inode);
3792 	return 0;
3793 }
3794 
3795 /*
3796  * ext4_truncate()
3797  *
3798  * We block out ext4_get_block() block instantiations across the entire
3799  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3800  * simultaneously on behalf of the same inode.
3801  *
3802  * As we work through the truncate and commmit bits of it to the journal there
3803  * is one core, guiding principle: the file's tree must always be consistent on
3804  * disk.  We must be able to restart the truncate after a crash.
3805  *
3806  * The file's tree may be transiently inconsistent in memory (although it
3807  * probably isn't), but whenever we close off and commit a journal transaction,
3808  * the contents of (the filesystem + the journal) must be consistent and
3809  * restartable.  It's pretty simple, really: bottom up, right to left (although
3810  * left-to-right works OK too).
3811  *
3812  * Note that at recovery time, journal replay occurs *before* the restart of
3813  * truncate against the orphan inode list.
3814  *
3815  * The committed inode has the new, desired i_size (which is the same as
3816  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3817  * that this inode's truncate did not complete and it will again call
3818  * ext4_truncate() to have another go.  So there will be instantiated blocks
3819  * to the right of the truncation point in a crashed ext4 filesystem.  But
3820  * that's fine - as long as they are linked from the inode, the post-crash
3821  * ext4_truncate() run will find them and release them.
3822  */
ext4_truncate(struct inode * inode)3823 void ext4_truncate(struct inode *inode)
3824 {
3825 	handle_t *handle;
3826 	struct ext4_inode_info *ei = EXT4_I(inode);
3827 	__le32 *i_data = ei->i_data;
3828 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3829 	struct address_space *mapping = inode->i_mapping;
3830 	ext4_lblk_t offsets[4];
3831 	Indirect chain[4];
3832 	Indirect *partial;
3833 	__le32 nr = 0;
3834 	int n;
3835 	ext4_lblk_t last_block;
3836 	unsigned blocksize = inode->i_sb->s_blocksize;
3837 
3838 	if (!ext4_can_truncate(inode))
3839 		return;
3840 
3841 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3842 		ext4_ext_truncate(inode);
3843 		return;
3844 	}
3845 
3846 	handle = start_transaction(inode);
3847 	if (IS_ERR(handle))
3848 		return;		/* AKPM: return what? */
3849 
3850 	last_block = (inode->i_size + blocksize-1)
3851 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3852 
3853 	if (inode->i_size & (blocksize - 1))
3854 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3855 			goto out_stop;
3856 
3857 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3858 	if (n == 0)
3859 		goto out_stop;	/* error */
3860 
3861 	/*
3862 	 * OK.  This truncate is going to happen.  We add the inode to the
3863 	 * orphan list, so that if this truncate spans multiple transactions,
3864 	 * and we crash, we will resume the truncate when the filesystem
3865 	 * recovers.  It also marks the inode dirty, to catch the new size.
3866 	 *
3867 	 * Implication: the file must always be in a sane, consistent
3868 	 * truncatable state while each transaction commits.
3869 	 */
3870 	if (ext4_orphan_add(handle, inode))
3871 		goto out_stop;
3872 
3873 	/*
3874 	 * From here we block out all ext4_get_block() callers who want to
3875 	 * modify the block allocation tree.
3876 	 */
3877 	down_write(&ei->i_data_sem);
3878 
3879 	ext4_discard_preallocations(inode);
3880 
3881 	/*
3882 	 * The orphan list entry will now protect us from any crash which
3883 	 * occurs before the truncate completes, so it is now safe to propagate
3884 	 * the new, shorter inode size (held for now in i_size) into the
3885 	 * on-disk inode. We do this via i_disksize, which is the value which
3886 	 * ext4 *really* writes onto the disk inode.
3887 	 */
3888 	ei->i_disksize = inode->i_size;
3889 
3890 	if (n == 1) {		/* direct blocks */
3891 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3892 			       i_data + EXT4_NDIR_BLOCKS);
3893 		goto do_indirects;
3894 	}
3895 
3896 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3897 	/* Kill the top of shared branch (not detached) */
3898 	if (nr) {
3899 		if (partial == chain) {
3900 			/* Shared branch grows from the inode */
3901 			ext4_free_branches(handle, inode, NULL,
3902 					   &nr, &nr+1, (chain+n-1) - partial);
3903 			*partial->p = 0;
3904 			/*
3905 			 * We mark the inode dirty prior to restart,
3906 			 * and prior to stop.  No need for it here.
3907 			 */
3908 		} else {
3909 			/* Shared branch grows from an indirect block */
3910 			BUFFER_TRACE(partial->bh, "get_write_access");
3911 			ext4_free_branches(handle, inode, partial->bh,
3912 					partial->p,
3913 					partial->p+1, (chain+n-1) - partial);
3914 		}
3915 	}
3916 	/* Clear the ends of indirect blocks on the shared branch */
3917 	while (partial > chain) {
3918 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3919 				   (__le32*)partial->bh->b_data+addr_per_block,
3920 				   (chain+n-1) - partial);
3921 		BUFFER_TRACE(partial->bh, "call brelse");
3922 		brelse (partial->bh);
3923 		partial--;
3924 	}
3925 do_indirects:
3926 	/* Kill the remaining (whole) subtrees */
3927 	switch (offsets[0]) {
3928 	default:
3929 		nr = i_data[EXT4_IND_BLOCK];
3930 		if (nr) {
3931 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3932 			i_data[EXT4_IND_BLOCK] = 0;
3933 		}
3934 	case EXT4_IND_BLOCK:
3935 		nr = i_data[EXT4_DIND_BLOCK];
3936 		if (nr) {
3937 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3938 			i_data[EXT4_DIND_BLOCK] = 0;
3939 		}
3940 	case EXT4_DIND_BLOCK:
3941 		nr = i_data[EXT4_TIND_BLOCK];
3942 		if (nr) {
3943 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3944 			i_data[EXT4_TIND_BLOCK] = 0;
3945 		}
3946 	case EXT4_TIND_BLOCK:
3947 		;
3948 	}
3949 
3950 	up_write(&ei->i_data_sem);
3951 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3952 	ext4_mark_inode_dirty(handle, inode);
3953 
3954 	/*
3955 	 * In a multi-transaction truncate, we only make the final transaction
3956 	 * synchronous
3957 	 */
3958 	if (IS_SYNC(inode))
3959 		ext4_handle_sync(handle);
3960 out_stop:
3961 	/*
3962 	 * If this was a simple ftruncate(), and the file will remain alive
3963 	 * then we need to clear up the orphan record which we created above.
3964 	 * However, if this was a real unlink then we were called by
3965 	 * ext4_delete_inode(), and we allow that function to clean up the
3966 	 * orphan info for us.
3967 	 */
3968 	if (inode->i_nlink)
3969 		ext4_orphan_del(handle, inode);
3970 
3971 	ext4_journal_stop(handle);
3972 }
3973 
3974 /*
3975  * ext4_get_inode_loc returns with an extra refcount against the inode's
3976  * underlying buffer_head on success. If 'in_mem' is true, we have all
3977  * data in memory that is needed to recreate the on-disk version of this
3978  * inode.
3979  */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)3980 static int __ext4_get_inode_loc(struct inode *inode,
3981 				struct ext4_iloc *iloc, int in_mem)
3982 {
3983 	struct ext4_group_desc	*gdp;
3984 	struct buffer_head	*bh;
3985 	struct super_block	*sb = inode->i_sb;
3986 	ext4_fsblk_t		block;
3987 	int			inodes_per_block, inode_offset;
3988 
3989 	iloc->bh = NULL;
3990 	if (!ext4_valid_inum(sb, inode->i_ino))
3991 		return -EIO;
3992 
3993 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3994 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3995 	if (!gdp)
3996 		return -EIO;
3997 
3998 	/*
3999 	 * Figure out the offset within the block group inode table
4000 	 */
4001 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4002 	inode_offset = ((inode->i_ino - 1) %
4003 			EXT4_INODES_PER_GROUP(sb));
4004 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4005 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4006 
4007 	bh = sb_getblk(sb, block);
4008 	if (!bh) {
4009 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4010 			   "inode block - inode=%lu, block=%llu",
4011 			   inode->i_ino, block);
4012 		return -EIO;
4013 	}
4014 	if (!buffer_uptodate(bh)) {
4015 		lock_buffer(bh);
4016 
4017 		/*
4018 		 * If the buffer has the write error flag, we have failed
4019 		 * to write out another inode in the same block.  In this
4020 		 * case, we don't have to read the block because we may
4021 		 * read the old inode data successfully.
4022 		 */
4023 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4024 			set_buffer_uptodate(bh);
4025 
4026 		if (buffer_uptodate(bh)) {
4027 			/* someone brought it uptodate while we waited */
4028 			unlock_buffer(bh);
4029 			goto has_buffer;
4030 		}
4031 
4032 		/*
4033 		 * If we have all information of the inode in memory and this
4034 		 * is the only valid inode in the block, we need not read the
4035 		 * block.
4036 		 */
4037 		if (in_mem) {
4038 			struct buffer_head *bitmap_bh;
4039 			int i, start;
4040 
4041 			start = inode_offset & ~(inodes_per_block - 1);
4042 
4043 			/* Is the inode bitmap in cache? */
4044 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4045 			if (!bitmap_bh)
4046 				goto make_io;
4047 
4048 			/*
4049 			 * If the inode bitmap isn't in cache then the
4050 			 * optimisation may end up performing two reads instead
4051 			 * of one, so skip it.
4052 			 */
4053 			if (!buffer_uptodate(bitmap_bh)) {
4054 				brelse(bitmap_bh);
4055 				goto make_io;
4056 			}
4057 			for (i = start; i < start + inodes_per_block; i++) {
4058 				if (i == inode_offset)
4059 					continue;
4060 				if (ext4_test_bit(i, bitmap_bh->b_data))
4061 					break;
4062 			}
4063 			brelse(bitmap_bh);
4064 			if (i == start + inodes_per_block) {
4065 				/* all other inodes are free, so skip I/O */
4066 				memset(bh->b_data, 0, bh->b_size);
4067 				set_buffer_uptodate(bh);
4068 				unlock_buffer(bh);
4069 				goto has_buffer;
4070 			}
4071 		}
4072 
4073 make_io:
4074 		/*
4075 		 * If we need to do any I/O, try to pre-readahead extra
4076 		 * blocks from the inode table.
4077 		 */
4078 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4079 			ext4_fsblk_t b, end, table;
4080 			unsigned num;
4081 
4082 			table = ext4_inode_table(sb, gdp);
4083 			/* Make sure s_inode_readahead_blks is a power of 2 */
4084 			while (EXT4_SB(sb)->s_inode_readahead_blks &
4085 			       (EXT4_SB(sb)->s_inode_readahead_blks-1))
4086 				EXT4_SB(sb)->s_inode_readahead_blks =
4087 				   (EXT4_SB(sb)->s_inode_readahead_blks &
4088 				    (EXT4_SB(sb)->s_inode_readahead_blks-1));
4089 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4090 			if (table > b)
4091 				b = table;
4092 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4093 			num = EXT4_INODES_PER_GROUP(sb);
4094 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4095 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4096 				num -= ext4_itable_unused_count(sb, gdp);
4097 			table += num / inodes_per_block;
4098 			if (end > table)
4099 				end = table;
4100 			while (b <= end)
4101 				sb_breadahead(sb, b++);
4102 		}
4103 
4104 		/*
4105 		 * There are other valid inodes in the buffer, this inode
4106 		 * has in-inode xattrs, or we don't have this inode in memory.
4107 		 * Read the block from disk.
4108 		 */
4109 		get_bh(bh);
4110 		bh->b_end_io = end_buffer_read_sync;
4111 		submit_bh(READ_META, bh);
4112 		wait_on_buffer(bh);
4113 		if (!buffer_uptodate(bh)) {
4114 			ext4_error(sb, __func__,
4115 				   "unable to read inode block - inode=%lu, "
4116 				   "block=%llu", inode->i_ino, block);
4117 			brelse(bh);
4118 			return -EIO;
4119 		}
4120 	}
4121 has_buffer:
4122 	iloc->bh = bh;
4123 	return 0;
4124 }
4125 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4126 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4127 {
4128 	/* We have all inode data except xattrs in memory here. */
4129 	return __ext4_get_inode_loc(inode, iloc,
4130 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4131 }
4132 
ext4_set_inode_flags(struct inode * inode)4133 void ext4_set_inode_flags(struct inode *inode)
4134 {
4135 	unsigned int flags = EXT4_I(inode)->i_flags;
4136 
4137 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4138 	if (flags & EXT4_SYNC_FL)
4139 		inode->i_flags |= S_SYNC;
4140 	if (flags & EXT4_APPEND_FL)
4141 		inode->i_flags |= S_APPEND;
4142 	if (flags & EXT4_IMMUTABLE_FL)
4143 		inode->i_flags |= S_IMMUTABLE;
4144 	if (flags & EXT4_NOATIME_FL)
4145 		inode->i_flags |= S_NOATIME;
4146 	if (flags & EXT4_DIRSYNC_FL)
4147 		inode->i_flags |= S_DIRSYNC;
4148 }
4149 
4150 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)4151 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4152 {
4153 	unsigned int flags = ei->vfs_inode.i_flags;
4154 
4155 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4156 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4157 	if (flags & S_SYNC)
4158 		ei->i_flags |= EXT4_SYNC_FL;
4159 	if (flags & S_APPEND)
4160 		ei->i_flags |= EXT4_APPEND_FL;
4161 	if (flags & S_IMMUTABLE)
4162 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4163 	if (flags & S_NOATIME)
4164 		ei->i_flags |= EXT4_NOATIME_FL;
4165 	if (flags & S_DIRSYNC)
4166 		ei->i_flags |= EXT4_DIRSYNC_FL;
4167 }
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4168 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4169 					struct ext4_inode_info *ei)
4170 {
4171 	blkcnt_t i_blocks ;
4172 	struct inode *inode = &(ei->vfs_inode);
4173 	struct super_block *sb = inode->i_sb;
4174 
4175 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4176 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4177 		/* we are using combined 48 bit field */
4178 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4179 					le32_to_cpu(raw_inode->i_blocks_lo);
4180 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4181 			/* i_blocks represent file system block size */
4182 			return i_blocks  << (inode->i_blkbits - 9);
4183 		} else {
4184 			return i_blocks;
4185 		}
4186 	} else {
4187 		return le32_to_cpu(raw_inode->i_blocks_lo);
4188 	}
4189 }
4190 
ext4_iget(struct super_block * sb,unsigned long ino)4191 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4192 {
4193 	struct ext4_iloc iloc;
4194 	struct ext4_inode *raw_inode;
4195 	struct ext4_inode_info *ei;
4196 	struct buffer_head *bh;
4197 	struct inode *inode;
4198 	long ret;
4199 	int block;
4200 
4201 	inode = iget_locked(sb, ino);
4202 	if (!inode)
4203 		return ERR_PTR(-ENOMEM);
4204 	if (!(inode->i_state & I_NEW))
4205 		return inode;
4206 
4207 	ei = EXT4_I(inode);
4208 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4209 	ei->i_acl = EXT4_ACL_NOT_CACHED;
4210 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4211 #endif
4212 
4213 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4214 	if (ret < 0)
4215 		goto bad_inode;
4216 	bh = iloc.bh;
4217 	raw_inode = ext4_raw_inode(&iloc);
4218 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4219 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4220 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4221 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4222 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4223 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4224 	}
4225 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4226 
4227 	ei->i_state = 0;
4228 	ei->i_dir_start_lookup = 0;
4229 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4230 	/* We now have enough fields to check if the inode was active or not.
4231 	 * This is needed because nfsd might try to access dead inodes
4232 	 * the test is that same one that e2fsck uses
4233 	 * NeilBrown 1999oct15
4234 	 */
4235 	if (inode->i_nlink == 0) {
4236 		if (inode->i_mode == 0 ||
4237 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4238 			/* this inode is deleted */
4239 			brelse(bh);
4240 			ret = -ESTALE;
4241 			goto bad_inode;
4242 		}
4243 		/* The only unlinked inodes we let through here have
4244 		 * valid i_mode and are being read by the orphan
4245 		 * recovery code: that's fine, we're about to complete
4246 		 * the process of deleting those. */
4247 	}
4248 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4249 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4250 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4251 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4252 	    cpu_to_le32(EXT4_OS_HURD)) {
4253 		ei->i_file_acl |=
4254 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4255 	}
4256 	inode->i_size = ext4_isize(raw_inode);
4257 	ei->i_disksize = inode->i_size;
4258 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4259 	ei->i_block_group = iloc.block_group;
4260 	/*
4261 	 * NOTE! The in-memory inode i_data array is in little-endian order
4262 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4263 	 */
4264 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4265 		ei->i_data[block] = raw_inode->i_block[block];
4266 	INIT_LIST_HEAD(&ei->i_orphan);
4267 
4268 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4269 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4270 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4271 		    EXT4_INODE_SIZE(inode->i_sb)) {
4272 			brelse(bh);
4273 			ret = -EIO;
4274 			goto bad_inode;
4275 		}
4276 		if (ei->i_extra_isize == 0) {
4277 			/* The extra space is currently unused. Use it. */
4278 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4279 					    EXT4_GOOD_OLD_INODE_SIZE;
4280 		} else {
4281 			__le32 *magic = (void *)raw_inode +
4282 					EXT4_GOOD_OLD_INODE_SIZE +
4283 					ei->i_extra_isize;
4284 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4285 				 ei->i_state |= EXT4_STATE_XATTR;
4286 		}
4287 	} else
4288 		ei->i_extra_isize = 0;
4289 
4290 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4291 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4292 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4293 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4294 
4295 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4296 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4297 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4298 			inode->i_version |=
4299 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4300 	}
4301 
4302 	if (S_ISREG(inode->i_mode)) {
4303 		inode->i_op = &ext4_file_inode_operations;
4304 		inode->i_fop = &ext4_file_operations;
4305 		ext4_set_aops(inode);
4306 	} else if (S_ISDIR(inode->i_mode)) {
4307 		inode->i_op = &ext4_dir_inode_operations;
4308 		inode->i_fop = &ext4_dir_operations;
4309 	} else if (S_ISLNK(inode->i_mode)) {
4310 		if (ext4_inode_is_fast_symlink(inode)) {
4311 			inode->i_op = &ext4_fast_symlink_inode_operations;
4312 			nd_terminate_link(ei->i_data, inode->i_size,
4313 				sizeof(ei->i_data) - 1);
4314 		} else {
4315 			inode->i_op = &ext4_symlink_inode_operations;
4316 			ext4_set_aops(inode);
4317 		}
4318 	} else {
4319 		inode->i_op = &ext4_special_inode_operations;
4320 		if (raw_inode->i_block[0])
4321 			init_special_inode(inode, inode->i_mode,
4322 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4323 		else
4324 			init_special_inode(inode, inode->i_mode,
4325 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4326 	}
4327 	brelse(iloc.bh);
4328 	ext4_set_inode_flags(inode);
4329 	unlock_new_inode(inode);
4330 	return inode;
4331 
4332 bad_inode:
4333 	iget_failed(inode);
4334 	return ERR_PTR(ret);
4335 }
4336 
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4337 static int ext4_inode_blocks_set(handle_t *handle,
4338 				struct ext4_inode *raw_inode,
4339 				struct ext4_inode_info *ei)
4340 {
4341 	struct inode *inode = &(ei->vfs_inode);
4342 	u64 i_blocks = inode->i_blocks;
4343 	struct super_block *sb = inode->i_sb;
4344 
4345 	if (i_blocks <= ~0U) {
4346 		/*
4347 		 * i_blocks can be represnted in a 32 bit variable
4348 		 * as multiple of 512 bytes
4349 		 */
4350 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4351 		raw_inode->i_blocks_high = 0;
4352 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4353 		return 0;
4354 	}
4355 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4356 		return -EFBIG;
4357 
4358 	if (i_blocks <= 0xffffffffffffULL) {
4359 		/*
4360 		 * i_blocks can be represented in a 48 bit variable
4361 		 * as multiple of 512 bytes
4362 		 */
4363 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4364 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4365 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4366 	} else {
4367 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4368 		/* i_block is stored in file system block size */
4369 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4370 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4371 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4372 	}
4373 	return 0;
4374 }
4375 
4376 /*
4377  * Post the struct inode info into an on-disk inode location in the
4378  * buffer-cache.  This gobbles the caller's reference to the
4379  * buffer_head in the inode location struct.
4380  *
4381  * The caller must have write access to iloc->bh.
4382  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4383 static int ext4_do_update_inode(handle_t *handle,
4384 				struct inode *inode,
4385 				struct ext4_iloc *iloc)
4386 {
4387 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4388 	struct ext4_inode_info *ei = EXT4_I(inode);
4389 	struct buffer_head *bh = iloc->bh;
4390 	int err = 0, rc, block;
4391 
4392 	/* For fields not not tracking in the in-memory inode,
4393 	 * initialise them to zero for new inodes. */
4394 	if (ei->i_state & EXT4_STATE_NEW)
4395 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4396 
4397 	ext4_get_inode_flags(ei);
4398 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4399 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4400 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4401 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4402 /*
4403  * Fix up interoperability with old kernels. Otherwise, old inodes get
4404  * re-used with the upper 16 bits of the uid/gid intact
4405  */
4406 		if (!ei->i_dtime) {
4407 			raw_inode->i_uid_high =
4408 				cpu_to_le16(high_16_bits(inode->i_uid));
4409 			raw_inode->i_gid_high =
4410 				cpu_to_le16(high_16_bits(inode->i_gid));
4411 		} else {
4412 			raw_inode->i_uid_high = 0;
4413 			raw_inode->i_gid_high = 0;
4414 		}
4415 	} else {
4416 		raw_inode->i_uid_low =
4417 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4418 		raw_inode->i_gid_low =
4419 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4420 		raw_inode->i_uid_high = 0;
4421 		raw_inode->i_gid_high = 0;
4422 	}
4423 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4424 
4425 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4426 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4427 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4428 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4429 
4430 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4431 		goto out_brelse;
4432 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4433 	/* clear the migrate flag in the raw_inode */
4434 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4435 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4436 	    cpu_to_le32(EXT4_OS_HURD))
4437 		raw_inode->i_file_acl_high =
4438 			cpu_to_le16(ei->i_file_acl >> 32);
4439 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4440 	ext4_isize_set(raw_inode, ei->i_disksize);
4441 	if (ei->i_disksize > 0x7fffffffULL) {
4442 		struct super_block *sb = inode->i_sb;
4443 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4444 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4445 				EXT4_SB(sb)->s_es->s_rev_level ==
4446 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4447 			/* If this is the first large file
4448 			 * created, add a flag to the superblock.
4449 			 */
4450 			err = ext4_journal_get_write_access(handle,
4451 					EXT4_SB(sb)->s_sbh);
4452 			if (err)
4453 				goto out_brelse;
4454 			ext4_update_dynamic_rev(sb);
4455 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4456 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4457 			sb->s_dirt = 1;
4458 			ext4_handle_sync(handle);
4459 			err = ext4_handle_dirty_metadata(handle, inode,
4460 					EXT4_SB(sb)->s_sbh);
4461 		}
4462 	}
4463 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4464 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4465 		if (old_valid_dev(inode->i_rdev)) {
4466 			raw_inode->i_block[0] =
4467 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4468 			raw_inode->i_block[1] = 0;
4469 		} else {
4470 			raw_inode->i_block[0] = 0;
4471 			raw_inode->i_block[1] =
4472 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4473 			raw_inode->i_block[2] = 0;
4474 		}
4475 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4476 		raw_inode->i_block[block] = ei->i_data[block];
4477 
4478 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4479 	if (ei->i_extra_isize) {
4480 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4481 			raw_inode->i_version_hi =
4482 			cpu_to_le32(inode->i_version >> 32);
4483 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4484 	}
4485 
4486 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4487 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
4488 	if (!err)
4489 		err = rc;
4490 	ei->i_state &= ~EXT4_STATE_NEW;
4491 
4492 out_brelse:
4493 	brelse(bh);
4494 	ext4_std_error(inode->i_sb, err);
4495 	return err;
4496 }
4497 
4498 /*
4499  * ext4_write_inode()
4500  *
4501  * We are called from a few places:
4502  *
4503  * - Within generic_file_write() for O_SYNC files.
4504  *   Here, there will be no transaction running. We wait for any running
4505  *   trasnaction to commit.
4506  *
4507  * - Within sys_sync(), kupdate and such.
4508  *   We wait on commit, if tol to.
4509  *
4510  * - Within prune_icache() (PF_MEMALLOC == true)
4511  *   Here we simply return.  We can't afford to block kswapd on the
4512  *   journal commit.
4513  *
4514  * In all cases it is actually safe for us to return without doing anything,
4515  * because the inode has been copied into a raw inode buffer in
4516  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4517  * knfsd.
4518  *
4519  * Note that we are absolutely dependent upon all inode dirtiers doing the
4520  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4521  * which we are interested.
4522  *
4523  * It would be a bug for them to not do this.  The code:
4524  *
4525  *	mark_inode_dirty(inode)
4526  *	stuff();
4527  *	inode->i_size = expr;
4528  *
4529  * is in error because a kswapd-driven write_inode() could occur while
4530  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4531  * will no longer be on the superblock's dirty inode list.
4532  */
ext4_write_inode(struct inode * inode,int wait)4533 int ext4_write_inode(struct inode *inode, int wait)
4534 {
4535 	if (current->flags & PF_MEMALLOC)
4536 		return 0;
4537 
4538 	if (ext4_journal_current_handle()) {
4539 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4540 		dump_stack();
4541 		return -EIO;
4542 	}
4543 
4544 	if (!wait)
4545 		return 0;
4546 
4547 	return ext4_force_commit(inode->i_sb);
4548 }
4549 
__ext4_write_dirty_metadata(struct inode * inode,struct buffer_head * bh)4550 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4551 {
4552 	int err = 0;
4553 
4554 	mark_buffer_dirty(bh);
4555 	if (inode && inode_needs_sync(inode)) {
4556 		sync_dirty_buffer(bh);
4557 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
4558 			ext4_error(inode->i_sb, __func__,
4559 				   "IO error syncing inode, "
4560 				   "inode=%lu, block=%llu",
4561 				   inode->i_ino,
4562 				   (unsigned long long)bh->b_blocknr);
4563 			err = -EIO;
4564 		}
4565 	}
4566 	return err;
4567 }
4568 
4569 /*
4570  * ext4_setattr()
4571  *
4572  * Called from notify_change.
4573  *
4574  * We want to trap VFS attempts to truncate the file as soon as
4575  * possible.  In particular, we want to make sure that when the VFS
4576  * shrinks i_size, we put the inode on the orphan list and modify
4577  * i_disksize immediately, so that during the subsequent flushing of
4578  * dirty pages and freeing of disk blocks, we can guarantee that any
4579  * commit will leave the blocks being flushed in an unused state on
4580  * disk.  (On recovery, the inode will get truncated and the blocks will
4581  * be freed, so we have a strong guarantee that no future commit will
4582  * leave these blocks visible to the user.)
4583  *
4584  * Another thing we have to assure is that if we are in ordered mode
4585  * and inode is still attached to the committing transaction, we must
4586  * we start writeout of all the dirty pages which are being truncated.
4587  * This way we are sure that all the data written in the previous
4588  * transaction are already on disk (truncate waits for pages under
4589  * writeback).
4590  *
4591  * Called with inode->i_mutex down.
4592  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4593 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4594 {
4595 	struct inode *inode = dentry->d_inode;
4596 	int error, rc = 0;
4597 	const unsigned int ia_valid = attr->ia_valid;
4598 
4599 	error = inode_change_ok(inode, attr);
4600 	if (error)
4601 		return error;
4602 
4603 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4604 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4605 		handle_t *handle;
4606 
4607 		/* (user+group)*(old+new) structure, inode write (sb,
4608 		 * inode block, ? - but truncate inode update has it) */
4609 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4610 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4611 		if (IS_ERR(handle)) {
4612 			error = PTR_ERR(handle);
4613 			goto err_out;
4614 		}
4615 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4616 		if (error) {
4617 			ext4_journal_stop(handle);
4618 			return error;
4619 		}
4620 		/* Update corresponding info in inode so that everything is in
4621 		 * one transaction */
4622 		if (attr->ia_valid & ATTR_UID)
4623 			inode->i_uid = attr->ia_uid;
4624 		if (attr->ia_valid & ATTR_GID)
4625 			inode->i_gid = attr->ia_gid;
4626 		error = ext4_mark_inode_dirty(handle, inode);
4627 		ext4_journal_stop(handle);
4628 	}
4629 
4630 	if (attr->ia_valid & ATTR_SIZE) {
4631 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4632 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4633 
4634 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4635 				error = -EFBIG;
4636 				goto err_out;
4637 			}
4638 		}
4639 	}
4640 
4641 	if (S_ISREG(inode->i_mode) &&
4642 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4643 		handle_t *handle;
4644 
4645 		handle = ext4_journal_start(inode, 3);
4646 		if (IS_ERR(handle)) {
4647 			error = PTR_ERR(handle);
4648 			goto err_out;
4649 		}
4650 
4651 		error = ext4_orphan_add(handle, inode);
4652 		EXT4_I(inode)->i_disksize = attr->ia_size;
4653 		rc = ext4_mark_inode_dirty(handle, inode);
4654 		if (!error)
4655 			error = rc;
4656 		ext4_journal_stop(handle);
4657 
4658 		if (ext4_should_order_data(inode)) {
4659 			error = ext4_begin_ordered_truncate(inode,
4660 							    attr->ia_size);
4661 			if (error) {
4662 				/* Do as much error cleanup as possible */
4663 				handle = ext4_journal_start(inode, 3);
4664 				if (IS_ERR(handle)) {
4665 					ext4_orphan_del(NULL, inode);
4666 					goto err_out;
4667 				}
4668 				ext4_orphan_del(handle, inode);
4669 				ext4_journal_stop(handle);
4670 				goto err_out;
4671 			}
4672 		}
4673 	}
4674 
4675 	rc = inode_setattr(inode, attr);
4676 
4677 	/* If inode_setattr's call to ext4_truncate failed to get a
4678 	 * transaction handle at all, we need to clean up the in-core
4679 	 * orphan list manually. */
4680 	if (inode->i_nlink)
4681 		ext4_orphan_del(NULL, inode);
4682 
4683 	if (!rc && (ia_valid & ATTR_MODE))
4684 		rc = ext4_acl_chmod(inode);
4685 
4686 err_out:
4687 	ext4_std_error(inode->i_sb, error);
4688 	if (!error)
4689 		error = rc;
4690 	return error;
4691 }
4692 
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4693 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4694 		 struct kstat *stat)
4695 {
4696 	struct inode *inode;
4697 	unsigned long delalloc_blocks;
4698 
4699 	inode = dentry->d_inode;
4700 	generic_fillattr(inode, stat);
4701 
4702 	/*
4703 	 * We can't update i_blocks if the block allocation is delayed
4704 	 * otherwise in the case of system crash before the real block
4705 	 * allocation is done, we will have i_blocks inconsistent with
4706 	 * on-disk file blocks.
4707 	 * We always keep i_blocks updated together with real
4708 	 * allocation. But to not confuse with user, stat
4709 	 * will return the blocks that include the delayed allocation
4710 	 * blocks for this file.
4711 	 */
4712 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4713 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4714 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4715 
4716 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4717 	return 0;
4718 }
4719 
ext4_indirect_trans_blocks(struct inode * inode,int nrblocks,int chunk)4720 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4721 				      int chunk)
4722 {
4723 	int indirects;
4724 
4725 	/* if nrblocks are contiguous */
4726 	if (chunk) {
4727 		/*
4728 		 * With N contiguous data blocks, it need at most
4729 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4730 		 * 2 dindirect blocks
4731 		 * 1 tindirect block
4732 		 */
4733 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4734 		return indirects + 3;
4735 	}
4736 	/*
4737 	 * if nrblocks are not contiguous, worse case, each block touch
4738 	 * a indirect block, and each indirect block touch a double indirect
4739 	 * block, plus a triple indirect block
4740 	 */
4741 	indirects = nrblocks * 2 + 1;
4742 	return indirects;
4743 }
4744 
ext4_index_trans_blocks(struct inode * inode,int nrblocks,int chunk)4745 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4746 {
4747 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4748 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4749 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4750 }
4751 
4752 /*
4753  * Account for index blocks, block groups bitmaps and block group
4754  * descriptor blocks if modify datablocks and index blocks
4755  * worse case, the indexs blocks spread over different block groups
4756  *
4757  * If datablocks are discontiguous, they are possible to spread over
4758  * different block groups too. If they are contiugous, with flexbg,
4759  * they could still across block group boundary.
4760  *
4761  * Also account for superblock, inode, quota and xattr blocks
4762  */
ext4_meta_trans_blocks(struct inode * inode,int nrblocks,int chunk)4763 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4764 {
4765 	int groups, gdpblocks;
4766 	int idxblocks;
4767 	int ret = 0;
4768 
4769 	/*
4770 	 * How many index blocks need to touch to modify nrblocks?
4771 	 * The "Chunk" flag indicating whether the nrblocks is
4772 	 * physically contiguous on disk
4773 	 *
4774 	 * For Direct IO and fallocate, they calls get_block to allocate
4775 	 * one single extent at a time, so they could set the "Chunk" flag
4776 	 */
4777 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4778 
4779 	ret = idxblocks;
4780 
4781 	/*
4782 	 * Now let's see how many group bitmaps and group descriptors need
4783 	 * to account
4784 	 */
4785 	groups = idxblocks;
4786 	if (chunk)
4787 		groups += 1;
4788 	else
4789 		groups += nrblocks;
4790 
4791 	gdpblocks = groups;
4792 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4793 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4794 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4795 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4796 
4797 	/* bitmaps and block group descriptor blocks */
4798 	ret += groups + gdpblocks;
4799 
4800 	/* Blocks for super block, inode, quota and xattr blocks */
4801 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4802 
4803 	return ret;
4804 }
4805 
4806 /*
4807  * Calulate the total number of credits to reserve to fit
4808  * the modification of a single pages into a single transaction,
4809  * which may include multiple chunks of block allocations.
4810  *
4811  * This could be called via ext4_write_begin()
4812  *
4813  * We need to consider the worse case, when
4814  * one new block per extent.
4815  */
ext4_writepage_trans_blocks(struct inode * inode)4816 int ext4_writepage_trans_blocks(struct inode *inode)
4817 {
4818 	int bpp = ext4_journal_blocks_per_page(inode);
4819 	int ret;
4820 
4821 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4822 
4823 	/* Account for data blocks for journalled mode */
4824 	if (ext4_should_journal_data(inode))
4825 		ret += bpp;
4826 	return ret;
4827 }
4828 
4829 /*
4830  * Calculate the journal credits for a chunk of data modification.
4831  *
4832  * This is called from DIO, fallocate or whoever calling
4833  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4834  *
4835  * journal buffers for data blocks are not included here, as DIO
4836  * and fallocate do no need to journal data buffers.
4837  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)4838 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4839 {
4840 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4841 }
4842 
4843 /*
4844  * The caller must have previously called ext4_reserve_inode_write().
4845  * Give this, we know that the caller already has write access to iloc->bh.
4846  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4847 int ext4_mark_iloc_dirty(handle_t *handle,
4848 		struct inode *inode, struct ext4_iloc *iloc)
4849 {
4850 	int err = 0;
4851 
4852 	if (test_opt(inode->i_sb, I_VERSION))
4853 		inode_inc_iversion(inode);
4854 
4855 	/* the do_update_inode consumes one bh->b_count */
4856 	get_bh(iloc->bh);
4857 
4858 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4859 	err = ext4_do_update_inode(handle, inode, iloc);
4860 	put_bh(iloc->bh);
4861 	return err;
4862 }
4863 
4864 /*
4865  * On success, We end up with an outstanding reference count against
4866  * iloc->bh.  This _must_ be cleaned up later.
4867  */
4868 
4869 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4870 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4871 			 struct ext4_iloc *iloc)
4872 {
4873 	int err;
4874 
4875 	err = ext4_get_inode_loc(inode, iloc);
4876 	if (!err) {
4877 		BUFFER_TRACE(iloc->bh, "get_write_access");
4878 		err = ext4_journal_get_write_access(handle, iloc->bh);
4879 		if (err) {
4880 			brelse(iloc->bh);
4881 			iloc->bh = NULL;
4882 		}
4883 	}
4884 	ext4_std_error(inode->i_sb, err);
4885 	return err;
4886 }
4887 
4888 /*
4889  * Expand an inode by new_extra_isize bytes.
4890  * Returns 0 on success or negative error number on failure.
4891  */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)4892 static int ext4_expand_extra_isize(struct inode *inode,
4893 				   unsigned int new_extra_isize,
4894 				   struct ext4_iloc iloc,
4895 				   handle_t *handle)
4896 {
4897 	struct ext4_inode *raw_inode;
4898 	struct ext4_xattr_ibody_header *header;
4899 	struct ext4_xattr_entry *entry;
4900 
4901 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4902 		return 0;
4903 
4904 	raw_inode = ext4_raw_inode(&iloc);
4905 
4906 	header = IHDR(inode, raw_inode);
4907 	entry = IFIRST(header);
4908 
4909 	/* No extended attributes present */
4910 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4911 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4912 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4913 			new_extra_isize);
4914 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4915 		return 0;
4916 	}
4917 
4918 	/* try to expand with EAs present */
4919 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4920 					  raw_inode, handle);
4921 }
4922 
4923 /*
4924  * What we do here is to mark the in-core inode as clean with respect to inode
4925  * dirtiness (it may still be data-dirty).
4926  * This means that the in-core inode may be reaped by prune_icache
4927  * without having to perform any I/O.  This is a very good thing,
4928  * because *any* task may call prune_icache - even ones which
4929  * have a transaction open against a different journal.
4930  *
4931  * Is this cheating?  Not really.  Sure, we haven't written the
4932  * inode out, but prune_icache isn't a user-visible syncing function.
4933  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4934  * we start and wait on commits.
4935  *
4936  * Is this efficient/effective?  Well, we're being nice to the system
4937  * by cleaning up our inodes proactively so they can be reaped
4938  * without I/O.  But we are potentially leaving up to five seconds'
4939  * worth of inodes floating about which prune_icache wants us to
4940  * write out.  One way to fix that would be to get prune_icache()
4941  * to do a write_super() to free up some memory.  It has the desired
4942  * effect.
4943  */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)4944 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4945 {
4946 	struct ext4_iloc iloc;
4947 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4948 	static unsigned int mnt_count;
4949 	int err, ret;
4950 
4951 	might_sleep();
4952 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4953 	if (ext4_handle_valid(handle) &&
4954 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4955 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4956 		/*
4957 		 * We need extra buffer credits since we may write into EA block
4958 		 * with this same handle. If journal_extend fails, then it will
4959 		 * only result in a minor loss of functionality for that inode.
4960 		 * If this is felt to be critical, then e2fsck should be run to
4961 		 * force a large enough s_min_extra_isize.
4962 		 */
4963 		if ((jbd2_journal_extend(handle,
4964 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4965 			ret = ext4_expand_extra_isize(inode,
4966 						      sbi->s_want_extra_isize,
4967 						      iloc, handle);
4968 			if (ret) {
4969 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4970 				if (mnt_count !=
4971 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4972 					ext4_warning(inode->i_sb, __func__,
4973 					"Unable to expand inode %lu. Delete"
4974 					" some EAs or run e2fsck.",
4975 					inode->i_ino);
4976 					mnt_count =
4977 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4978 				}
4979 			}
4980 		}
4981 	}
4982 	if (!err)
4983 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4984 	return err;
4985 }
4986 
4987 /*
4988  * ext4_dirty_inode() is called from __mark_inode_dirty()
4989  *
4990  * We're really interested in the case where a file is being extended.
4991  * i_size has been changed by generic_commit_write() and we thus need
4992  * to include the updated inode in the current transaction.
4993  *
4994  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4995  * are allocated to the file.
4996  *
4997  * If the inode is marked synchronous, we don't honour that here - doing
4998  * so would cause a commit on atime updates, which we don't bother doing.
4999  * We handle synchronous inodes at the highest possible level.
5000  */
ext4_dirty_inode(struct inode * inode)5001 void ext4_dirty_inode(struct inode *inode)
5002 {
5003 	handle_t *current_handle = ext4_journal_current_handle();
5004 	handle_t *handle;
5005 
5006 	if (!ext4_handle_valid(current_handle)) {
5007 		ext4_mark_inode_dirty(current_handle, inode);
5008 		return;
5009 	}
5010 
5011 	handle = ext4_journal_start(inode, 2);
5012 	if (IS_ERR(handle))
5013 		goto out;
5014 	if (current_handle &&
5015 		current_handle->h_transaction != handle->h_transaction) {
5016 		/* This task has a transaction open against a different fs */
5017 		printk(KERN_EMERG "%s: transactions do not match!\n",
5018 		       __func__);
5019 	} else {
5020 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
5021 				current_handle);
5022 		ext4_mark_inode_dirty(handle, inode);
5023 	}
5024 	ext4_journal_stop(handle);
5025 out:
5026 	return;
5027 }
5028 
5029 #if 0
5030 /*
5031  * Bind an inode's backing buffer_head into this transaction, to prevent
5032  * it from being flushed to disk early.  Unlike
5033  * ext4_reserve_inode_write, this leaves behind no bh reference and
5034  * returns no iloc structure, so the caller needs to repeat the iloc
5035  * lookup to mark the inode dirty later.
5036  */
5037 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5038 {
5039 	struct ext4_iloc iloc;
5040 
5041 	int err = 0;
5042 	if (handle) {
5043 		err = ext4_get_inode_loc(inode, &iloc);
5044 		if (!err) {
5045 			BUFFER_TRACE(iloc.bh, "get_write_access");
5046 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5047 			if (!err)
5048 				err = ext4_handle_dirty_metadata(handle,
5049 								 inode,
5050 								 iloc.bh);
5051 			brelse(iloc.bh);
5052 		}
5053 	}
5054 	ext4_std_error(inode->i_sb, err);
5055 	return err;
5056 }
5057 #endif
5058 
ext4_change_inode_journal_flag(struct inode * inode,int val)5059 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5060 {
5061 	journal_t *journal;
5062 	handle_t *handle;
5063 	int err;
5064 
5065 	/*
5066 	 * We have to be very careful here: changing a data block's
5067 	 * journaling status dynamically is dangerous.  If we write a
5068 	 * data block to the journal, change the status and then delete
5069 	 * that block, we risk forgetting to revoke the old log record
5070 	 * from the journal and so a subsequent replay can corrupt data.
5071 	 * So, first we make sure that the journal is empty and that
5072 	 * nobody is changing anything.
5073 	 */
5074 
5075 	journal = EXT4_JOURNAL(inode);
5076 	if (!journal)
5077 		return 0;
5078 	if (is_journal_aborted(journal))
5079 		return -EROFS;
5080 
5081 	jbd2_journal_lock_updates(journal);
5082 	jbd2_journal_flush(journal);
5083 
5084 	/*
5085 	 * OK, there are no updates running now, and all cached data is
5086 	 * synced to disk.  We are now in a completely consistent state
5087 	 * which doesn't have anything in the journal, and we know that
5088 	 * no filesystem updates are running, so it is safe to modify
5089 	 * the inode's in-core data-journaling state flag now.
5090 	 */
5091 
5092 	if (val)
5093 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5094 	else
5095 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5096 	ext4_set_aops(inode);
5097 
5098 	jbd2_journal_unlock_updates(journal);
5099 
5100 	/* Finally we can mark the inode as dirty. */
5101 
5102 	handle = ext4_journal_start(inode, 1);
5103 	if (IS_ERR(handle))
5104 		return PTR_ERR(handle);
5105 
5106 	err = ext4_mark_inode_dirty(handle, inode);
5107 	ext4_handle_sync(handle);
5108 	ext4_journal_stop(handle);
5109 	ext4_std_error(inode->i_sb, err);
5110 
5111 	return err;
5112 }
5113 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5114 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5115 {
5116 	return !buffer_mapped(bh);
5117 }
5118 
ext4_page_mkwrite(struct vm_area_struct * vma,struct page * page)5119 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5120 {
5121 	loff_t size;
5122 	unsigned long len;
5123 	int ret = -EINVAL;
5124 	void *fsdata;
5125 	struct file *file = vma->vm_file;
5126 	struct inode *inode = file->f_path.dentry->d_inode;
5127 	struct address_space *mapping = inode->i_mapping;
5128 
5129 	/*
5130 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5131 	 * get i_mutex because we are already holding mmap_sem.
5132 	 */
5133 	down_read(&inode->i_alloc_sem);
5134 	size = i_size_read(inode);
5135 	if (page->mapping != mapping || size <= page_offset(page)
5136 	    || !PageUptodate(page)) {
5137 		/* page got truncated from under us? */
5138 		goto out_unlock;
5139 	}
5140 	ret = 0;
5141 	if (PageMappedToDisk(page))
5142 		goto out_unlock;
5143 
5144 	if (page->index == size >> PAGE_CACHE_SHIFT)
5145 		len = size & ~PAGE_CACHE_MASK;
5146 	else
5147 		len = PAGE_CACHE_SIZE;
5148 
5149 	if (page_has_buffers(page)) {
5150 		/* return if we have all the buffers mapped */
5151 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5152 				       ext4_bh_unmapped))
5153 			goto out_unlock;
5154 	}
5155 	/*
5156 	 * OK, we need to fill the hole... Do write_begin write_end
5157 	 * to do block allocation/reservation.We are not holding
5158 	 * inode.i__mutex here. That allow * parallel write_begin,
5159 	 * write_end call. lock_page prevent this from happening
5160 	 * on the same page though
5161 	 */
5162 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5163 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5164 	if (ret < 0)
5165 		goto out_unlock;
5166 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5167 			len, len, page, fsdata);
5168 	if (ret < 0)
5169 		goto out_unlock;
5170 	ret = 0;
5171 out_unlock:
5172 	up_read(&inode->i_alloc_sem);
5173 	return ret;
5174 }
5175