• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25 
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
42 #include <linux/fs.h>
43 #include <linux/pagemap.h>
44 
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
47     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
49     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #endif
55 
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
58 #endif
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
61 #endif
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
64 #endif
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
67 #endif
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE  50
70 #endif
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH  8
73 #endif
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS  0
76 #endif
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG        0
79 #endif
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG        0
82 #endif
83 
84 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
85 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
86 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
87 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
88 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
89 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
90 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
91 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
92 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
93 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
94 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
95 static uint log            = CONFIG_NANDSIM_LOG;
96 static uint dbg            = CONFIG_NANDSIM_DBG;
97 static unsigned long parts[MAX_MTD_DEVICES];
98 static unsigned int parts_num;
99 static char *badblocks = NULL;
100 static char *weakblocks = NULL;
101 static char *weakpages = NULL;
102 static unsigned int bitflips = 0;
103 static char *gravepages = NULL;
104 static unsigned int rptwear = 0;
105 static unsigned int overridesize = 0;
106 static char *cache_file = NULL;
107 
108 module_param(first_id_byte,  uint, 0400);
109 module_param(second_id_byte, uint, 0400);
110 module_param(third_id_byte,  uint, 0400);
111 module_param(fourth_id_byte, uint, 0400);
112 module_param(access_delay,   uint, 0400);
113 module_param(programm_delay, uint, 0400);
114 module_param(erase_delay,    uint, 0400);
115 module_param(output_cycle,   uint, 0400);
116 module_param(input_cycle,    uint, 0400);
117 module_param(bus_width,      uint, 0400);
118 module_param(do_delays,      uint, 0400);
119 module_param(log,            uint, 0400);
120 module_param(dbg,            uint, 0400);
121 module_param_array(parts, ulong, &parts_num, 0400);
122 module_param(badblocks,      charp, 0400);
123 module_param(weakblocks,     charp, 0400);
124 module_param(weakpages,      charp, 0400);
125 module_param(bitflips,       uint, 0400);
126 module_param(gravepages,     charp, 0400);
127 module_param(rptwear,        uint, 0400);
128 module_param(overridesize,   uint, 0400);
129 module_param(cache_file,     charp, 0400);
130 
131 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
132 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
133 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
134 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
135 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
136 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
137 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
138 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
139 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
140 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
141 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
142 MODULE_PARM_DESC(log,            "Perform logging if not zero");
143 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
144 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
145 /* Page and erase block positions for the following parameters are independent of any partitions */
146 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
147 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
148 				 " separated by commas e.g. 113:2 means eb 113"
149 				 " can be erased only twice before failing");
150 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
151 				 " separated by commas e.g. 1401:2 means page 1401"
152 				 " can be written only twice before failing");
153 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
154 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
155 				 " separated by commas e.g. 1401:2 means page 1401"
156 				 " can be read only twice before failing");
157 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
158 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
159 				 "The size is specified in erase blocks and as the exponent of a power of two"
160 				 " e.g. 5 means a size of 32 erase blocks");
161 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
162 
163 /* The largest possible page size */
164 #define NS_LARGEST_PAGE_SIZE	2048
165 
166 /* The prefix for simulator output */
167 #define NS_OUTPUT_PREFIX "[nandsim]"
168 
169 /* Simulator's output macros (logging, debugging, warning, error) */
170 #define NS_LOG(args...) \
171 	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
172 #define NS_DBG(args...) \
173 	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
174 #define NS_WARN(args...) \
175 	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
176 #define NS_ERR(args...) \
177 	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
178 #define NS_INFO(args...) \
179 	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
180 
181 /* Busy-wait delay macros (microseconds, milliseconds) */
182 #define NS_UDELAY(us) \
183         do { if (do_delays) udelay(us); } while(0)
184 #define NS_MDELAY(us) \
185         do { if (do_delays) mdelay(us); } while(0)
186 
187 /* Is the nandsim structure initialized ? */
188 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
189 
190 /* Good operation completion status */
191 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
192 
193 /* Operation failed completion status */
194 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
195 
196 /* Calculate the page offset in flash RAM image by (row, column) address */
197 #define NS_RAW_OFFSET(ns) \
198 	(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
199 
200 /* Calculate the OOB offset in flash RAM image by (row, column) address */
201 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
202 
203 /* After a command is input, the simulator goes to one of the following states */
204 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
205 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
206 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
207 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
208 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
209 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
210 #define STATE_CMD_STATUS       0x00000007 /* read status */
211 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
212 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
213 #define STATE_CMD_READID       0x0000000A /* read ID */
214 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
215 #define STATE_CMD_RESET        0x0000000C /* reset */
216 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
217 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
218 #define STATE_CMD_MASK         0x0000000F /* command states mask */
219 
220 /* After an address is input, the simulator goes to one of these states */
221 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
222 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
223 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
224 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
225 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
226 
227 /* Durind data input/output the simulator is in these states */
228 #define STATE_DATAIN           0x00000100 /* waiting for data input */
229 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
230 
231 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
232 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
233 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
234 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
235 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
236 
237 /* Previous operation is done, ready to accept new requests */
238 #define STATE_READY            0x00000000
239 
240 /* This state is used to mark that the next state isn't known yet */
241 #define STATE_UNKNOWN          0x10000000
242 
243 /* Simulator's actions bit masks */
244 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
245 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
246 #define ACTION_SECERASE  0x00300000 /* erase sector */
247 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
248 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
249 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
250 #define ACTION_MASK      0x00700000 /* action mask */
251 
252 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
253 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
254 
255 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
256 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
257 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
258 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
259 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
260 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
261 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
262 #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
263 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
264 
265 /* Remove action bits ftom state */
266 #define NS_STATE(x) ((x) & ~ACTION_MASK)
267 
268 /*
269  * Maximum previous states which need to be saved. Currently saving is
270  * only needed for page programm operation with preceeded read command
271  * (which is only valid for 512-byte pages).
272  */
273 #define NS_MAX_PREVSTATES 1
274 
275 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
276 #define NS_MAX_HELD_PAGES 16
277 
278 /*
279  * A union to represent flash memory contents and flash buffer.
280  */
281 union ns_mem {
282 	u_char *byte;    /* for byte access */
283 	uint16_t *word;  /* for 16-bit word access */
284 };
285 
286 /*
287  * The structure which describes all the internal simulator data.
288  */
289 struct nandsim {
290 	struct mtd_partition partitions[MAX_MTD_DEVICES];
291 	unsigned int nbparts;
292 
293 	uint busw;              /* flash chip bus width (8 or 16) */
294 	u_char ids[4];          /* chip's ID bytes */
295 	uint32_t options;       /* chip's characteristic bits */
296 	uint32_t state;         /* current chip state */
297 	uint32_t nxstate;       /* next expected state */
298 
299 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
300 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
301 	uint16_t npstates;      /* number of previous states saved */
302 	uint16_t stateidx;      /* current state index */
303 
304 	/* The simulated NAND flash pages array */
305 	union ns_mem *pages;
306 
307 	/* Slab allocator for nand pages */
308 	struct kmem_cache *nand_pages_slab;
309 
310 	/* Internal buffer of page + OOB size bytes */
311 	union ns_mem buf;
312 
313 	/* NAND flash "geometry" */
314 	struct nandsin_geometry {
315 		uint64_t totsz;     /* total flash size, bytes */
316 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
317 		uint pgsz;          /* NAND flash page size, bytes */
318 		uint oobsz;         /* page OOB area size, bytes */
319 		uint64_t totszoob;  /* total flash size including OOB, bytes */
320 		uint pgszoob;       /* page size including OOB , bytes*/
321 		uint secszoob;      /* sector size including OOB, bytes */
322 		uint pgnum;         /* total number of pages */
323 		uint pgsec;         /* number of pages per sector */
324 		uint secshift;      /* bits number in sector size */
325 		uint pgshift;       /* bits number in page size */
326 		uint oobshift;      /* bits number in OOB size */
327 		uint pgaddrbytes;   /* bytes per page address */
328 		uint secaddrbytes;  /* bytes per sector address */
329 		uint idbytes;       /* the number ID bytes that this chip outputs */
330 	} geom;
331 
332 	/* NAND flash internal registers */
333 	struct nandsim_regs {
334 		unsigned command; /* the command register */
335 		u_char   status;  /* the status register */
336 		uint     row;     /* the page number */
337 		uint     column;  /* the offset within page */
338 		uint     count;   /* internal counter */
339 		uint     num;     /* number of bytes which must be processed */
340 		uint     off;     /* fixed page offset */
341 	} regs;
342 
343 	/* NAND flash lines state */
344         struct ns_lines_status {
345                 int ce;  /* chip Enable */
346                 int cle; /* command Latch Enable */
347                 int ale; /* address Latch Enable */
348                 int wp;  /* write Protect */
349         } lines;
350 
351 	/* Fields needed when using a cache file */
352 	struct file *cfile; /* Open file */
353 	unsigned char *pages_written; /* Which pages have been written */
354 	void *file_buf;
355 	struct page *held_pages[NS_MAX_HELD_PAGES];
356 	int held_cnt;
357 };
358 
359 /*
360  * Operations array. To perform any operation the simulator must pass
361  * through the correspondent states chain.
362  */
363 static struct nandsim_operations {
364 	uint32_t reqopts;  /* options which are required to perform the operation */
365 	uint32_t states[NS_OPER_STATES]; /* operation's states */
366 } ops[NS_OPER_NUM] = {
367 	/* Read page + OOB from the beginning */
368 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
369 			STATE_DATAOUT, STATE_READY}},
370 	/* Read page + OOB from the second half */
371 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
372 			STATE_DATAOUT, STATE_READY}},
373 	/* Read OOB */
374 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
375 			STATE_DATAOUT, STATE_READY}},
376 	/* Programm page starting from the beginning */
377 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
378 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
379 	/* Programm page starting from the beginning */
380 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
381 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
382 	/* Programm page starting from the second half */
383 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
384 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
385 	/* Programm OOB */
386 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
387 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
388 	/* Erase sector */
389 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
390 	/* Read status */
391 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
392 	/* Read multi-plane status */
393 	{OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
394 	/* Read ID */
395 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
396 	/* Large page devices read page */
397 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
398 			       STATE_DATAOUT, STATE_READY}},
399 	/* Large page devices random page read */
400 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
401 			       STATE_DATAOUT, STATE_READY}},
402 };
403 
404 struct weak_block {
405 	struct list_head list;
406 	unsigned int erase_block_no;
407 	unsigned int max_erases;
408 	unsigned int erases_done;
409 };
410 
411 static LIST_HEAD(weak_blocks);
412 
413 struct weak_page {
414 	struct list_head list;
415 	unsigned int page_no;
416 	unsigned int max_writes;
417 	unsigned int writes_done;
418 };
419 
420 static LIST_HEAD(weak_pages);
421 
422 struct grave_page {
423 	struct list_head list;
424 	unsigned int page_no;
425 	unsigned int max_reads;
426 	unsigned int reads_done;
427 };
428 
429 static LIST_HEAD(grave_pages);
430 
431 static unsigned long *erase_block_wear = NULL;
432 static unsigned int wear_eb_count = 0;
433 static unsigned long total_wear = 0;
434 static unsigned int rptwear_cnt = 0;
435 
436 /* MTD structure for NAND controller */
437 static struct mtd_info *nsmtd;
438 
439 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
440 
441 /*
442  * Allocate array of page pointers, create slab allocation for an array
443  * and initialize the array by NULL pointers.
444  *
445  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
446  */
alloc_device(struct nandsim * ns)447 static int alloc_device(struct nandsim *ns)
448 {
449 	struct file *cfile;
450 	int i, err;
451 
452 	if (cache_file) {
453 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
454 		if (IS_ERR(cfile))
455 			return PTR_ERR(cfile);
456 		if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
457 			NS_ERR("alloc_device: cache file not readable\n");
458 			err = -EINVAL;
459 			goto err_close;
460 		}
461 		if (!cfile->f_op->write && !cfile->f_op->aio_write) {
462 			NS_ERR("alloc_device: cache file not writeable\n");
463 			err = -EINVAL;
464 			goto err_close;
465 		}
466 		ns->pages_written = vmalloc(ns->geom.pgnum);
467 		if (!ns->pages_written) {
468 			NS_ERR("alloc_device: unable to allocate pages written array\n");
469 			err = -ENOMEM;
470 			goto err_close;
471 		}
472 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
473 		if (!ns->file_buf) {
474 			NS_ERR("alloc_device: unable to allocate file buf\n");
475 			err = -ENOMEM;
476 			goto err_free;
477 		}
478 		ns->cfile = cfile;
479 		memset(ns->pages_written, 0, ns->geom.pgnum);
480 		return 0;
481 	}
482 
483 	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
484 	if (!ns->pages) {
485 		NS_ERR("alloc_device: unable to allocate page array\n");
486 		return -ENOMEM;
487 	}
488 	for (i = 0; i < ns->geom.pgnum; i++) {
489 		ns->pages[i].byte = NULL;
490 	}
491 	ns->nand_pages_slab = kmem_cache_create("nandsim",
492 						ns->geom.pgszoob, 0, 0, NULL);
493 	if (!ns->nand_pages_slab) {
494 		NS_ERR("cache_create: unable to create kmem_cache\n");
495 		return -ENOMEM;
496 	}
497 
498 	return 0;
499 
500 err_free:
501 	vfree(ns->pages_written);
502 err_close:
503 	filp_close(cfile, NULL);
504 	return err;
505 }
506 
507 /*
508  * Free any allocated pages, and free the array of page pointers.
509  */
free_device(struct nandsim * ns)510 static void free_device(struct nandsim *ns)
511 {
512 	int i;
513 
514 	if (ns->cfile) {
515 		kfree(ns->file_buf);
516 		vfree(ns->pages_written);
517 		filp_close(ns->cfile, NULL);
518 		return;
519 	}
520 
521 	if (ns->pages) {
522 		for (i = 0; i < ns->geom.pgnum; i++) {
523 			if (ns->pages[i].byte)
524 				kmem_cache_free(ns->nand_pages_slab,
525 						ns->pages[i].byte);
526 		}
527 		kmem_cache_destroy(ns->nand_pages_slab);
528 		vfree(ns->pages);
529 	}
530 }
531 
get_partition_name(int i)532 static char *get_partition_name(int i)
533 {
534 	char buf[64];
535 	sprintf(buf, "NAND simulator partition %d", i);
536 	return kstrdup(buf, GFP_KERNEL);
537 }
538 
divide(uint64_t n,uint32_t d)539 static uint64_t divide(uint64_t n, uint32_t d)
540 {
541 	do_div(n, d);
542 	return n;
543 }
544 
545 /*
546  * Initialize the nandsim structure.
547  *
548  * RETURNS: 0 if success, -ERRNO if failure.
549  */
init_nandsim(struct mtd_info * mtd)550 static int init_nandsim(struct mtd_info *mtd)
551 {
552 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
553 	struct nandsim   *ns   = (struct nandsim *)(chip->priv);
554 	int i, ret = 0;
555 	uint64_t remains;
556 	uint64_t next_offset;
557 
558 	if (NS_IS_INITIALIZED(ns)) {
559 		NS_ERR("init_nandsim: nandsim is already initialized\n");
560 		return -EIO;
561 	}
562 
563 	/* Force mtd to not do delays */
564 	chip->chip_delay = 0;
565 
566 	/* Initialize the NAND flash parameters */
567 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
568 	ns->geom.totsz    = mtd->size;
569 	ns->geom.pgsz     = mtd->writesize;
570 	ns->geom.oobsz    = mtd->oobsize;
571 	ns->geom.secsz    = mtd->erasesize;
572 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
573 	ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
574 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
575 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
576 	ns->geom.pgshift  = chip->page_shift;
577 	ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
578 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
579 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
580 	ns->options = 0;
581 
582 	if (ns->geom.pgsz == 256) {
583 		ns->options |= OPT_PAGE256;
584 	}
585 	else if (ns->geom.pgsz == 512) {
586 		ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
587 		if (ns->busw == 8)
588 			ns->options |= OPT_PAGE512_8BIT;
589 	} else if (ns->geom.pgsz == 2048) {
590 		ns->options |= OPT_PAGE2048;
591 	} else {
592 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
593 		return -EIO;
594 	}
595 
596 	if (ns->options & OPT_SMALLPAGE) {
597 		if (ns->geom.totsz <= (32 << 20)) {
598 			ns->geom.pgaddrbytes  = 3;
599 			ns->geom.secaddrbytes = 2;
600 		} else {
601 			ns->geom.pgaddrbytes  = 4;
602 			ns->geom.secaddrbytes = 3;
603 		}
604 	} else {
605 		if (ns->geom.totsz <= (128 << 20)) {
606 			ns->geom.pgaddrbytes  = 4;
607 			ns->geom.secaddrbytes = 2;
608 		} else {
609 			ns->geom.pgaddrbytes  = 5;
610 			ns->geom.secaddrbytes = 3;
611 		}
612 	}
613 
614 	/* Fill the partition_info structure */
615 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
616 		NS_ERR("too many partitions.\n");
617 		ret = -EINVAL;
618 		goto error;
619 	}
620 	remains = ns->geom.totsz;
621 	next_offset = 0;
622 	for (i = 0; i < parts_num; ++i) {
623 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
624 
625 		if (!part_sz || part_sz > remains) {
626 			NS_ERR("bad partition size.\n");
627 			ret = -EINVAL;
628 			goto error;
629 		}
630 		ns->partitions[i].name   = get_partition_name(i);
631 		ns->partitions[i].offset = next_offset;
632 		ns->partitions[i].size   = part_sz;
633 		next_offset += ns->partitions[i].size;
634 		remains -= ns->partitions[i].size;
635 	}
636 	ns->nbparts = parts_num;
637 	if (remains) {
638 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
639 			NS_ERR("too many partitions.\n");
640 			ret = -EINVAL;
641 			goto error;
642 		}
643 		ns->partitions[i].name   = get_partition_name(i);
644 		ns->partitions[i].offset = next_offset;
645 		ns->partitions[i].size   = remains;
646 		ns->nbparts += 1;
647 	}
648 
649 	/* Detect how many ID bytes the NAND chip outputs */
650         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
651                 if (second_id_byte != nand_flash_ids[i].id)
652                         continue;
653 		if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
654 			ns->options |= OPT_AUTOINCR;
655 	}
656 
657 	if (ns->busw == 16)
658 		NS_WARN("16-bit flashes support wasn't tested\n");
659 
660 	printk("flash size: %llu MiB\n",
661 			(unsigned long long)ns->geom.totsz >> 20);
662 	printk("page size: %u bytes\n",         ns->geom.pgsz);
663 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
664 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
665 	printk("pages number: %u\n",            ns->geom.pgnum);
666 	printk("pages per sector: %u\n",        ns->geom.pgsec);
667 	printk("bus width: %u\n",               ns->busw);
668 	printk("bits in sector size: %u\n",     ns->geom.secshift);
669 	printk("bits in page size: %u\n",       ns->geom.pgshift);
670 	printk("bits in OOB size: %u\n",	ns->geom.oobshift);
671 	printk("flash size with OOB: %llu KiB\n",
672 			(unsigned long long)ns->geom.totszoob >> 10);
673 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
674 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
675 	printk("options: %#x\n",                ns->options);
676 
677 	if ((ret = alloc_device(ns)) != 0)
678 		goto error;
679 
680 	/* Allocate / initialize the internal buffer */
681 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
682 	if (!ns->buf.byte) {
683 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
684 			ns->geom.pgszoob);
685 		ret = -ENOMEM;
686 		goto error;
687 	}
688 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
689 
690 	return 0;
691 
692 error:
693 	free_device(ns);
694 
695 	return ret;
696 }
697 
698 /*
699  * Free the nandsim structure.
700  */
free_nandsim(struct nandsim * ns)701 static void free_nandsim(struct nandsim *ns)
702 {
703 	kfree(ns->buf.byte);
704 	free_device(ns);
705 
706 	return;
707 }
708 
parse_badblocks(struct nandsim * ns,struct mtd_info * mtd)709 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
710 {
711 	char *w;
712 	int zero_ok;
713 	unsigned int erase_block_no;
714 	loff_t offset;
715 
716 	if (!badblocks)
717 		return 0;
718 	w = badblocks;
719 	do {
720 		zero_ok = (*w == '0' ? 1 : 0);
721 		erase_block_no = simple_strtoul(w, &w, 0);
722 		if (!zero_ok && !erase_block_no) {
723 			NS_ERR("invalid badblocks.\n");
724 			return -EINVAL;
725 		}
726 		offset = erase_block_no * ns->geom.secsz;
727 		if (mtd->block_markbad(mtd, offset)) {
728 			NS_ERR("invalid badblocks.\n");
729 			return -EINVAL;
730 		}
731 		if (*w == ',')
732 			w += 1;
733 	} while (*w);
734 	return 0;
735 }
736 
parse_weakblocks(void)737 static int parse_weakblocks(void)
738 {
739 	char *w;
740 	int zero_ok;
741 	unsigned int erase_block_no;
742 	unsigned int max_erases;
743 	struct weak_block *wb;
744 
745 	if (!weakblocks)
746 		return 0;
747 	w = weakblocks;
748 	do {
749 		zero_ok = (*w == '0' ? 1 : 0);
750 		erase_block_no = simple_strtoul(w, &w, 0);
751 		if (!zero_ok && !erase_block_no) {
752 			NS_ERR("invalid weakblocks.\n");
753 			return -EINVAL;
754 		}
755 		max_erases = 3;
756 		if (*w == ':') {
757 			w += 1;
758 			max_erases = simple_strtoul(w, &w, 0);
759 		}
760 		if (*w == ',')
761 			w += 1;
762 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
763 		if (!wb) {
764 			NS_ERR("unable to allocate memory.\n");
765 			return -ENOMEM;
766 		}
767 		wb->erase_block_no = erase_block_no;
768 		wb->max_erases = max_erases;
769 		list_add(&wb->list, &weak_blocks);
770 	} while (*w);
771 	return 0;
772 }
773 
erase_error(unsigned int erase_block_no)774 static int erase_error(unsigned int erase_block_no)
775 {
776 	struct weak_block *wb;
777 
778 	list_for_each_entry(wb, &weak_blocks, list)
779 		if (wb->erase_block_no == erase_block_no) {
780 			if (wb->erases_done >= wb->max_erases)
781 				return 1;
782 			wb->erases_done += 1;
783 			return 0;
784 		}
785 	return 0;
786 }
787 
parse_weakpages(void)788 static int parse_weakpages(void)
789 {
790 	char *w;
791 	int zero_ok;
792 	unsigned int page_no;
793 	unsigned int max_writes;
794 	struct weak_page *wp;
795 
796 	if (!weakpages)
797 		return 0;
798 	w = weakpages;
799 	do {
800 		zero_ok = (*w == '0' ? 1 : 0);
801 		page_no = simple_strtoul(w, &w, 0);
802 		if (!zero_ok && !page_no) {
803 			NS_ERR("invalid weakpagess.\n");
804 			return -EINVAL;
805 		}
806 		max_writes = 3;
807 		if (*w == ':') {
808 			w += 1;
809 			max_writes = simple_strtoul(w, &w, 0);
810 		}
811 		if (*w == ',')
812 			w += 1;
813 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
814 		if (!wp) {
815 			NS_ERR("unable to allocate memory.\n");
816 			return -ENOMEM;
817 		}
818 		wp->page_no = page_no;
819 		wp->max_writes = max_writes;
820 		list_add(&wp->list, &weak_pages);
821 	} while (*w);
822 	return 0;
823 }
824 
write_error(unsigned int page_no)825 static int write_error(unsigned int page_no)
826 {
827 	struct weak_page *wp;
828 
829 	list_for_each_entry(wp, &weak_pages, list)
830 		if (wp->page_no == page_no) {
831 			if (wp->writes_done >= wp->max_writes)
832 				return 1;
833 			wp->writes_done += 1;
834 			return 0;
835 		}
836 	return 0;
837 }
838 
parse_gravepages(void)839 static int parse_gravepages(void)
840 {
841 	char *g;
842 	int zero_ok;
843 	unsigned int page_no;
844 	unsigned int max_reads;
845 	struct grave_page *gp;
846 
847 	if (!gravepages)
848 		return 0;
849 	g = gravepages;
850 	do {
851 		zero_ok = (*g == '0' ? 1 : 0);
852 		page_no = simple_strtoul(g, &g, 0);
853 		if (!zero_ok && !page_no) {
854 			NS_ERR("invalid gravepagess.\n");
855 			return -EINVAL;
856 		}
857 		max_reads = 3;
858 		if (*g == ':') {
859 			g += 1;
860 			max_reads = simple_strtoul(g, &g, 0);
861 		}
862 		if (*g == ',')
863 			g += 1;
864 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
865 		if (!gp) {
866 			NS_ERR("unable to allocate memory.\n");
867 			return -ENOMEM;
868 		}
869 		gp->page_no = page_no;
870 		gp->max_reads = max_reads;
871 		list_add(&gp->list, &grave_pages);
872 	} while (*g);
873 	return 0;
874 }
875 
read_error(unsigned int page_no)876 static int read_error(unsigned int page_no)
877 {
878 	struct grave_page *gp;
879 
880 	list_for_each_entry(gp, &grave_pages, list)
881 		if (gp->page_no == page_no) {
882 			if (gp->reads_done >= gp->max_reads)
883 				return 1;
884 			gp->reads_done += 1;
885 			return 0;
886 		}
887 	return 0;
888 }
889 
free_lists(void)890 static void free_lists(void)
891 {
892 	struct list_head *pos, *n;
893 	list_for_each_safe(pos, n, &weak_blocks) {
894 		list_del(pos);
895 		kfree(list_entry(pos, struct weak_block, list));
896 	}
897 	list_for_each_safe(pos, n, &weak_pages) {
898 		list_del(pos);
899 		kfree(list_entry(pos, struct weak_page, list));
900 	}
901 	list_for_each_safe(pos, n, &grave_pages) {
902 		list_del(pos);
903 		kfree(list_entry(pos, struct grave_page, list));
904 	}
905 	kfree(erase_block_wear);
906 }
907 
setup_wear_reporting(struct mtd_info * mtd)908 static int setup_wear_reporting(struct mtd_info *mtd)
909 {
910 	size_t mem;
911 
912 	if (!rptwear)
913 		return 0;
914 	wear_eb_count = divide(mtd->size, mtd->erasesize);
915 	mem = wear_eb_count * sizeof(unsigned long);
916 	if (mem / sizeof(unsigned long) != wear_eb_count) {
917 		NS_ERR("Too many erase blocks for wear reporting\n");
918 		return -ENOMEM;
919 	}
920 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
921 	if (!erase_block_wear) {
922 		NS_ERR("Too many erase blocks for wear reporting\n");
923 		return -ENOMEM;
924 	}
925 	return 0;
926 }
927 
update_wear(unsigned int erase_block_no)928 static void update_wear(unsigned int erase_block_no)
929 {
930 	unsigned long wmin = -1, wmax = 0, avg;
931 	unsigned long deciles[10], decile_max[10], tot = 0;
932 	unsigned int i;
933 
934 	if (!erase_block_wear)
935 		return;
936 	total_wear += 1;
937 	if (total_wear == 0)
938 		NS_ERR("Erase counter total overflow\n");
939 	erase_block_wear[erase_block_no] += 1;
940 	if (erase_block_wear[erase_block_no] == 0)
941 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
942 	rptwear_cnt += 1;
943 	if (rptwear_cnt < rptwear)
944 		return;
945 	rptwear_cnt = 0;
946 	/* Calc wear stats */
947 	for (i = 0; i < wear_eb_count; ++i) {
948 		unsigned long wear = erase_block_wear[i];
949 		if (wear < wmin)
950 			wmin = wear;
951 		if (wear > wmax)
952 			wmax = wear;
953 		tot += wear;
954 	}
955 	for (i = 0; i < 9; ++i) {
956 		deciles[i] = 0;
957 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
958 	}
959 	deciles[9] = 0;
960 	decile_max[9] = wmax;
961 	for (i = 0; i < wear_eb_count; ++i) {
962 		int d;
963 		unsigned long wear = erase_block_wear[i];
964 		for (d = 0; d < 10; ++d)
965 			if (wear <= decile_max[d]) {
966 				deciles[d] += 1;
967 				break;
968 			}
969 	}
970 	avg = tot / wear_eb_count;
971 	/* Output wear report */
972 	NS_INFO("*** Wear Report ***\n");
973 	NS_INFO("Total numbers of erases:  %lu\n", tot);
974 	NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
975 	NS_INFO("Average number of erases: %lu\n", avg);
976 	NS_INFO("Maximum number of erases: %lu\n", wmax);
977 	NS_INFO("Minimum number of erases: %lu\n", wmin);
978 	for (i = 0; i < 10; ++i) {
979 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
980 		if (from > decile_max[i])
981 			continue;
982 		NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
983 			from,
984 			decile_max[i],
985 			deciles[i]);
986 	}
987 	NS_INFO("*** End of Wear Report ***\n");
988 }
989 
990 /*
991  * Returns the string representation of 'state' state.
992  */
get_state_name(uint32_t state)993 static char *get_state_name(uint32_t state)
994 {
995 	switch (NS_STATE(state)) {
996 		case STATE_CMD_READ0:
997 			return "STATE_CMD_READ0";
998 		case STATE_CMD_READ1:
999 			return "STATE_CMD_READ1";
1000 		case STATE_CMD_PAGEPROG:
1001 			return "STATE_CMD_PAGEPROG";
1002 		case STATE_CMD_READOOB:
1003 			return "STATE_CMD_READOOB";
1004 		case STATE_CMD_READSTART:
1005 			return "STATE_CMD_READSTART";
1006 		case STATE_CMD_ERASE1:
1007 			return "STATE_CMD_ERASE1";
1008 		case STATE_CMD_STATUS:
1009 			return "STATE_CMD_STATUS";
1010 		case STATE_CMD_STATUS_M:
1011 			return "STATE_CMD_STATUS_M";
1012 		case STATE_CMD_SEQIN:
1013 			return "STATE_CMD_SEQIN";
1014 		case STATE_CMD_READID:
1015 			return "STATE_CMD_READID";
1016 		case STATE_CMD_ERASE2:
1017 			return "STATE_CMD_ERASE2";
1018 		case STATE_CMD_RESET:
1019 			return "STATE_CMD_RESET";
1020 		case STATE_CMD_RNDOUT:
1021 			return "STATE_CMD_RNDOUT";
1022 		case STATE_CMD_RNDOUTSTART:
1023 			return "STATE_CMD_RNDOUTSTART";
1024 		case STATE_ADDR_PAGE:
1025 			return "STATE_ADDR_PAGE";
1026 		case STATE_ADDR_SEC:
1027 			return "STATE_ADDR_SEC";
1028 		case STATE_ADDR_ZERO:
1029 			return "STATE_ADDR_ZERO";
1030 		case STATE_ADDR_COLUMN:
1031 			return "STATE_ADDR_COLUMN";
1032 		case STATE_DATAIN:
1033 			return "STATE_DATAIN";
1034 		case STATE_DATAOUT:
1035 			return "STATE_DATAOUT";
1036 		case STATE_DATAOUT_ID:
1037 			return "STATE_DATAOUT_ID";
1038 		case STATE_DATAOUT_STATUS:
1039 			return "STATE_DATAOUT_STATUS";
1040 		case STATE_DATAOUT_STATUS_M:
1041 			return "STATE_DATAOUT_STATUS_M";
1042 		case STATE_READY:
1043 			return "STATE_READY";
1044 		case STATE_UNKNOWN:
1045 			return "STATE_UNKNOWN";
1046 	}
1047 
1048 	NS_ERR("get_state_name: unknown state, BUG\n");
1049 	return NULL;
1050 }
1051 
1052 /*
1053  * Check if command is valid.
1054  *
1055  * RETURNS: 1 if wrong command, 0 if right.
1056  */
check_command(int cmd)1057 static int check_command(int cmd)
1058 {
1059 	switch (cmd) {
1060 
1061 	case NAND_CMD_READ0:
1062 	case NAND_CMD_READ1:
1063 	case NAND_CMD_READSTART:
1064 	case NAND_CMD_PAGEPROG:
1065 	case NAND_CMD_READOOB:
1066 	case NAND_CMD_ERASE1:
1067 	case NAND_CMD_STATUS:
1068 	case NAND_CMD_SEQIN:
1069 	case NAND_CMD_READID:
1070 	case NAND_CMD_ERASE2:
1071 	case NAND_CMD_RESET:
1072 	case NAND_CMD_RNDOUT:
1073 	case NAND_CMD_RNDOUTSTART:
1074 		return 0;
1075 
1076 	case NAND_CMD_STATUS_MULTI:
1077 	default:
1078 		return 1;
1079 	}
1080 }
1081 
1082 /*
1083  * Returns state after command is accepted by command number.
1084  */
get_state_by_command(unsigned command)1085 static uint32_t get_state_by_command(unsigned command)
1086 {
1087 	switch (command) {
1088 		case NAND_CMD_READ0:
1089 			return STATE_CMD_READ0;
1090 		case NAND_CMD_READ1:
1091 			return STATE_CMD_READ1;
1092 		case NAND_CMD_PAGEPROG:
1093 			return STATE_CMD_PAGEPROG;
1094 		case NAND_CMD_READSTART:
1095 			return STATE_CMD_READSTART;
1096 		case NAND_CMD_READOOB:
1097 			return STATE_CMD_READOOB;
1098 		case NAND_CMD_ERASE1:
1099 			return STATE_CMD_ERASE1;
1100 		case NAND_CMD_STATUS:
1101 			return STATE_CMD_STATUS;
1102 		case NAND_CMD_STATUS_MULTI:
1103 			return STATE_CMD_STATUS_M;
1104 		case NAND_CMD_SEQIN:
1105 			return STATE_CMD_SEQIN;
1106 		case NAND_CMD_READID:
1107 			return STATE_CMD_READID;
1108 		case NAND_CMD_ERASE2:
1109 			return STATE_CMD_ERASE2;
1110 		case NAND_CMD_RESET:
1111 			return STATE_CMD_RESET;
1112 		case NAND_CMD_RNDOUT:
1113 			return STATE_CMD_RNDOUT;
1114 		case NAND_CMD_RNDOUTSTART:
1115 			return STATE_CMD_RNDOUTSTART;
1116 	}
1117 
1118 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1119 	return 0;
1120 }
1121 
1122 /*
1123  * Move an address byte to the correspondent internal register.
1124  */
accept_addr_byte(struct nandsim * ns,u_char bt)1125 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1126 {
1127 	uint byte = (uint)bt;
1128 
1129 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1130 		ns->regs.column |= (byte << 8 * ns->regs.count);
1131 	else {
1132 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1133 						ns->geom.pgaddrbytes +
1134 						ns->geom.secaddrbytes));
1135 	}
1136 
1137 	return;
1138 }
1139 
1140 /*
1141  * Switch to STATE_READY state.
1142  */
switch_to_ready_state(struct nandsim * ns,u_char status)1143 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1144 {
1145 	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1146 
1147 	ns->state       = STATE_READY;
1148 	ns->nxstate     = STATE_UNKNOWN;
1149 	ns->op          = NULL;
1150 	ns->npstates    = 0;
1151 	ns->stateidx    = 0;
1152 	ns->regs.num    = 0;
1153 	ns->regs.count  = 0;
1154 	ns->regs.off    = 0;
1155 	ns->regs.row    = 0;
1156 	ns->regs.column = 0;
1157 	ns->regs.status = status;
1158 }
1159 
1160 /*
1161  * If the operation isn't known yet, try to find it in the global array
1162  * of supported operations.
1163  *
1164  * Operation can be unknown because of the following.
1165  *   1. New command was accepted and this is the firs call to find the
1166  *      correspondent states chain. In this case ns->npstates = 0;
1167  *   2. There is several operations which begin with the same command(s)
1168  *      (for example program from the second half and read from the
1169  *      second half operations both begin with the READ1 command). In this
1170  *      case the ns->pstates[] array contains previous states.
1171  *
1172  * Thus, the function tries to find operation containing the following
1173  * states (if the 'flag' parameter is 0):
1174  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1175  *
1176  * If (one and only one) matching operation is found, it is accepted (
1177  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1178  * zeroed).
1179  *
1180  * If there are several maches, the current state is pushed to the
1181  * ns->pstates.
1182  *
1183  * The operation can be unknown only while commands are input to the chip.
1184  * As soon as address command is accepted, the operation must be known.
1185  * In such situation the function is called with 'flag' != 0, and the
1186  * operation is searched using the following pattern:
1187  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1188  *
1189  * It is supposed that this pattern must either match one operation on
1190  * none. There can't be ambiguity in that case.
1191  *
1192  * If no matches found, the functions does the following:
1193  *   1. if there are saved states present, try to ignore them and search
1194  *      again only using the last command. If nothing was found, switch
1195  *      to the STATE_READY state.
1196  *   2. if there are no saved states, switch to the STATE_READY state.
1197  *
1198  * RETURNS: -2 - no matched operations found.
1199  *          -1 - several matches.
1200  *           0 - operation is found.
1201  */
find_operation(struct nandsim * ns,uint32_t flag)1202 static int find_operation(struct nandsim *ns, uint32_t flag)
1203 {
1204 	int opsfound = 0;
1205 	int i, j, idx = 0;
1206 
1207 	for (i = 0; i < NS_OPER_NUM; i++) {
1208 
1209 		int found = 1;
1210 
1211 		if (!(ns->options & ops[i].reqopts))
1212 			/* Ignore operations we can't perform */
1213 			continue;
1214 
1215 		if (flag) {
1216 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1217 				continue;
1218 		} else {
1219 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1220 				continue;
1221 		}
1222 
1223 		for (j = 0; j < ns->npstates; j++)
1224 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1225 				&& (ns->options & ops[idx].reqopts)) {
1226 				found = 0;
1227 				break;
1228 			}
1229 
1230 		if (found) {
1231 			idx = i;
1232 			opsfound += 1;
1233 		}
1234 	}
1235 
1236 	if (opsfound == 1) {
1237 		/* Exact match */
1238 		ns->op = &ops[idx].states[0];
1239 		if (flag) {
1240 			/*
1241 			 * In this case the find_operation function was
1242 			 * called when address has just began input. But it isn't
1243 			 * yet fully input and the current state must
1244 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1245 			 * state must be the next state (ns->nxstate).
1246 			 */
1247 			ns->stateidx = ns->npstates - 1;
1248 		} else {
1249 			ns->stateidx = ns->npstates;
1250 		}
1251 		ns->npstates = 0;
1252 		ns->state = ns->op[ns->stateidx];
1253 		ns->nxstate = ns->op[ns->stateidx + 1];
1254 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1255 				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1256 		return 0;
1257 	}
1258 
1259 	if (opsfound == 0) {
1260 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1261 		if (ns->npstates != 0) {
1262 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1263 					get_state_name(ns->state));
1264 			ns->npstates = 0;
1265 			return find_operation(ns, 0);
1266 
1267 		}
1268 		NS_DBG("find_operation: no operations found\n");
1269 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1270 		return -2;
1271 	}
1272 
1273 	if (flag) {
1274 		/* This shouldn't happen */
1275 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1276 		return -2;
1277 	}
1278 
1279 	NS_DBG("find_operation: there is still ambiguity\n");
1280 
1281 	ns->pstates[ns->npstates++] = ns->state;
1282 
1283 	return -1;
1284 }
1285 
put_pages(struct nandsim * ns)1286 static void put_pages(struct nandsim *ns)
1287 {
1288 	int i;
1289 
1290 	for (i = 0; i < ns->held_cnt; i++)
1291 		page_cache_release(ns->held_pages[i]);
1292 }
1293 
1294 /* Get page cache pages in advance to provide NOFS memory allocation */
get_pages(struct nandsim * ns,struct file * file,size_t count,loff_t pos)1295 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1296 {
1297 	pgoff_t index, start_index, end_index;
1298 	struct page *page;
1299 	struct address_space *mapping = file->f_mapping;
1300 
1301 	start_index = pos >> PAGE_CACHE_SHIFT;
1302 	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1303 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1304 		return -EINVAL;
1305 	ns->held_cnt = 0;
1306 	for (index = start_index; index <= end_index; index++) {
1307 		page = find_get_page(mapping, index);
1308 		if (page == NULL) {
1309 			page = find_or_create_page(mapping, index, GFP_NOFS);
1310 			if (page == NULL) {
1311 				write_inode_now(mapping->host, 1);
1312 				page = find_or_create_page(mapping, index, GFP_NOFS);
1313 			}
1314 			if (page == NULL) {
1315 				put_pages(ns);
1316 				return -ENOMEM;
1317 			}
1318 			unlock_page(page);
1319 		}
1320 		ns->held_pages[ns->held_cnt++] = page;
1321 	}
1322 	return 0;
1323 }
1324 
set_memalloc(void)1325 static int set_memalloc(void)
1326 {
1327 	if (current->flags & PF_MEMALLOC)
1328 		return 0;
1329 	current->flags |= PF_MEMALLOC;
1330 	return 1;
1331 }
1332 
clear_memalloc(int memalloc)1333 static void clear_memalloc(int memalloc)
1334 {
1335 	if (memalloc)
1336 		current->flags &= ~PF_MEMALLOC;
1337 }
1338 
read_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t * pos)1339 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1340 {
1341 	mm_segment_t old_fs;
1342 	ssize_t tx;
1343 	int err, memalloc;
1344 
1345 	err = get_pages(ns, file, count, *pos);
1346 	if (err)
1347 		return err;
1348 	old_fs = get_fs();
1349 	set_fs(get_ds());
1350 	memalloc = set_memalloc();
1351 	tx = vfs_read(file, (char __user *)buf, count, pos);
1352 	clear_memalloc(memalloc);
1353 	set_fs(old_fs);
1354 	put_pages(ns);
1355 	return tx;
1356 }
1357 
write_file(struct nandsim * ns,struct file * file,void * buf,size_t count,loff_t * pos)1358 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1359 {
1360 	mm_segment_t old_fs;
1361 	ssize_t tx;
1362 	int err, memalloc;
1363 
1364 	err = get_pages(ns, file, count, *pos);
1365 	if (err)
1366 		return err;
1367 	old_fs = get_fs();
1368 	set_fs(get_ds());
1369 	memalloc = set_memalloc();
1370 	tx = vfs_write(file, (char __user *)buf, count, pos);
1371 	clear_memalloc(memalloc);
1372 	set_fs(old_fs);
1373 	put_pages(ns);
1374 	return tx;
1375 }
1376 
1377 /*
1378  * Returns a pointer to the current page.
1379  */
NS_GET_PAGE(struct nandsim * ns)1380 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1381 {
1382 	return &(ns->pages[ns->regs.row]);
1383 }
1384 
1385 /*
1386  * Retuns a pointer to the current byte, within the current page.
1387  */
NS_PAGE_BYTE_OFF(struct nandsim * ns)1388 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1389 {
1390 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1391 }
1392 
do_read_error(struct nandsim * ns,int num)1393 int do_read_error(struct nandsim *ns, int num)
1394 {
1395 	unsigned int page_no = ns->regs.row;
1396 
1397 	if (read_error(page_no)) {
1398 		int i;
1399 		memset(ns->buf.byte, 0xFF, num);
1400 		for (i = 0; i < num; ++i)
1401 			ns->buf.byte[i] = random32();
1402 		NS_WARN("simulating read error in page %u\n", page_no);
1403 		return 1;
1404 	}
1405 	return 0;
1406 }
1407 
do_bit_flips(struct nandsim * ns,int num)1408 void do_bit_flips(struct nandsim *ns, int num)
1409 {
1410 	if (bitflips && random32() < (1 << 22)) {
1411 		int flips = 1;
1412 		if (bitflips > 1)
1413 			flips = (random32() % (int) bitflips) + 1;
1414 		while (flips--) {
1415 			int pos = random32() % (num * 8);
1416 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1417 			NS_WARN("read_page: flipping bit %d in page %d "
1418 				"reading from %d ecc: corrected=%u failed=%u\n",
1419 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1420 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1421 		}
1422 	}
1423 }
1424 
1425 /*
1426  * Fill the NAND buffer with data read from the specified page.
1427  */
read_page(struct nandsim * ns,int num)1428 static void read_page(struct nandsim *ns, int num)
1429 {
1430 	union ns_mem *mypage;
1431 
1432 	if (ns->cfile) {
1433 		if (!ns->pages_written[ns->regs.row]) {
1434 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1435 			memset(ns->buf.byte, 0xFF, num);
1436 		} else {
1437 			loff_t pos;
1438 			ssize_t tx;
1439 
1440 			NS_DBG("read_page: page %d written, reading from %d\n",
1441 				ns->regs.row, ns->regs.column + ns->regs.off);
1442 			if (do_read_error(ns, num))
1443 				return;
1444 			pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1445 			tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1446 			if (tx != num) {
1447 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1448 				return;
1449 			}
1450 			do_bit_flips(ns, num);
1451 		}
1452 		return;
1453 	}
1454 
1455 	mypage = NS_GET_PAGE(ns);
1456 	if (mypage->byte == NULL) {
1457 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1458 		memset(ns->buf.byte, 0xFF, num);
1459 	} else {
1460 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1461 			ns->regs.row, ns->regs.column + ns->regs.off);
1462 		if (do_read_error(ns, num))
1463 			return;
1464 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1465 		do_bit_flips(ns, num);
1466 	}
1467 }
1468 
1469 /*
1470  * Erase all pages in the specified sector.
1471  */
erase_sector(struct nandsim * ns)1472 static void erase_sector(struct nandsim *ns)
1473 {
1474 	union ns_mem *mypage;
1475 	int i;
1476 
1477 	if (ns->cfile) {
1478 		for (i = 0; i < ns->geom.pgsec; i++)
1479 			if (ns->pages_written[ns->regs.row + i]) {
1480 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1481 				ns->pages_written[ns->regs.row + i] = 0;
1482 			}
1483 		return;
1484 	}
1485 
1486 	mypage = NS_GET_PAGE(ns);
1487 	for (i = 0; i < ns->geom.pgsec; i++) {
1488 		if (mypage->byte != NULL) {
1489 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1490 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1491 			mypage->byte = NULL;
1492 		}
1493 		mypage++;
1494 	}
1495 }
1496 
1497 /*
1498  * Program the specified page with the contents from the NAND buffer.
1499  */
prog_page(struct nandsim * ns,int num)1500 static int prog_page(struct nandsim *ns, int num)
1501 {
1502 	int i;
1503 	union ns_mem *mypage;
1504 	u_char *pg_off;
1505 
1506 	if (ns->cfile) {
1507 		loff_t off, pos;
1508 		ssize_t tx;
1509 		int all;
1510 
1511 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1512 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1513 		off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1514 		if (!ns->pages_written[ns->regs.row]) {
1515 			all = 1;
1516 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1517 		} else {
1518 			all = 0;
1519 			pos = off;
1520 			tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1521 			if (tx != num) {
1522 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1523 				return -1;
1524 			}
1525 		}
1526 		for (i = 0; i < num; i++)
1527 			pg_off[i] &= ns->buf.byte[i];
1528 		if (all) {
1529 			pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1530 			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1531 			if (tx != ns->geom.pgszoob) {
1532 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1533 				return -1;
1534 			}
1535 			ns->pages_written[ns->regs.row] = 1;
1536 		} else {
1537 			pos = off;
1538 			tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1539 			if (tx != num) {
1540 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1541 				return -1;
1542 			}
1543 		}
1544 		return 0;
1545 	}
1546 
1547 	mypage = NS_GET_PAGE(ns);
1548 	if (mypage->byte == NULL) {
1549 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1550 		/*
1551 		 * We allocate memory with GFP_NOFS because a flash FS may
1552 		 * utilize this. If it is holding an FS lock, then gets here,
1553 		 * then kernel memory alloc runs writeback which goes to the FS
1554 		 * again and deadlocks. This was seen in practice.
1555 		 */
1556 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1557 		if (mypage->byte == NULL) {
1558 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1559 			return -1;
1560 		}
1561 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1562 	}
1563 
1564 	pg_off = NS_PAGE_BYTE_OFF(ns);
1565 	for (i = 0; i < num; i++)
1566 		pg_off[i] &= ns->buf.byte[i];
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * If state has any action bit, perform this action.
1573  *
1574  * RETURNS: 0 if success, -1 if error.
1575  */
do_state_action(struct nandsim * ns,uint32_t action)1576 static int do_state_action(struct nandsim *ns, uint32_t action)
1577 {
1578 	int num;
1579 	int busdiv = ns->busw == 8 ? 1 : 2;
1580 	unsigned int erase_block_no, page_no;
1581 
1582 	action &= ACTION_MASK;
1583 
1584 	/* Check that page address input is correct */
1585 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1586 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1587 		return -1;
1588 	}
1589 
1590 	switch (action) {
1591 
1592 	case ACTION_CPY:
1593 		/*
1594 		 * Copy page data to the internal buffer.
1595 		 */
1596 
1597 		/* Column shouldn't be very large */
1598 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1599 			NS_ERR("do_state_action: column number is too large\n");
1600 			break;
1601 		}
1602 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1603 		read_page(ns, num);
1604 
1605 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1606 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1607 
1608 		if (ns->regs.off == 0)
1609 			NS_LOG("read page %d\n", ns->regs.row);
1610 		else if (ns->regs.off < ns->geom.pgsz)
1611 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1612 		else
1613 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1614 
1615 		NS_UDELAY(access_delay);
1616 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1617 
1618 		break;
1619 
1620 	case ACTION_SECERASE:
1621 		/*
1622 		 * Erase sector.
1623 		 */
1624 
1625 		if (ns->lines.wp) {
1626 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1627 			return -1;
1628 		}
1629 
1630 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1631 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1632 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1633 			return -1;
1634 		}
1635 
1636 		ns->regs.row = (ns->regs.row <<
1637 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1638 		ns->regs.column = 0;
1639 
1640 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1641 
1642 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1643 				ns->regs.row, NS_RAW_OFFSET(ns));
1644 		NS_LOG("erase sector %u\n", erase_block_no);
1645 
1646 		erase_sector(ns);
1647 
1648 		NS_MDELAY(erase_delay);
1649 
1650 		if (erase_block_wear)
1651 			update_wear(erase_block_no);
1652 
1653 		if (erase_error(erase_block_no)) {
1654 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1655 			return -1;
1656 		}
1657 
1658 		break;
1659 
1660 	case ACTION_PRGPAGE:
1661 		/*
1662 		 * Programm page - move internal buffer data to the page.
1663 		 */
1664 
1665 		if (ns->lines.wp) {
1666 			NS_WARN("do_state_action: device is write-protected, programm\n");
1667 			return -1;
1668 		}
1669 
1670 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1671 		if (num != ns->regs.count) {
1672 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1673 					ns->regs.count, num);
1674 			return -1;
1675 		}
1676 
1677 		if (prog_page(ns, num) == -1)
1678 			return -1;
1679 
1680 		page_no = ns->regs.row;
1681 
1682 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1683 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1684 		NS_LOG("programm page %d\n", ns->regs.row);
1685 
1686 		NS_UDELAY(programm_delay);
1687 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1688 
1689 		if (write_error(page_no)) {
1690 			NS_WARN("simulating write failure in page %u\n", page_no);
1691 			return -1;
1692 		}
1693 
1694 		break;
1695 
1696 	case ACTION_ZEROOFF:
1697 		NS_DBG("do_state_action: set internal offset to 0\n");
1698 		ns->regs.off = 0;
1699 		break;
1700 
1701 	case ACTION_HALFOFF:
1702 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1703 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1704 				"byte page size 8x chips\n");
1705 			return -1;
1706 		}
1707 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1708 		ns->regs.off = ns->geom.pgsz/2;
1709 		break;
1710 
1711 	case ACTION_OOBOFF:
1712 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1713 		ns->regs.off = ns->geom.pgsz;
1714 		break;
1715 
1716 	default:
1717 		NS_DBG("do_state_action: BUG! unknown action\n");
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 /*
1724  * Switch simulator's state.
1725  */
switch_state(struct nandsim * ns)1726 static void switch_state(struct nandsim *ns)
1727 {
1728 	if (ns->op) {
1729 		/*
1730 		 * The current operation have already been identified.
1731 		 * Just follow the states chain.
1732 		 */
1733 
1734 		ns->stateidx += 1;
1735 		ns->state = ns->nxstate;
1736 		ns->nxstate = ns->op[ns->stateidx + 1];
1737 
1738 		NS_DBG("switch_state: operation is known, switch to the next state, "
1739 			"state: %s, nxstate: %s\n",
1740 			get_state_name(ns->state), get_state_name(ns->nxstate));
1741 
1742 		/* See, whether we need to do some action */
1743 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1744 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1745 			return;
1746 		}
1747 
1748 	} else {
1749 		/*
1750 		 * We don't yet know which operation we perform.
1751 		 * Try to identify it.
1752 		 */
1753 
1754 		/*
1755 		 *  The only event causing the switch_state function to
1756 		 *  be called with yet unknown operation is new command.
1757 		 */
1758 		ns->state = get_state_by_command(ns->regs.command);
1759 
1760 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1761 
1762 		if (find_operation(ns, 0) != 0)
1763 			return;
1764 
1765 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1766 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1767 			return;
1768 		}
1769 	}
1770 
1771 	/* For 16x devices column means the page offset in words */
1772 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1773 		NS_DBG("switch_state: double the column number for 16x device\n");
1774 		ns->regs.column <<= 1;
1775 	}
1776 
1777 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1778 		/*
1779 		 * The current state is the last. Return to STATE_READY
1780 		 */
1781 
1782 		u_char status = NS_STATUS_OK(ns);
1783 
1784 		/* In case of data states, see if all bytes were input/output */
1785 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1786 			&& ns->regs.count != ns->regs.num) {
1787 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1788 					ns->regs.num - ns->regs.count);
1789 			status = NS_STATUS_FAILED(ns);
1790 		}
1791 
1792 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1793 
1794 		switch_to_ready_state(ns, status);
1795 
1796 		return;
1797 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1798 		/*
1799 		 * If the next state is data input/output, switch to it now
1800 		 */
1801 
1802 		ns->state      = ns->nxstate;
1803 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1804 		ns->regs.num   = ns->regs.count = 0;
1805 
1806 		NS_DBG("switch_state: the next state is data I/O, switch, "
1807 			"state: %s, nxstate: %s\n",
1808 			get_state_name(ns->state), get_state_name(ns->nxstate));
1809 
1810 		/*
1811 		 * Set the internal register to the count of bytes which
1812 		 * are expected to be input or output
1813 		 */
1814 		switch (NS_STATE(ns->state)) {
1815 			case STATE_DATAIN:
1816 			case STATE_DATAOUT:
1817 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1818 				break;
1819 
1820 			case STATE_DATAOUT_ID:
1821 				ns->regs.num = ns->geom.idbytes;
1822 				break;
1823 
1824 			case STATE_DATAOUT_STATUS:
1825 			case STATE_DATAOUT_STATUS_M:
1826 				ns->regs.count = ns->regs.num = 0;
1827 				break;
1828 
1829 			default:
1830 				NS_ERR("switch_state: BUG! unknown data state\n");
1831 		}
1832 
1833 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1834 		/*
1835 		 * If the next state is address input, set the internal
1836 		 * register to the number of expected address bytes
1837 		 */
1838 
1839 		ns->regs.count = 0;
1840 
1841 		switch (NS_STATE(ns->nxstate)) {
1842 			case STATE_ADDR_PAGE:
1843 				ns->regs.num = ns->geom.pgaddrbytes;
1844 
1845 				break;
1846 			case STATE_ADDR_SEC:
1847 				ns->regs.num = ns->geom.secaddrbytes;
1848 				break;
1849 
1850 			case STATE_ADDR_ZERO:
1851 				ns->regs.num = 1;
1852 				break;
1853 
1854 			case STATE_ADDR_COLUMN:
1855 				/* Column address is always 2 bytes */
1856 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1857 				break;
1858 
1859 			default:
1860 				NS_ERR("switch_state: BUG! unknown address state\n");
1861 		}
1862 	} else {
1863 		/*
1864 		 * Just reset internal counters.
1865 		 */
1866 
1867 		ns->regs.num = 0;
1868 		ns->regs.count = 0;
1869 	}
1870 }
1871 
ns_nand_read_byte(struct mtd_info * mtd)1872 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1873 {
1874         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1875 	u_char outb = 0x00;
1876 
1877 	/* Sanity and correctness checks */
1878 	if (!ns->lines.ce) {
1879 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1880 		return outb;
1881 	}
1882 	if (ns->lines.ale || ns->lines.cle) {
1883 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1884 		return outb;
1885 	}
1886 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1887 		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1888 			"return %#x\n", get_state_name(ns->state), (uint)outb);
1889 		return outb;
1890 	}
1891 
1892 	/* Status register may be read as many times as it is wanted */
1893 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1894 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1895 		return ns->regs.status;
1896 	}
1897 
1898 	/* Check if there is any data in the internal buffer which may be read */
1899 	if (ns->regs.count == ns->regs.num) {
1900 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1901 		return outb;
1902 	}
1903 
1904 	switch (NS_STATE(ns->state)) {
1905 		case STATE_DATAOUT:
1906 			if (ns->busw == 8) {
1907 				outb = ns->buf.byte[ns->regs.count];
1908 				ns->regs.count += 1;
1909 			} else {
1910 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1911 				ns->regs.count += 2;
1912 			}
1913 			break;
1914 		case STATE_DATAOUT_ID:
1915 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1916 			outb = ns->ids[ns->regs.count];
1917 			ns->regs.count += 1;
1918 			break;
1919 		default:
1920 			BUG();
1921 	}
1922 
1923 	if (ns->regs.count == ns->regs.num) {
1924 		NS_DBG("read_byte: all bytes were read\n");
1925 
1926 		/*
1927 		 * The OPT_AUTOINCR allows to read next conseqitive pages without
1928 		 * new read operation cycle.
1929 		 */
1930 		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1931 			ns->regs.count = 0;
1932 			if (ns->regs.row + 1 < ns->geom.pgnum)
1933 				ns->regs.row += 1;
1934 			NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1935 			do_state_action(ns, ACTION_CPY);
1936 		}
1937 		else if (NS_STATE(ns->nxstate) == STATE_READY)
1938 			switch_state(ns);
1939 
1940 	}
1941 
1942 	return outb;
1943 }
1944 
ns_nand_write_byte(struct mtd_info * mtd,u_char byte)1945 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1946 {
1947         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1948 
1949 	/* Sanity and correctness checks */
1950 	if (!ns->lines.ce) {
1951 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1952 		return;
1953 	}
1954 	if (ns->lines.ale && ns->lines.cle) {
1955 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1956 		return;
1957 	}
1958 
1959 	if (ns->lines.cle == 1) {
1960 		/*
1961 		 * The byte written is a command.
1962 		 */
1963 
1964 		if (byte == NAND_CMD_RESET) {
1965 			NS_LOG("reset chip\n");
1966 			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1967 			return;
1968 		}
1969 
1970 		/* Check that the command byte is correct */
1971 		if (check_command(byte)) {
1972 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1973 			return;
1974 		}
1975 
1976 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1977 			|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1978 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
1979 			int row = ns->regs.row;
1980 
1981 			switch_state(ns);
1982 			if (byte == NAND_CMD_RNDOUT)
1983 				ns->regs.row = row;
1984 		}
1985 
1986 		/* Check if chip is expecting command */
1987 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1988 			/* Do not warn if only 2 id bytes are read */
1989 			if (!(ns->regs.command == NAND_CMD_READID &&
1990 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1991 				/*
1992 				 * We are in situation when something else (not command)
1993 				 * was expected but command was input. In this case ignore
1994 				 * previous command(s)/state(s) and accept the last one.
1995 				 */
1996 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1997 					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1998 			}
1999 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2000 		}
2001 
2002 		NS_DBG("command byte corresponding to %s state accepted\n",
2003 			get_state_name(get_state_by_command(byte)));
2004 		ns->regs.command = byte;
2005 		switch_state(ns);
2006 
2007 	} else if (ns->lines.ale == 1) {
2008 		/*
2009 		 * The byte written is an address.
2010 		 */
2011 
2012 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2013 
2014 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2015 
2016 			if (find_operation(ns, 1) < 0)
2017 				return;
2018 
2019 			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2020 				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2021 				return;
2022 			}
2023 
2024 			ns->regs.count = 0;
2025 			switch (NS_STATE(ns->nxstate)) {
2026 				case STATE_ADDR_PAGE:
2027 					ns->regs.num = ns->geom.pgaddrbytes;
2028 					break;
2029 				case STATE_ADDR_SEC:
2030 					ns->regs.num = ns->geom.secaddrbytes;
2031 					break;
2032 				case STATE_ADDR_ZERO:
2033 					ns->regs.num = 1;
2034 					break;
2035 				default:
2036 					BUG();
2037 			}
2038 		}
2039 
2040 		/* Check that chip is expecting address */
2041 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2042 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2043 				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2044 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2045 			return;
2046 		}
2047 
2048 		/* Check if this is expected byte */
2049 		if (ns->regs.count == ns->regs.num) {
2050 			NS_ERR("write_byte: no more address bytes expected\n");
2051 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2052 			return;
2053 		}
2054 
2055 		accept_addr_byte(ns, byte);
2056 
2057 		ns->regs.count += 1;
2058 
2059 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2060 				(uint)byte, ns->regs.count, ns->regs.num);
2061 
2062 		if (ns->regs.count == ns->regs.num) {
2063 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2064 			switch_state(ns);
2065 		}
2066 
2067 	} else {
2068 		/*
2069 		 * The byte written is an input data.
2070 		 */
2071 
2072 		/* Check that chip is expecting data input */
2073 		if (!(ns->state & STATE_DATAIN_MASK)) {
2074 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2075 				"switch to %s\n", (uint)byte,
2076 				get_state_name(ns->state), get_state_name(STATE_READY));
2077 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2078 			return;
2079 		}
2080 
2081 		/* Check if this is expected byte */
2082 		if (ns->regs.count == ns->regs.num) {
2083 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2084 					ns->regs.num);
2085 			return;
2086 		}
2087 
2088 		if (ns->busw == 8) {
2089 			ns->buf.byte[ns->regs.count] = byte;
2090 			ns->regs.count += 1;
2091 		} else {
2092 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2093 			ns->regs.count += 2;
2094 		}
2095 	}
2096 
2097 	return;
2098 }
2099 
ns_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int bitmask)2100 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2101 {
2102 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2103 
2104 	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2105 	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2106 	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2107 
2108 	if (cmd != NAND_CMD_NONE)
2109 		ns_nand_write_byte(mtd, cmd);
2110 }
2111 
ns_device_ready(struct mtd_info * mtd)2112 static int ns_device_ready(struct mtd_info *mtd)
2113 {
2114 	NS_DBG("device_ready\n");
2115 	return 1;
2116 }
2117 
ns_nand_read_word(struct mtd_info * mtd)2118 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2119 {
2120 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2121 
2122 	NS_DBG("read_word\n");
2123 
2124 	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2125 }
2126 
ns_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)2127 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2128 {
2129         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2130 
2131 	/* Check that chip is expecting data input */
2132 	if (!(ns->state & STATE_DATAIN_MASK)) {
2133 		NS_ERR("write_buf: data input isn't expected, state is %s, "
2134 			"switch to STATE_READY\n", get_state_name(ns->state));
2135 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2136 		return;
2137 	}
2138 
2139 	/* Check if these are expected bytes */
2140 	if (ns->regs.count + len > ns->regs.num) {
2141 		NS_ERR("write_buf: too many input bytes\n");
2142 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2143 		return;
2144 	}
2145 
2146 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2147 	ns->regs.count += len;
2148 
2149 	if (ns->regs.count == ns->regs.num) {
2150 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2151 	}
2152 }
2153 
ns_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)2154 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2155 {
2156         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2157 
2158 	/* Sanity and correctness checks */
2159 	if (!ns->lines.ce) {
2160 		NS_ERR("read_buf: chip is disabled\n");
2161 		return;
2162 	}
2163 	if (ns->lines.ale || ns->lines.cle) {
2164 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2165 		return;
2166 	}
2167 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2168 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2169 			get_state_name(ns->state));
2170 		return;
2171 	}
2172 
2173 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2174 		int i;
2175 
2176 		for (i = 0; i < len; i++)
2177 			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2178 
2179 		return;
2180 	}
2181 
2182 	/* Check if these are expected bytes */
2183 	if (ns->regs.count + len > ns->regs.num) {
2184 		NS_ERR("read_buf: too many bytes to read\n");
2185 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2186 		return;
2187 	}
2188 
2189 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2190 	ns->regs.count += len;
2191 
2192 	if (ns->regs.count == ns->regs.num) {
2193 		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2194 			ns->regs.count = 0;
2195 			if (ns->regs.row + 1 < ns->geom.pgnum)
2196 				ns->regs.row += 1;
2197 			NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2198 			do_state_action(ns, ACTION_CPY);
2199 		}
2200 		else if (NS_STATE(ns->nxstate) == STATE_READY)
2201 			switch_state(ns);
2202 	}
2203 
2204 	return;
2205 }
2206 
ns_nand_verify_buf(struct mtd_info * mtd,const u_char * buf,int len)2207 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2208 {
2209 	ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2210 
2211 	if (!memcmp(buf, &ns_verify_buf[0], len)) {
2212 		NS_DBG("verify_buf: the buffer is OK\n");
2213 		return 0;
2214 	} else {
2215 		NS_DBG("verify_buf: the buffer is wrong\n");
2216 		return -EFAULT;
2217 	}
2218 }
2219 
2220 /*
2221  * Module initialization function
2222  */
ns_init_module(void)2223 static int __init ns_init_module(void)
2224 {
2225 	struct nand_chip *chip;
2226 	struct nandsim *nand;
2227 	int retval = -ENOMEM, i;
2228 
2229 	if (bus_width != 8 && bus_width != 16) {
2230 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2231 		return -EINVAL;
2232 	}
2233 
2234 	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2235 	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2236 				+ sizeof(struct nandsim), GFP_KERNEL);
2237 	if (!nsmtd) {
2238 		NS_ERR("unable to allocate core structures.\n");
2239 		return -ENOMEM;
2240 	}
2241 	chip        = (struct nand_chip *)(nsmtd + 1);
2242         nsmtd->priv = (void *)chip;
2243 	nand        = (struct nandsim *)(chip + 1);
2244 	chip->priv  = (void *)nand;
2245 
2246 	/*
2247 	 * Register simulator's callbacks.
2248 	 */
2249 	chip->cmd_ctrl	 = ns_hwcontrol;
2250 	chip->read_byte  = ns_nand_read_byte;
2251 	chip->dev_ready  = ns_device_ready;
2252 	chip->write_buf  = ns_nand_write_buf;
2253 	chip->read_buf   = ns_nand_read_buf;
2254 	chip->verify_buf = ns_nand_verify_buf;
2255 	chip->read_word  = ns_nand_read_word;
2256 	chip->ecc.mode   = NAND_ECC_SOFT;
2257 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2258 	/* and 'badblocks' parameters to work */
2259 	chip->options   |= NAND_SKIP_BBTSCAN;
2260 
2261 	/*
2262 	 * Perform minimum nandsim structure initialization to handle
2263 	 * the initial ID read command correctly
2264 	 */
2265 	if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2266 		nand->geom.idbytes = 4;
2267 	else
2268 		nand->geom.idbytes = 2;
2269 	nand->regs.status = NS_STATUS_OK(nand);
2270 	nand->nxstate = STATE_UNKNOWN;
2271 	nand->options |= OPT_PAGE256; /* temporary value */
2272 	nand->ids[0] = first_id_byte;
2273 	nand->ids[1] = second_id_byte;
2274 	nand->ids[2] = third_id_byte;
2275 	nand->ids[3] = fourth_id_byte;
2276 	if (bus_width == 16) {
2277 		nand->busw = 16;
2278 		chip->options |= NAND_BUSWIDTH_16;
2279 	}
2280 
2281 	nsmtd->owner = THIS_MODULE;
2282 
2283 	if ((retval = parse_weakblocks()) != 0)
2284 		goto error;
2285 
2286 	if ((retval = parse_weakpages()) != 0)
2287 		goto error;
2288 
2289 	if ((retval = parse_gravepages()) != 0)
2290 		goto error;
2291 
2292 	if ((retval = nand_scan(nsmtd, 1)) != 0) {
2293 		NS_ERR("can't register NAND Simulator\n");
2294 		if (retval > 0)
2295 			retval = -ENXIO;
2296 		goto error;
2297 	}
2298 
2299 	if (overridesize) {
2300 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2301 		if (new_size >> overridesize != nsmtd->erasesize) {
2302 			NS_ERR("overridesize is too big\n");
2303 			goto err_exit;
2304 		}
2305 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2306 		nsmtd->size = new_size;
2307 		chip->chipsize = new_size;
2308 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2309 		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2310 	}
2311 
2312 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2313 		goto err_exit;
2314 
2315 	if ((retval = init_nandsim(nsmtd)) != 0)
2316 		goto err_exit;
2317 
2318 	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2319 		goto err_exit;
2320 
2321 	if ((retval = nand_default_bbt(nsmtd)) != 0)
2322 		goto err_exit;
2323 
2324 	/* Register NAND partitions */
2325 	if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2326 		goto err_exit;
2327 
2328         return 0;
2329 
2330 err_exit:
2331 	free_nandsim(nand);
2332 	nand_release(nsmtd);
2333 	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2334 		kfree(nand->partitions[i].name);
2335 error:
2336 	kfree(nsmtd);
2337 	free_lists();
2338 
2339 	return retval;
2340 }
2341 
2342 module_init(ns_init_module);
2343 
2344 /*
2345  * Module clean-up function
2346  */
ns_cleanup_module(void)2347 static void __exit ns_cleanup_module(void)
2348 {
2349 	struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2350 	int i;
2351 
2352 	free_nandsim(ns);    /* Free nandsim private resources */
2353 	nand_release(nsmtd); /* Unregister driver */
2354 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2355 		kfree(ns->partitions[i].name);
2356 	kfree(nsmtd);        /* Free other structures */
2357 	free_lists();
2358 }
2359 
2360 module_exit(ns_cleanup_module);
2361 
2362 MODULE_LICENSE ("GPL");
2363 MODULE_AUTHOR ("Artem B. Bityuckiy");
2364 MODULE_DESCRIPTION ("The NAND flash simulator");
2365