1 /* bbc_envctrl.c: UltraSPARC-III environment control driver.
2 *
3 * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/kthread.h>
7 #include <linux/delay.h>
8 #include <linux/kmod.h>
9 #include <linux/reboot.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <asm/oplib.h>
13
14 #include "bbc_i2c.h"
15 #include "max1617.h"
16
17 #undef ENVCTRL_TRACE
18
19 /* WARNING: Making changes to this driver is very dangerous.
20 * If you misprogram the sensor chips they can
21 * cut the power on you instantly.
22 */
23
24 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
25 * Both are implemented using max1617 i2c devices. Each max1617
26 * monitors 2 temperatures, one for one of the cpu dies and the other
27 * for the ambient temperature.
28 *
29 * The max1617 is capable of being programmed with power-off
30 * temperature values, one low limit and one high limit. These
31 * can be controlled independently for the cpu or ambient temperature.
32 * If a limit is violated, the power is simply shut off. The frequency
33 * with which the max1617 does temperature sampling can be controlled
34 * as well.
35 *
36 * Three fans exist inside the machine, all three are controlled with
37 * an i2c digital to analog converter. There is a fan directed at the
38 * two processor slots, another for the rest of the enclosure, and the
39 * third is for the power supply. The first two fans may be speed
40 * controlled by changing the voltage fed to them. The third fan may
41 * only be completely off or on. The third fan is meant to only be
42 * disabled/enabled when entering/exiting the lowest power-saving
43 * mode of the machine.
44 *
45 * An environmental control kernel thread periodically monitors all
46 * temperature sensors. Based upon the samples it will adjust the
47 * fan speeds to try and keep the system within a certain temperature
48 * range (the goal being to make the fans as quiet as possible without
49 * allowing the system to get too hot).
50 *
51 * If the temperature begins to rise/fall outside of the acceptable
52 * operating range, a periodic warning will be sent to the kernel log.
53 * The fans will be put on full blast to attempt to deal with this
54 * situation. After exceeding the acceptable operating range by a
55 * certain threshold, the kernel thread will shut down the system.
56 * Here, the thread is attempting to shut the machine down cleanly
57 * before the hardware based power-off event is triggered.
58 */
59
60 /* These settings are in Celsius. We use these defaults only
61 * if we cannot interrogate the cpu-fru SEEPROM.
62 */
63 struct temp_limits {
64 s8 high_pwroff, high_shutdown, high_warn;
65 s8 low_warn, low_shutdown, low_pwroff;
66 };
67
68 static struct temp_limits cpu_temp_limits[2] = {
69 { 100, 85, 80, 5, -5, -10 },
70 { 100, 85, 80, 5, -5, -10 },
71 };
72
73 static struct temp_limits amb_temp_limits[2] = {
74 { 65, 55, 40, 5, -5, -10 },
75 { 65, 55, 40, 5, -5, -10 },
76 };
77
78 static LIST_HEAD(all_temps);
79 static LIST_HEAD(all_fans);
80
81 #define CPU_FAN_REG 0xf0
82 #define SYS_FAN_REG 0xf2
83 #define PSUPPLY_FAN_REG 0xf4
84
85 #define FAN_SPEED_MIN 0x0c
86 #define FAN_SPEED_MAX 0x3f
87
88 #define PSUPPLY_FAN_ON 0x1f
89 #define PSUPPLY_FAN_OFF 0x00
90
set_fan_speeds(struct bbc_fan_control * fp)91 static void set_fan_speeds(struct bbc_fan_control *fp)
92 {
93 /* Put temperatures into range so we don't mis-program
94 * the hardware.
95 */
96 if (fp->cpu_fan_speed < FAN_SPEED_MIN)
97 fp->cpu_fan_speed = FAN_SPEED_MIN;
98 if (fp->cpu_fan_speed > FAN_SPEED_MAX)
99 fp->cpu_fan_speed = FAN_SPEED_MAX;
100 if (fp->system_fan_speed < FAN_SPEED_MIN)
101 fp->system_fan_speed = FAN_SPEED_MIN;
102 if (fp->system_fan_speed > FAN_SPEED_MAX)
103 fp->system_fan_speed = FAN_SPEED_MAX;
104 #ifdef ENVCTRL_TRACE
105 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
106 fp->index,
107 fp->cpu_fan_speed, fp->system_fan_speed);
108 #endif
109
110 bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
111 bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
112 bbc_i2c_writeb(fp->client,
113 (fp->psupply_fan_on ?
114 PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
115 PSUPPLY_FAN_REG);
116 }
117
get_current_temps(struct bbc_cpu_temperature * tp)118 static void get_current_temps(struct bbc_cpu_temperature *tp)
119 {
120 tp->prev_amb_temp = tp->curr_amb_temp;
121 bbc_i2c_readb(tp->client,
122 (unsigned char *) &tp->curr_amb_temp,
123 MAX1617_AMB_TEMP);
124 tp->prev_cpu_temp = tp->curr_cpu_temp;
125 bbc_i2c_readb(tp->client,
126 (unsigned char *) &tp->curr_cpu_temp,
127 MAX1617_CPU_TEMP);
128 #ifdef ENVCTRL_TRACE
129 printk("temp%d: cpu(%d C) amb(%d C)\n",
130 tp->index,
131 (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
132 #endif
133 }
134
135
do_envctrl_shutdown(struct bbc_cpu_temperature * tp)136 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
137 {
138 static int shutting_down = 0;
139 char *type = "???";
140 s8 val = -1;
141
142 if (shutting_down != 0)
143 return;
144
145 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
146 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
147 type = "ambient";
148 val = tp->curr_amb_temp;
149 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
150 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
151 type = "CPU";
152 val = tp->curr_cpu_temp;
153 }
154
155 printk(KERN_CRIT "temp%d: Outside of safe %s "
156 "operating temperature, %d C.\n",
157 tp->index, type, val);
158
159 printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
160
161 shutting_down = 1;
162 if (orderly_poweroff(true) < 0)
163 printk(KERN_CRIT "envctrl: shutdown execution failed\n");
164 }
165
166 #define WARN_INTERVAL (30 * HZ)
167
analyze_ambient_temp(struct bbc_cpu_temperature * tp,unsigned long * last_warn,int tick)168 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
169 {
170 int ret = 0;
171
172 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
173 if (tp->curr_amb_temp >=
174 amb_temp_limits[tp->index].high_warn) {
175 printk(KERN_WARNING "temp%d: "
176 "Above safe ambient operating temperature, %d C.\n",
177 tp->index, (int) tp->curr_amb_temp);
178 ret = 1;
179 } else if (tp->curr_amb_temp <
180 amb_temp_limits[tp->index].low_warn) {
181 printk(KERN_WARNING "temp%d: "
182 "Below safe ambient operating temperature, %d C.\n",
183 tp->index, (int) tp->curr_amb_temp);
184 ret = 1;
185 }
186 if (ret)
187 *last_warn = jiffies;
188 } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
189 tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
190 ret = 1;
191
192 /* Now check the shutdown limits. */
193 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
194 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
195 do_envctrl_shutdown(tp);
196 ret = 1;
197 }
198
199 if (ret) {
200 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
201 } else if ((tick & (8 - 1)) == 0) {
202 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
203 s8 amb_goal_lo;
204
205 amb_goal_lo = amb_goal_hi - 3;
206
207 /* We do not try to avoid 'too cold' events. Basically we
208 * only try to deal with over-heating and fan noise reduction.
209 */
210 if (tp->avg_amb_temp < amb_goal_hi) {
211 if (tp->avg_amb_temp >= amb_goal_lo)
212 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
213 else
214 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
215 } else {
216 tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
217 }
218 } else {
219 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
220 }
221 }
222
analyze_cpu_temp(struct bbc_cpu_temperature * tp,unsigned long * last_warn,int tick)223 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
224 {
225 int ret = 0;
226
227 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
228 if (tp->curr_cpu_temp >=
229 cpu_temp_limits[tp->index].high_warn) {
230 printk(KERN_WARNING "temp%d: "
231 "Above safe CPU operating temperature, %d C.\n",
232 tp->index, (int) tp->curr_cpu_temp);
233 ret = 1;
234 } else if (tp->curr_cpu_temp <
235 cpu_temp_limits[tp->index].low_warn) {
236 printk(KERN_WARNING "temp%d: "
237 "Below safe CPU operating temperature, %d C.\n",
238 tp->index, (int) tp->curr_cpu_temp);
239 ret = 1;
240 }
241 if (ret)
242 *last_warn = jiffies;
243 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
244 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
245 ret = 1;
246
247 /* Now check the shutdown limits. */
248 if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
249 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
250 do_envctrl_shutdown(tp);
251 ret = 1;
252 }
253
254 if (ret) {
255 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
256 } else if ((tick & (8 - 1)) == 0) {
257 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
258 s8 cpu_goal_lo;
259
260 cpu_goal_lo = cpu_goal_hi - 3;
261
262 /* We do not try to avoid 'too cold' events. Basically we
263 * only try to deal with over-heating and fan noise reduction.
264 */
265 if (tp->avg_cpu_temp < cpu_goal_hi) {
266 if (tp->avg_cpu_temp >= cpu_goal_lo)
267 tp->fan_todo[FAN_CPU] = FAN_SAME;
268 else
269 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
270 } else {
271 tp->fan_todo[FAN_CPU] = FAN_FASTER;
272 }
273 } else {
274 tp->fan_todo[FAN_CPU] = FAN_SAME;
275 }
276 }
277
analyze_temps(struct bbc_cpu_temperature * tp,unsigned long * last_warn)278 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
279 {
280 tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
281 tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
282
283 analyze_ambient_temp(tp, last_warn, tp->sample_tick);
284 analyze_cpu_temp(tp, last_warn, tp->sample_tick);
285
286 tp->sample_tick++;
287 }
288
prioritize_fan_action(int which_fan)289 static enum fan_action prioritize_fan_action(int which_fan)
290 {
291 struct bbc_cpu_temperature *tp;
292 enum fan_action decision = FAN_STATE_MAX;
293
294 /* Basically, prioritize what the temperature sensors
295 * recommend we do, and perform that action on all the
296 * fans.
297 */
298 list_for_each_entry(tp, &all_temps, glob_list) {
299 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
300 decision = FAN_FULLBLAST;
301 break;
302 }
303 if (tp->fan_todo[which_fan] == FAN_SAME &&
304 decision != FAN_FASTER)
305 decision = FAN_SAME;
306 else if (tp->fan_todo[which_fan] == FAN_FASTER)
307 decision = FAN_FASTER;
308 else if (decision != FAN_FASTER &&
309 decision != FAN_SAME &&
310 tp->fan_todo[which_fan] == FAN_SLOWER)
311 decision = FAN_SLOWER;
312 }
313 if (decision == FAN_STATE_MAX)
314 decision = FAN_SAME;
315
316 return decision;
317 }
318
maybe_new_ambient_fan_speed(struct bbc_fan_control * fp)319 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
320 {
321 enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
322 int ret;
323
324 if (decision == FAN_SAME)
325 return 0;
326
327 ret = 1;
328 if (decision == FAN_FULLBLAST) {
329 if (fp->system_fan_speed >= FAN_SPEED_MAX)
330 ret = 0;
331 else
332 fp->system_fan_speed = FAN_SPEED_MAX;
333 } else {
334 if (decision == FAN_FASTER) {
335 if (fp->system_fan_speed >= FAN_SPEED_MAX)
336 ret = 0;
337 else
338 fp->system_fan_speed += 2;
339 } else {
340 int orig_speed = fp->system_fan_speed;
341
342 if (orig_speed <= FAN_SPEED_MIN ||
343 orig_speed <= (fp->cpu_fan_speed - 3))
344 ret = 0;
345 else
346 fp->system_fan_speed -= 1;
347 }
348 }
349
350 return ret;
351 }
352
maybe_new_cpu_fan_speed(struct bbc_fan_control * fp)353 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
354 {
355 enum fan_action decision = prioritize_fan_action(FAN_CPU);
356 int ret;
357
358 if (decision == FAN_SAME)
359 return 0;
360
361 ret = 1;
362 if (decision == FAN_FULLBLAST) {
363 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
364 ret = 0;
365 else
366 fp->cpu_fan_speed = FAN_SPEED_MAX;
367 } else {
368 if (decision == FAN_FASTER) {
369 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
370 ret = 0;
371 else {
372 fp->cpu_fan_speed += 2;
373 if (fp->system_fan_speed <
374 (fp->cpu_fan_speed - 3))
375 fp->system_fan_speed =
376 fp->cpu_fan_speed - 3;
377 }
378 } else {
379 if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
380 ret = 0;
381 else
382 fp->cpu_fan_speed -= 1;
383 }
384 }
385
386 return ret;
387 }
388
maybe_new_fan_speeds(struct bbc_fan_control * fp)389 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
390 {
391 int new;
392
393 new = maybe_new_ambient_fan_speed(fp);
394 new |= maybe_new_cpu_fan_speed(fp);
395
396 if (new)
397 set_fan_speeds(fp);
398 }
399
fans_full_blast(void)400 static void fans_full_blast(void)
401 {
402 struct bbc_fan_control *fp;
403
404 /* Since we will not be monitoring things anymore, put
405 * the fans on full blast.
406 */
407 list_for_each_entry(fp, &all_fans, glob_list) {
408 fp->cpu_fan_speed = FAN_SPEED_MAX;
409 fp->system_fan_speed = FAN_SPEED_MAX;
410 fp->psupply_fan_on = 1;
411 set_fan_speeds(fp);
412 }
413 }
414
415 #define POLL_INTERVAL (5 * 1000)
416 static unsigned long last_warning_jiffies;
417 static struct task_struct *kenvctrld_task;
418
kenvctrld(void * __unused)419 static int kenvctrld(void *__unused)
420 {
421 printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
422 last_warning_jiffies = jiffies - WARN_INTERVAL;
423 for (;;) {
424 struct bbc_cpu_temperature *tp;
425 struct bbc_fan_control *fp;
426
427 msleep_interruptible(POLL_INTERVAL);
428 if (kthread_should_stop())
429 break;
430
431 list_for_each_entry(tp, &all_temps, glob_list) {
432 get_current_temps(tp);
433 analyze_temps(tp, &last_warning_jiffies);
434 }
435 list_for_each_entry(fp, &all_fans, glob_list)
436 maybe_new_fan_speeds(fp);
437 }
438 printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
439
440 fans_full_blast();
441
442 return 0;
443 }
444
attach_one_temp(struct bbc_i2c_bus * bp,struct of_device * op,int temp_idx)445 static void attach_one_temp(struct bbc_i2c_bus *bp, struct of_device *op,
446 int temp_idx)
447 {
448 struct bbc_cpu_temperature *tp;
449
450 tp = kzalloc(sizeof(*tp), GFP_KERNEL);
451 if (!tp)
452 return;
453
454 tp->client = bbc_i2c_attach(bp, op);
455 if (!tp->client) {
456 kfree(tp);
457 return;
458 }
459
460
461 tp->index = temp_idx;
462
463 list_add(&tp->glob_list, &all_temps);
464 list_add(&tp->bp_list, &bp->temps);
465
466 /* Tell it to convert once every 5 seconds, clear all cfg
467 * bits.
468 */
469 bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
470 bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
471
472 /* Program the hard temperature limits into the chip. */
473 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
474 MAX1617_WR_AMB_HIGHLIM);
475 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
476 MAX1617_WR_AMB_LOWLIM);
477 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
478 MAX1617_WR_CPU_HIGHLIM);
479 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
480 MAX1617_WR_CPU_LOWLIM);
481
482 get_current_temps(tp);
483 tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
484 tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
485
486 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
487 tp->fan_todo[FAN_CPU] = FAN_SAME;
488 }
489
attach_one_fan(struct bbc_i2c_bus * bp,struct of_device * op,int fan_idx)490 static void attach_one_fan(struct bbc_i2c_bus *bp, struct of_device *op,
491 int fan_idx)
492 {
493 struct bbc_fan_control *fp;
494
495 fp = kzalloc(sizeof(*fp), GFP_KERNEL);
496 if (!fp)
497 return;
498
499 fp->client = bbc_i2c_attach(bp, op);
500 if (!fp->client) {
501 kfree(fp);
502 return;
503 }
504
505 fp->index = fan_idx;
506
507 list_add(&fp->glob_list, &all_fans);
508 list_add(&fp->bp_list, &bp->fans);
509
510 /* The i2c device controlling the fans is write-only.
511 * So the only way to keep track of the current power
512 * level fed to the fans is via software. Choose half
513 * power for cpu/system and 'on' fo the powersupply fan
514 * and set it now.
515 */
516 fp->psupply_fan_on = 1;
517 fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
518 fp->cpu_fan_speed += FAN_SPEED_MIN;
519 fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
520 fp->system_fan_speed += FAN_SPEED_MIN;
521
522 set_fan_speeds(fp);
523 }
524
bbc_envctrl_init(struct bbc_i2c_bus * bp)525 int bbc_envctrl_init(struct bbc_i2c_bus *bp)
526 {
527 struct of_device *op;
528 int temp_index = 0;
529 int fan_index = 0;
530 int devidx = 0;
531
532 while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) {
533 if (!strcmp(op->node->name, "temperature"))
534 attach_one_temp(bp, op, temp_index++);
535 if (!strcmp(op->node->name, "fan-control"))
536 attach_one_fan(bp, op, fan_index++);
537 }
538 if (temp_index != 0 && fan_index != 0) {
539 kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
540 if (IS_ERR(kenvctrld_task))
541 return PTR_ERR(kenvctrld_task);
542 }
543
544 return 0;
545 }
546
destroy_one_temp(struct bbc_cpu_temperature * tp)547 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
548 {
549 bbc_i2c_detach(tp->client);
550 kfree(tp);
551 }
552
destroy_one_fan(struct bbc_fan_control * fp)553 static void destroy_one_fan(struct bbc_fan_control *fp)
554 {
555 bbc_i2c_detach(fp->client);
556 kfree(fp);
557 }
558
bbc_envctrl_cleanup(struct bbc_i2c_bus * bp)559 void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp)
560 {
561 struct bbc_cpu_temperature *tp, *tpos;
562 struct bbc_fan_control *fp, *fpos;
563
564 kthread_stop(kenvctrld_task);
565
566 list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) {
567 list_del(&tp->bp_list);
568 list_del(&tp->glob_list);
569 destroy_one_temp(tp);
570 }
571
572 list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) {
573 list_del(&fp->bp_list);
574 list_del(&fp->glob_list);
575 destroy_one_fan(fp);
576 }
577 }
578