• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <trace/block.h>
30 #include <scsi/sg.h>		/* for struct sg_iovec */
31 
32 DEFINE_TRACE(block_split);
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 static mempool_t *bio_split_pool __read_mostly;
41 
42 /*
43  * if you change this list, also change bvec_alloc or things will
44  * break badly! cannot be bigger than what you can fit into an
45  * unsigned short
46  */
47 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
48 struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
49 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50 };
51 #undef BV
52 
53 /*
54  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55  * IO code that does not need private memory pools.
56  */
57 struct bio_set *fs_bio_set;
58 
59 /*
60  * Our slab pool management
61  */
62 struct bio_slab {
63 	struct kmem_cache *slab;
64 	unsigned int slab_ref;
65 	unsigned int slab_size;
66 	char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71 
bio_find_or_create_slab(unsigned int extra_size)72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 	unsigned int sz = sizeof(struct bio) + extra_size;
75 	struct kmem_cache *slab = NULL;
76 	struct bio_slab *bslab;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		struct bio_slab *bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		bio_slab_max <<= 1;
100 		bio_slabs = krealloc(bio_slabs,
101 				     bio_slab_max * sizeof(struct bio_slab),
102 				     GFP_KERNEL);
103 		if (!bio_slabs)
104 			goto out_unlock;
105 	}
106 	if (entry == -1)
107 		entry = bio_slab_nr++;
108 
109 	bslab = &bio_slabs[entry];
110 
111 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
112 	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
113 	if (!slab)
114 		goto out_unlock;
115 
116 	printk("bio: create slab <%s> at %d\n", bslab->name, entry);
117 	bslab->slab = slab;
118 	bslab->slab_ref = 1;
119 	bslab->slab_size = sz;
120 out_unlock:
121 	mutex_unlock(&bio_slab_lock);
122 	return slab;
123 }
124 
bio_put_slab(struct bio_set * bs)125 static void bio_put_slab(struct bio_set *bs)
126 {
127 	struct bio_slab *bslab = NULL;
128 	unsigned int i;
129 
130 	mutex_lock(&bio_slab_lock);
131 
132 	for (i = 0; i < bio_slab_nr; i++) {
133 		if (bs->bio_slab == bio_slabs[i].slab) {
134 			bslab = &bio_slabs[i];
135 			break;
136 		}
137 	}
138 
139 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 		goto out;
141 
142 	WARN_ON(!bslab->slab_ref);
143 
144 	if (--bslab->slab_ref)
145 		goto out;
146 
147 	kmem_cache_destroy(bslab->slab);
148 	bslab->slab = NULL;
149 
150 out:
151 	mutex_unlock(&bio_slab_lock);
152 }
153 
bvec_nr_vecs(unsigned short idx)154 unsigned int bvec_nr_vecs(unsigned short idx)
155 {
156 	return bvec_slabs[idx].nr_vecs;
157 }
158 
bvec_free_bs(struct bio_set * bs,struct bio_vec * bv,unsigned int idx)159 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
160 {
161 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
162 
163 	if (idx == BIOVEC_MAX_IDX)
164 		mempool_free(bv, bs->bvec_pool);
165 	else {
166 		struct biovec_slab *bvs = bvec_slabs + idx;
167 
168 		kmem_cache_free(bvs->slab, bv);
169 	}
170 }
171 
bvec_alloc_bs(gfp_t gfp_mask,int nr,unsigned long * idx,struct bio_set * bs)172 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
173 			      struct bio_set *bs)
174 {
175 	struct bio_vec *bvl;
176 
177 	/*
178 	 * If 'bs' is given, lookup the pool and do the mempool alloc.
179 	 * If not, this is a bio_kmalloc() allocation and just do a
180 	 * kzalloc() for the exact number of vecs right away.
181 	 */
182 	if (!bs)
183 		bvl = kmalloc(nr * sizeof(struct bio_vec), gfp_mask);
184 
185 	/*
186 	 * see comment near bvec_array define!
187 	 */
188 	switch (nr) {
189 	case 1:
190 		*idx = 0;
191 		break;
192 	case 2 ... 4:
193 		*idx = 1;
194 		break;
195 	case 5 ... 16:
196 		*idx = 2;
197 		break;
198 	case 17 ... 64:
199 		*idx = 3;
200 		break;
201 	case 65 ... 128:
202 		*idx = 4;
203 		break;
204 	case 129 ... BIO_MAX_PAGES:
205 		*idx = 5;
206 		break;
207 	default:
208 		return NULL;
209 	}
210 
211 	/*
212 	 * idx now points to the pool we want to allocate from. only the
213 	 * 1-vec entry pool is mempool backed.
214 	 */
215 	if (*idx == BIOVEC_MAX_IDX) {
216 fallback:
217 		bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
218 	} else {
219 		struct biovec_slab *bvs = bvec_slabs + *idx;
220 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
221 
222 		/*
223 		 * Make this allocation restricted and don't dump info on
224 		 * allocation failures, since we'll fallback to the mempool
225 		 * in case of failure.
226 		 */
227 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
228 
229 		/*
230 		 * Try a slab allocation. If this fails and __GFP_WAIT
231 		 * is set, retry with the 1-entry mempool
232 		 */
233 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
234 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
235 			*idx = BIOVEC_MAX_IDX;
236 			goto fallback;
237 		}
238 	}
239 
240 	return bvl;
241 }
242 
bio_free(struct bio * bio,struct bio_set * bs)243 void bio_free(struct bio *bio, struct bio_set *bs)
244 {
245 	void *p;
246 
247 	if (bio_has_allocated_vec(bio))
248 		bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
249 
250 	if (bio_integrity(bio))
251 		bio_integrity_free(bio, bs);
252 
253 	/*
254 	 * If we have front padding, adjust the bio pointer before freeing
255 	 */
256 	p = bio;
257 	if (bs->front_pad)
258 		p -= bs->front_pad;
259 
260 	mempool_free(p, bs->bio_pool);
261 }
262 
263 /*
264  * default destructor for a bio allocated with bio_alloc_bioset()
265  */
bio_fs_destructor(struct bio * bio)266 static void bio_fs_destructor(struct bio *bio)
267 {
268 	bio_free(bio, fs_bio_set);
269 }
270 
bio_kmalloc_destructor(struct bio * bio)271 static void bio_kmalloc_destructor(struct bio *bio)
272 {
273 	if (bio_has_allocated_vec(bio))
274 		kfree(bio->bi_io_vec);
275 	kfree(bio);
276 }
277 
bio_init(struct bio * bio)278 void bio_init(struct bio *bio)
279 {
280 	memset(bio, 0, sizeof(*bio));
281 	bio->bi_flags = 1 << BIO_UPTODATE;
282 	bio->bi_comp_cpu = -1;
283 	atomic_set(&bio->bi_cnt, 1);
284 }
285 
286 /**
287  * bio_alloc_bioset - allocate a bio for I/O
288  * @gfp_mask:   the GFP_ mask given to the slab allocator
289  * @nr_iovecs:	number of iovecs to pre-allocate
290  * @bs:		the bio_set to allocate from. If %NULL, just use kmalloc
291  *
292  * Description:
293  *   bio_alloc_bioset will first try its own mempool to satisfy the allocation.
294  *   If %__GFP_WAIT is set then we will block on the internal pool waiting
295  *   for a &struct bio to become free. If a %NULL @bs is passed in, we will
296  *   fall back to just using @kmalloc to allocate the required memory.
297  *
298  *   Note that the caller must set ->bi_destructor on succesful return
299  *   of a bio, to do the appropriate freeing of the bio once the reference
300  *   count drops to zero.
301  **/
bio_alloc_bioset(gfp_t gfp_mask,int nr_iovecs,struct bio_set * bs)302 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
303 {
304 	struct bio *bio = NULL;
305 	void *uninitialized_var(p);
306 
307 	if (bs) {
308 		p = mempool_alloc(bs->bio_pool, gfp_mask);
309 
310 		if (p)
311 			bio = p + bs->front_pad;
312 	} else
313 		bio = kmalloc(sizeof(*bio), gfp_mask);
314 
315 	if (likely(bio)) {
316 		struct bio_vec *bvl = NULL;
317 
318 		bio_init(bio);
319 		if (likely(nr_iovecs)) {
320 			unsigned long uninitialized_var(idx);
321 
322 			if (nr_iovecs <= BIO_INLINE_VECS) {
323 				idx = 0;
324 				bvl = bio->bi_inline_vecs;
325 				nr_iovecs = BIO_INLINE_VECS;
326 			} else {
327 				bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx,
328 							bs);
329 				nr_iovecs = bvec_nr_vecs(idx);
330 			}
331 			if (unlikely(!bvl)) {
332 				if (bs)
333 					mempool_free(p, bs->bio_pool);
334 				else
335 					kfree(bio);
336 				bio = NULL;
337 				goto out;
338 			}
339 			bio->bi_flags |= idx << BIO_POOL_OFFSET;
340 			bio->bi_max_vecs = nr_iovecs;
341 		}
342 		bio->bi_io_vec = bvl;
343 	}
344 out:
345 	return bio;
346 }
347 
bio_alloc(gfp_t gfp_mask,int nr_iovecs)348 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
349 {
350 	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
351 
352 	if (bio)
353 		bio->bi_destructor = bio_fs_destructor;
354 
355 	return bio;
356 }
357 
358 /*
359  * Like bio_alloc(), but doesn't use a mempool backing. This means that
360  * it CAN fail, but while bio_alloc() can only be used for allocations
361  * that have a short (finite) life span, bio_kmalloc() should be used
362  * for more permanent bio allocations (like allocating some bio's for
363  * initalization or setup purposes).
364  */
bio_kmalloc(gfp_t gfp_mask,int nr_iovecs)365 struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
366 {
367 	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
368 
369 	if (bio)
370 		bio->bi_destructor = bio_kmalloc_destructor;
371 
372 	return bio;
373 }
374 
zero_fill_bio(struct bio * bio)375 void zero_fill_bio(struct bio *bio)
376 {
377 	unsigned long flags;
378 	struct bio_vec *bv;
379 	int i;
380 
381 	bio_for_each_segment(bv, bio, i) {
382 		char *data = bvec_kmap_irq(bv, &flags);
383 		memset(data, 0, bv->bv_len);
384 		flush_dcache_page(bv->bv_page);
385 		bvec_kunmap_irq(data, &flags);
386 	}
387 }
388 EXPORT_SYMBOL(zero_fill_bio);
389 
390 /**
391  * bio_put - release a reference to a bio
392  * @bio:   bio to release reference to
393  *
394  * Description:
395  *   Put a reference to a &struct bio, either one you have gotten with
396  *   bio_alloc or bio_get. The last put of a bio will free it.
397  **/
bio_put(struct bio * bio)398 void bio_put(struct bio *bio)
399 {
400 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
401 
402 	/*
403 	 * last put frees it
404 	 */
405 	if (atomic_dec_and_test(&bio->bi_cnt)) {
406 		bio->bi_next = NULL;
407 		bio->bi_destructor(bio);
408 	}
409 }
410 
bio_phys_segments(struct request_queue * q,struct bio * bio)411 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
412 {
413 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
414 		blk_recount_segments(q, bio);
415 
416 	return bio->bi_phys_segments;
417 }
418 
419 /**
420  * 	__bio_clone	-	clone a bio
421  * 	@bio: destination bio
422  * 	@bio_src: bio to clone
423  *
424  *	Clone a &bio. Caller will own the returned bio, but not
425  *	the actual data it points to. Reference count of returned
426  * 	bio will be one.
427  */
__bio_clone(struct bio * bio,struct bio * bio_src)428 void __bio_clone(struct bio *bio, struct bio *bio_src)
429 {
430 	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
431 		bio_src->bi_max_vecs * sizeof(struct bio_vec));
432 
433 	/*
434 	 * most users will be overriding ->bi_bdev with a new target,
435 	 * so we don't set nor calculate new physical/hw segment counts here
436 	 */
437 	bio->bi_sector = bio_src->bi_sector;
438 	bio->bi_bdev = bio_src->bi_bdev;
439 	bio->bi_flags |= 1 << BIO_CLONED;
440 	bio->bi_rw = bio_src->bi_rw;
441 	bio->bi_vcnt = bio_src->bi_vcnt;
442 	bio->bi_size = bio_src->bi_size;
443 	bio->bi_idx = bio_src->bi_idx;
444 }
445 
446 /**
447  *	bio_clone	-	clone a bio
448  *	@bio: bio to clone
449  *	@gfp_mask: allocation priority
450  *
451  * 	Like __bio_clone, only also allocates the returned bio
452  */
bio_clone(struct bio * bio,gfp_t gfp_mask)453 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
454 {
455 	struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
456 
457 	if (!b)
458 		return NULL;
459 
460 	b->bi_destructor = bio_fs_destructor;
461 	__bio_clone(b, bio);
462 
463 	if (bio_integrity(bio)) {
464 		int ret;
465 
466 		ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
467 
468 		if (ret < 0) {
469 			bio_put(b);
470 			return NULL;
471 		}
472 	}
473 
474 	return b;
475 }
476 
477 /**
478  *	bio_get_nr_vecs		- return approx number of vecs
479  *	@bdev:  I/O target
480  *
481  *	Return the approximate number of pages we can send to this target.
482  *	There's no guarantee that you will be able to fit this number of pages
483  *	into a bio, it does not account for dynamic restrictions that vary
484  *	on offset.
485  */
bio_get_nr_vecs(struct block_device * bdev)486 int bio_get_nr_vecs(struct block_device *bdev)
487 {
488 	struct request_queue *q = bdev_get_queue(bdev);
489 	int nr_pages;
490 
491 	nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
492 	if (nr_pages > q->max_phys_segments)
493 		nr_pages = q->max_phys_segments;
494 	if (nr_pages > q->max_hw_segments)
495 		nr_pages = q->max_hw_segments;
496 
497 	return nr_pages;
498 }
499 
__bio_add_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned short max_sectors)500 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
501 			  *page, unsigned int len, unsigned int offset,
502 			  unsigned short max_sectors)
503 {
504 	int retried_segments = 0;
505 	struct bio_vec *bvec;
506 
507 	/*
508 	 * cloned bio must not modify vec list
509 	 */
510 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
511 		return 0;
512 
513 	if (((bio->bi_size + len) >> 9) > max_sectors)
514 		return 0;
515 
516 	/*
517 	 * For filesystems with a blocksize smaller than the pagesize
518 	 * we will often be called with the same page as last time and
519 	 * a consecutive offset.  Optimize this special case.
520 	 */
521 	if (bio->bi_vcnt > 0) {
522 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
523 
524 		if (page == prev->bv_page &&
525 		    offset == prev->bv_offset + prev->bv_len) {
526 			prev->bv_len += len;
527 
528 			if (q->merge_bvec_fn) {
529 				struct bvec_merge_data bvm = {
530 					.bi_bdev = bio->bi_bdev,
531 					.bi_sector = bio->bi_sector,
532 					.bi_size = bio->bi_size,
533 					.bi_rw = bio->bi_rw,
534 				};
535 
536 				if (q->merge_bvec_fn(q, &bvm, prev) < len) {
537 					prev->bv_len -= len;
538 					return 0;
539 				}
540 			}
541 
542 			goto done;
543 		}
544 	}
545 
546 	if (bio->bi_vcnt >= bio->bi_max_vecs)
547 		return 0;
548 
549 	/*
550 	 * we might lose a segment or two here, but rather that than
551 	 * make this too complex.
552 	 */
553 
554 	while (bio->bi_phys_segments >= q->max_phys_segments
555 	       || bio->bi_phys_segments >= q->max_hw_segments) {
556 
557 		if (retried_segments)
558 			return 0;
559 
560 		retried_segments = 1;
561 		blk_recount_segments(q, bio);
562 	}
563 
564 	/*
565 	 * setup the new entry, we might clear it again later if we
566 	 * cannot add the page
567 	 */
568 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
569 	bvec->bv_page = page;
570 	bvec->bv_len = len;
571 	bvec->bv_offset = offset;
572 
573 	/*
574 	 * if queue has other restrictions (eg varying max sector size
575 	 * depending on offset), it can specify a merge_bvec_fn in the
576 	 * queue to get further control
577 	 */
578 	if (q->merge_bvec_fn) {
579 		struct bvec_merge_data bvm = {
580 			.bi_bdev = bio->bi_bdev,
581 			.bi_sector = bio->bi_sector,
582 			.bi_size = bio->bi_size,
583 			.bi_rw = bio->bi_rw,
584 		};
585 
586 		/*
587 		 * merge_bvec_fn() returns number of bytes it can accept
588 		 * at this offset
589 		 */
590 		if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
591 			bvec->bv_page = NULL;
592 			bvec->bv_len = 0;
593 			bvec->bv_offset = 0;
594 			return 0;
595 		}
596 	}
597 
598 	/* If we may be able to merge these biovecs, force a recount */
599 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
600 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
601 
602 	bio->bi_vcnt++;
603 	bio->bi_phys_segments++;
604  done:
605 	bio->bi_size += len;
606 	return len;
607 }
608 
609 /**
610  *	bio_add_pc_page	-	attempt to add page to bio
611  *	@q: the target queue
612  *	@bio: destination bio
613  *	@page: page to add
614  *	@len: vec entry length
615  *	@offset: vec entry offset
616  *
617  *	Attempt to add a page to the bio_vec maplist. This can fail for a
618  *	number of reasons, such as the bio being full or target block
619  *	device limitations. The target block device must allow bio's
620  *      smaller than PAGE_SIZE, so it is always possible to add a single
621  *      page to an empty bio. This should only be used by REQ_PC bios.
622  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)623 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
624 		    unsigned int len, unsigned int offset)
625 {
626 	return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
627 }
628 
629 /**
630  *	bio_add_page	-	attempt to add page to bio
631  *	@bio: destination bio
632  *	@page: page to add
633  *	@len: vec entry length
634  *	@offset: vec entry offset
635  *
636  *	Attempt to add a page to the bio_vec maplist. This can fail for a
637  *	number of reasons, such as the bio being full or target block
638  *	device limitations. The target block device must allow bio's
639  *      smaller than PAGE_SIZE, so it is always possible to add a single
640  *      page to an empty bio.
641  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)642 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
643 		 unsigned int offset)
644 {
645 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
646 	return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
647 }
648 
649 struct bio_map_data {
650 	struct bio_vec *iovecs;
651 	struct sg_iovec *sgvecs;
652 	int nr_sgvecs;
653 	int is_our_pages;
654 };
655 
bio_set_map_data(struct bio_map_data * bmd,struct bio * bio,struct sg_iovec * iov,int iov_count,int is_our_pages)656 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
657 			     struct sg_iovec *iov, int iov_count,
658 			     int is_our_pages)
659 {
660 	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
661 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
662 	bmd->nr_sgvecs = iov_count;
663 	bmd->is_our_pages = is_our_pages;
664 	bio->bi_private = bmd;
665 }
666 
bio_free_map_data(struct bio_map_data * bmd)667 static void bio_free_map_data(struct bio_map_data *bmd)
668 {
669 	kfree(bmd->iovecs);
670 	kfree(bmd->sgvecs);
671 	kfree(bmd);
672 }
673 
bio_alloc_map_data(int nr_segs,int iov_count,gfp_t gfp_mask)674 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
675 					       gfp_t gfp_mask)
676 {
677 	struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
678 
679 	if (!bmd)
680 		return NULL;
681 
682 	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
683 	if (!bmd->iovecs) {
684 		kfree(bmd);
685 		return NULL;
686 	}
687 
688 	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
689 	if (bmd->sgvecs)
690 		return bmd;
691 
692 	kfree(bmd->iovecs);
693 	kfree(bmd);
694 	return NULL;
695 }
696 
__bio_copy_iov(struct bio * bio,struct bio_vec * iovecs,struct sg_iovec * iov,int iov_count,int uncopy,int do_free_page)697 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
698 			  struct sg_iovec *iov, int iov_count, int uncopy,
699 			  int do_free_page)
700 {
701 	int ret = 0, i;
702 	struct bio_vec *bvec;
703 	int iov_idx = 0;
704 	unsigned int iov_off = 0;
705 	int read = bio_data_dir(bio) == READ;
706 
707 	__bio_for_each_segment(bvec, bio, i, 0) {
708 		char *bv_addr = page_address(bvec->bv_page);
709 		unsigned int bv_len = iovecs[i].bv_len;
710 
711 		while (bv_len && iov_idx < iov_count) {
712 			unsigned int bytes;
713 			char *iov_addr;
714 
715 			bytes = min_t(unsigned int,
716 				      iov[iov_idx].iov_len - iov_off, bv_len);
717 			iov_addr = iov[iov_idx].iov_base + iov_off;
718 
719 			if (!ret) {
720 				if (!read && !uncopy)
721 					ret = copy_from_user(bv_addr, iov_addr,
722 							     bytes);
723 				if (read && uncopy)
724 					ret = copy_to_user(iov_addr, bv_addr,
725 							   bytes);
726 
727 				if (ret)
728 					ret = -EFAULT;
729 			}
730 
731 			bv_len -= bytes;
732 			bv_addr += bytes;
733 			iov_addr += bytes;
734 			iov_off += bytes;
735 
736 			if (iov[iov_idx].iov_len == iov_off) {
737 				iov_idx++;
738 				iov_off = 0;
739 			}
740 		}
741 
742 		if (do_free_page)
743 			__free_page(bvec->bv_page);
744 	}
745 
746 	return ret;
747 }
748 
749 /**
750  *	bio_uncopy_user	-	finish previously mapped bio
751  *	@bio: bio being terminated
752  *
753  *	Free pages allocated from bio_copy_user() and write back data
754  *	to user space in case of a read.
755  */
bio_uncopy_user(struct bio * bio)756 int bio_uncopy_user(struct bio *bio)
757 {
758 	struct bio_map_data *bmd = bio->bi_private;
759 	int ret = 0;
760 
761 	if (!bio_flagged(bio, BIO_NULL_MAPPED))
762 		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
763 				     bmd->nr_sgvecs, 1, bmd->is_our_pages);
764 	bio_free_map_data(bmd);
765 	bio_put(bio);
766 	return ret;
767 }
768 
769 /**
770  *	bio_copy_user_iov	-	copy user data to bio
771  *	@q: destination block queue
772  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
773  *	@iov:	the iovec.
774  *	@iov_count: number of elements in the iovec
775  *	@write_to_vm: bool indicating writing to pages or not
776  *	@gfp_mask: memory allocation flags
777  *
778  *	Prepares and returns a bio for indirect user io, bouncing data
779  *	to/from kernel pages as necessary. Must be paired with
780  *	call bio_uncopy_user() on io completion.
781  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)782 struct bio *bio_copy_user_iov(struct request_queue *q,
783 			      struct rq_map_data *map_data,
784 			      struct sg_iovec *iov, int iov_count,
785 			      int write_to_vm, gfp_t gfp_mask)
786 {
787 	struct bio_map_data *bmd;
788 	struct bio_vec *bvec;
789 	struct page *page;
790 	struct bio *bio;
791 	int i, ret;
792 	int nr_pages = 0;
793 	unsigned int len = 0;
794 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
795 
796 	for (i = 0; i < iov_count; i++) {
797 		unsigned long uaddr;
798 		unsigned long end;
799 		unsigned long start;
800 
801 		uaddr = (unsigned long)iov[i].iov_base;
802 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
803 		start = uaddr >> PAGE_SHIFT;
804 
805 		nr_pages += end - start;
806 		len += iov[i].iov_len;
807 	}
808 
809 	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
810 	if (!bmd)
811 		return ERR_PTR(-ENOMEM);
812 
813 	ret = -ENOMEM;
814 	bio = bio_alloc(gfp_mask, nr_pages);
815 	if (!bio)
816 		goto out_bmd;
817 
818 	bio->bi_rw |= (!write_to_vm << BIO_RW);
819 
820 	ret = 0;
821 
822 	if (map_data) {
823 		nr_pages = 1 << map_data->page_order;
824 		i = map_data->offset / PAGE_SIZE;
825 	}
826 	while (len) {
827 		unsigned int bytes = PAGE_SIZE;
828 
829 		bytes -= offset;
830 
831 		if (bytes > len)
832 			bytes = len;
833 
834 		if (map_data) {
835 			if (i == map_data->nr_entries * nr_pages) {
836 				ret = -ENOMEM;
837 				break;
838 			}
839 
840 			page = map_data->pages[i / nr_pages];
841 			page += (i % nr_pages);
842 
843 			i++;
844 		} else {
845 			page = alloc_page(q->bounce_gfp | gfp_mask);
846 			if (!page) {
847 				ret = -ENOMEM;
848 				break;
849 			}
850 		}
851 
852 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
853 			break;
854 
855 		len -= bytes;
856 		offset = 0;
857 	}
858 
859 	if (ret)
860 		goto cleanup;
861 
862 	/*
863 	 * success
864 	 */
865 	if (!write_to_vm && (!map_data || !map_data->null_mapped)) {
866 		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
867 		if (ret)
868 			goto cleanup;
869 	}
870 
871 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
872 	return bio;
873 cleanup:
874 	if (!map_data)
875 		bio_for_each_segment(bvec, bio, i)
876 			__free_page(bvec->bv_page);
877 
878 	bio_put(bio);
879 out_bmd:
880 	bio_free_map_data(bmd);
881 	return ERR_PTR(ret);
882 }
883 
884 /**
885  *	bio_copy_user	-	copy user data to bio
886  *	@q: destination block queue
887  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
888  *	@uaddr: start of user address
889  *	@len: length in bytes
890  *	@write_to_vm: bool indicating writing to pages or not
891  *	@gfp_mask: memory allocation flags
892  *
893  *	Prepares and returns a bio for indirect user io, bouncing data
894  *	to/from kernel pages as necessary. Must be paired with
895  *	call bio_uncopy_user() on io completion.
896  */
bio_copy_user(struct request_queue * q,struct rq_map_data * map_data,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)897 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
898 			  unsigned long uaddr, unsigned int len,
899 			  int write_to_vm, gfp_t gfp_mask)
900 {
901 	struct sg_iovec iov;
902 
903 	iov.iov_base = (void __user *)uaddr;
904 	iov.iov_len = len;
905 
906 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
907 }
908 
__bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)909 static struct bio *__bio_map_user_iov(struct request_queue *q,
910 				      struct block_device *bdev,
911 				      struct sg_iovec *iov, int iov_count,
912 				      int write_to_vm, gfp_t gfp_mask)
913 {
914 	int i, j;
915 	int nr_pages = 0;
916 	struct page **pages;
917 	struct bio *bio;
918 	int cur_page = 0;
919 	int ret, offset;
920 
921 	for (i = 0; i < iov_count; i++) {
922 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
923 		unsigned long len = iov[i].iov_len;
924 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
925 		unsigned long start = uaddr >> PAGE_SHIFT;
926 
927 		nr_pages += end - start;
928 		/*
929 		 * buffer must be aligned to at least hardsector size for now
930 		 */
931 		if (uaddr & queue_dma_alignment(q))
932 			return ERR_PTR(-EINVAL);
933 	}
934 
935 	if (!nr_pages)
936 		return ERR_PTR(-EINVAL);
937 
938 	bio = bio_alloc(gfp_mask, nr_pages);
939 	if (!bio)
940 		return ERR_PTR(-ENOMEM);
941 
942 	ret = -ENOMEM;
943 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
944 	if (!pages)
945 		goto out;
946 
947 	for (i = 0; i < iov_count; i++) {
948 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
949 		unsigned long len = iov[i].iov_len;
950 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
951 		unsigned long start = uaddr >> PAGE_SHIFT;
952 		const int local_nr_pages = end - start;
953 		const int page_limit = cur_page + local_nr_pages;
954 
955 		ret = get_user_pages_fast(uaddr, local_nr_pages,
956 				write_to_vm, &pages[cur_page]);
957 		if (ret < local_nr_pages) {
958 			ret = -EFAULT;
959 			goto out_unmap;
960 		}
961 
962 		offset = uaddr & ~PAGE_MASK;
963 		for (j = cur_page; j < page_limit; j++) {
964 			unsigned int bytes = PAGE_SIZE - offset;
965 
966 			if (len <= 0)
967 				break;
968 
969 			if (bytes > len)
970 				bytes = len;
971 
972 			/*
973 			 * sorry...
974 			 */
975 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
976 					    bytes)
977 				break;
978 
979 			len -= bytes;
980 			offset = 0;
981 		}
982 
983 		cur_page = j;
984 		/*
985 		 * release the pages we didn't map into the bio, if any
986 		 */
987 		while (j < page_limit)
988 			page_cache_release(pages[j++]);
989 	}
990 
991 	kfree(pages);
992 
993 	/*
994 	 * set data direction, and check if mapped pages need bouncing
995 	 */
996 	if (!write_to_vm)
997 		bio->bi_rw |= (1 << BIO_RW);
998 
999 	bio->bi_bdev = bdev;
1000 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1001 	return bio;
1002 
1003  out_unmap:
1004 	for (i = 0; i < nr_pages; i++) {
1005 		if(!pages[i])
1006 			break;
1007 		page_cache_release(pages[i]);
1008 	}
1009  out:
1010 	kfree(pages);
1011 	bio_put(bio);
1012 	return ERR_PTR(ret);
1013 }
1014 
1015 /**
1016  *	bio_map_user	-	map user address into bio
1017  *	@q: the struct request_queue for the bio
1018  *	@bdev: destination block device
1019  *	@uaddr: start of user address
1020  *	@len: length in bytes
1021  *	@write_to_vm: bool indicating writing to pages or not
1022  *	@gfp_mask: memory allocation flags
1023  *
1024  *	Map the user space address into a bio suitable for io to a block
1025  *	device. Returns an error pointer in case of error.
1026  */
bio_map_user(struct request_queue * q,struct block_device * bdev,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)1027 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1028 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1029 			 gfp_t gfp_mask)
1030 {
1031 	struct sg_iovec iov;
1032 
1033 	iov.iov_base = (void __user *)uaddr;
1034 	iov.iov_len = len;
1035 
1036 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1037 }
1038 
1039 /**
1040  *	bio_map_user_iov - map user sg_iovec table into bio
1041  *	@q: the struct request_queue for the bio
1042  *	@bdev: destination block device
1043  *	@iov:	the iovec.
1044  *	@iov_count: number of elements in the iovec
1045  *	@write_to_vm: bool indicating writing to pages or not
1046  *	@gfp_mask: memory allocation flags
1047  *
1048  *	Map the user space address into a bio suitable for io to a block
1049  *	device. Returns an error pointer in case of error.
1050  */
bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)1051 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1052 			     struct sg_iovec *iov, int iov_count,
1053 			     int write_to_vm, gfp_t gfp_mask)
1054 {
1055 	struct bio *bio;
1056 
1057 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1058 				 gfp_mask);
1059 	if (IS_ERR(bio))
1060 		return bio;
1061 
1062 	/*
1063 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1064 	 * it would normally disappear when its bi_end_io is run.
1065 	 * however, we need it for the unmap, so grab an extra
1066 	 * reference to it
1067 	 */
1068 	bio_get(bio);
1069 
1070 	return bio;
1071 }
1072 
__bio_unmap_user(struct bio * bio)1073 static void __bio_unmap_user(struct bio *bio)
1074 {
1075 	struct bio_vec *bvec;
1076 	int i;
1077 
1078 	/*
1079 	 * make sure we dirty pages we wrote to
1080 	 */
1081 	__bio_for_each_segment(bvec, bio, i, 0) {
1082 		if (bio_data_dir(bio) == READ)
1083 			set_page_dirty_lock(bvec->bv_page);
1084 
1085 		page_cache_release(bvec->bv_page);
1086 	}
1087 
1088 	bio_put(bio);
1089 }
1090 
1091 /**
1092  *	bio_unmap_user	-	unmap a bio
1093  *	@bio:		the bio being unmapped
1094  *
1095  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1096  *	a process context.
1097  *
1098  *	bio_unmap_user() may sleep.
1099  */
bio_unmap_user(struct bio * bio)1100 void bio_unmap_user(struct bio *bio)
1101 {
1102 	__bio_unmap_user(bio);
1103 	bio_put(bio);
1104 }
1105 
bio_map_kern_endio(struct bio * bio,int err)1106 static void bio_map_kern_endio(struct bio *bio, int err)
1107 {
1108 	bio_put(bio);
1109 }
1110 
1111 
__bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1112 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1113 				  unsigned int len, gfp_t gfp_mask)
1114 {
1115 	unsigned long kaddr = (unsigned long)data;
1116 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1117 	unsigned long start = kaddr >> PAGE_SHIFT;
1118 	const int nr_pages = end - start;
1119 	int offset, i;
1120 	struct bio *bio;
1121 
1122 	bio = bio_alloc(gfp_mask, nr_pages);
1123 	if (!bio)
1124 		return ERR_PTR(-ENOMEM);
1125 
1126 	offset = offset_in_page(kaddr);
1127 	for (i = 0; i < nr_pages; i++) {
1128 		unsigned int bytes = PAGE_SIZE - offset;
1129 
1130 		if (len <= 0)
1131 			break;
1132 
1133 		if (bytes > len)
1134 			bytes = len;
1135 
1136 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1137 				    offset) < bytes)
1138 			break;
1139 
1140 		data += bytes;
1141 		len -= bytes;
1142 		offset = 0;
1143 	}
1144 
1145 	bio->bi_end_io = bio_map_kern_endio;
1146 	return bio;
1147 }
1148 
1149 /**
1150  *	bio_map_kern	-	map kernel address into bio
1151  *	@q: the struct request_queue for the bio
1152  *	@data: pointer to buffer to map
1153  *	@len: length in bytes
1154  *	@gfp_mask: allocation flags for bio allocation
1155  *
1156  *	Map the kernel address into a bio suitable for io to a block
1157  *	device. Returns an error pointer in case of error.
1158  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1159 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1160 			 gfp_t gfp_mask)
1161 {
1162 	struct bio *bio;
1163 
1164 	bio = __bio_map_kern(q, data, len, gfp_mask);
1165 	if (IS_ERR(bio))
1166 		return bio;
1167 
1168 	if (bio->bi_size == len)
1169 		return bio;
1170 
1171 	/*
1172 	 * Don't support partial mappings.
1173 	 */
1174 	bio_put(bio);
1175 	return ERR_PTR(-EINVAL);
1176 }
1177 
bio_copy_kern_endio(struct bio * bio,int err)1178 static void bio_copy_kern_endio(struct bio *bio, int err)
1179 {
1180 	struct bio_vec *bvec;
1181 	const int read = bio_data_dir(bio) == READ;
1182 	struct bio_map_data *bmd = bio->bi_private;
1183 	int i;
1184 	char *p = bmd->sgvecs[0].iov_base;
1185 
1186 	__bio_for_each_segment(bvec, bio, i, 0) {
1187 		char *addr = page_address(bvec->bv_page);
1188 		int len = bmd->iovecs[i].bv_len;
1189 
1190 		if (read && !err)
1191 			memcpy(p, addr, len);
1192 
1193 		__free_page(bvec->bv_page);
1194 		p += len;
1195 	}
1196 
1197 	bio_free_map_data(bmd);
1198 	bio_put(bio);
1199 }
1200 
1201 /**
1202  *	bio_copy_kern	-	copy kernel address into bio
1203  *	@q: the struct request_queue for the bio
1204  *	@data: pointer to buffer to copy
1205  *	@len: length in bytes
1206  *	@gfp_mask: allocation flags for bio and page allocation
1207  *	@reading: data direction is READ
1208  *
1209  *	copy the kernel address into a bio suitable for io to a block
1210  *	device. Returns an error pointer in case of error.
1211  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1212 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1213 			  gfp_t gfp_mask, int reading)
1214 {
1215 	struct bio *bio;
1216 	struct bio_vec *bvec;
1217 	int i;
1218 
1219 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1220 	if (IS_ERR(bio))
1221 		return bio;
1222 
1223 	if (!reading) {
1224 		void *p = data;
1225 
1226 		bio_for_each_segment(bvec, bio, i) {
1227 			char *addr = page_address(bvec->bv_page);
1228 
1229 			memcpy(addr, p, bvec->bv_len);
1230 			p += bvec->bv_len;
1231 		}
1232 	}
1233 
1234 	bio->bi_end_io = bio_copy_kern_endio;
1235 
1236 	return bio;
1237 }
1238 
1239 /*
1240  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1241  * for performing direct-IO in BIOs.
1242  *
1243  * The problem is that we cannot run set_page_dirty() from interrupt context
1244  * because the required locks are not interrupt-safe.  So what we can do is to
1245  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1246  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1247  * in process context.
1248  *
1249  * We special-case compound pages here: normally this means reads into hugetlb
1250  * pages.  The logic in here doesn't really work right for compound pages
1251  * because the VM does not uniformly chase down the head page in all cases.
1252  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1253  * handle them at all.  So we skip compound pages here at an early stage.
1254  *
1255  * Note that this code is very hard to test under normal circumstances because
1256  * direct-io pins the pages with get_user_pages().  This makes
1257  * is_page_cache_freeable return false, and the VM will not clean the pages.
1258  * But other code (eg, pdflush) could clean the pages if they are mapped
1259  * pagecache.
1260  *
1261  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1262  * deferred bio dirtying paths.
1263  */
1264 
1265 /*
1266  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1267  */
bio_set_pages_dirty(struct bio * bio)1268 void bio_set_pages_dirty(struct bio *bio)
1269 {
1270 	struct bio_vec *bvec = bio->bi_io_vec;
1271 	int i;
1272 
1273 	for (i = 0; i < bio->bi_vcnt; i++) {
1274 		struct page *page = bvec[i].bv_page;
1275 
1276 		if (page && !PageCompound(page))
1277 			set_page_dirty_lock(page);
1278 	}
1279 }
1280 
bio_release_pages(struct bio * bio)1281 static void bio_release_pages(struct bio *bio)
1282 {
1283 	struct bio_vec *bvec = bio->bi_io_vec;
1284 	int i;
1285 
1286 	for (i = 0; i < bio->bi_vcnt; i++) {
1287 		struct page *page = bvec[i].bv_page;
1288 
1289 		if (page)
1290 			put_page(page);
1291 	}
1292 }
1293 
1294 /*
1295  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1296  * If they are, then fine.  If, however, some pages are clean then they must
1297  * have been written out during the direct-IO read.  So we take another ref on
1298  * the BIO and the offending pages and re-dirty the pages in process context.
1299  *
1300  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1301  * here on.  It will run one page_cache_release() against each page and will
1302  * run one bio_put() against the BIO.
1303  */
1304 
1305 static void bio_dirty_fn(struct work_struct *work);
1306 
1307 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1308 static DEFINE_SPINLOCK(bio_dirty_lock);
1309 static struct bio *bio_dirty_list;
1310 
1311 /*
1312  * This runs in process context
1313  */
bio_dirty_fn(struct work_struct * work)1314 static void bio_dirty_fn(struct work_struct *work)
1315 {
1316 	unsigned long flags;
1317 	struct bio *bio;
1318 
1319 	spin_lock_irqsave(&bio_dirty_lock, flags);
1320 	bio = bio_dirty_list;
1321 	bio_dirty_list = NULL;
1322 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1323 
1324 	while (bio) {
1325 		struct bio *next = bio->bi_private;
1326 
1327 		bio_set_pages_dirty(bio);
1328 		bio_release_pages(bio);
1329 		bio_put(bio);
1330 		bio = next;
1331 	}
1332 }
1333 
bio_check_pages_dirty(struct bio * bio)1334 void bio_check_pages_dirty(struct bio *bio)
1335 {
1336 	struct bio_vec *bvec = bio->bi_io_vec;
1337 	int nr_clean_pages = 0;
1338 	int i;
1339 
1340 	for (i = 0; i < bio->bi_vcnt; i++) {
1341 		struct page *page = bvec[i].bv_page;
1342 
1343 		if (PageDirty(page) || PageCompound(page)) {
1344 			page_cache_release(page);
1345 			bvec[i].bv_page = NULL;
1346 		} else {
1347 			nr_clean_pages++;
1348 		}
1349 	}
1350 
1351 	if (nr_clean_pages) {
1352 		unsigned long flags;
1353 
1354 		spin_lock_irqsave(&bio_dirty_lock, flags);
1355 		bio->bi_private = bio_dirty_list;
1356 		bio_dirty_list = bio;
1357 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1358 		schedule_work(&bio_dirty_work);
1359 	} else {
1360 		bio_put(bio);
1361 	}
1362 }
1363 
1364 /**
1365  * bio_endio - end I/O on a bio
1366  * @bio:	bio
1367  * @error:	error, if any
1368  *
1369  * Description:
1370  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1371  *   preferred way to end I/O on a bio, it takes care of clearing
1372  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1373  *   established -Exxxx (-EIO, for instance) error values in case
1374  *   something went wrong. Noone should call bi_end_io() directly on a
1375  *   bio unless they own it and thus know that it has an end_io
1376  *   function.
1377  **/
bio_endio(struct bio * bio,int error)1378 void bio_endio(struct bio *bio, int error)
1379 {
1380 	if (error)
1381 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
1382 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1383 		error = -EIO;
1384 
1385 	if (bio->bi_end_io)
1386 		bio->bi_end_io(bio, error);
1387 }
1388 
bio_pair_release(struct bio_pair * bp)1389 void bio_pair_release(struct bio_pair *bp)
1390 {
1391 	if (atomic_dec_and_test(&bp->cnt)) {
1392 		struct bio *master = bp->bio1.bi_private;
1393 
1394 		bio_endio(master, bp->error);
1395 		mempool_free(bp, bp->bio2.bi_private);
1396 	}
1397 }
1398 
bio_pair_end_1(struct bio * bi,int err)1399 static void bio_pair_end_1(struct bio *bi, int err)
1400 {
1401 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1402 
1403 	if (err)
1404 		bp->error = err;
1405 
1406 	bio_pair_release(bp);
1407 }
1408 
bio_pair_end_2(struct bio * bi,int err)1409 static void bio_pair_end_2(struct bio *bi, int err)
1410 {
1411 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1412 
1413 	if (err)
1414 		bp->error = err;
1415 
1416 	bio_pair_release(bp);
1417 }
1418 
1419 /*
1420  * split a bio - only worry about a bio with a single page
1421  * in it's iovec
1422  */
bio_split(struct bio * bi,int first_sectors)1423 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1424 {
1425 	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1426 
1427 	if (!bp)
1428 		return bp;
1429 
1430 	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1431 				bi->bi_sector + first_sectors);
1432 
1433 	BUG_ON(bi->bi_vcnt != 1);
1434 	BUG_ON(bi->bi_idx != 0);
1435 	atomic_set(&bp->cnt, 3);
1436 	bp->error = 0;
1437 	bp->bio1 = *bi;
1438 	bp->bio2 = *bi;
1439 	bp->bio2.bi_sector += first_sectors;
1440 	bp->bio2.bi_size -= first_sectors << 9;
1441 	bp->bio1.bi_size = first_sectors << 9;
1442 
1443 	bp->bv1 = bi->bi_io_vec[0];
1444 	bp->bv2 = bi->bi_io_vec[0];
1445 	bp->bv2.bv_offset += first_sectors << 9;
1446 	bp->bv2.bv_len -= first_sectors << 9;
1447 	bp->bv1.bv_len = first_sectors << 9;
1448 
1449 	bp->bio1.bi_io_vec = &bp->bv1;
1450 	bp->bio2.bi_io_vec = &bp->bv2;
1451 
1452 	bp->bio1.bi_max_vecs = 1;
1453 	bp->bio2.bi_max_vecs = 1;
1454 
1455 	bp->bio1.bi_end_io = bio_pair_end_1;
1456 	bp->bio2.bi_end_io = bio_pair_end_2;
1457 
1458 	bp->bio1.bi_private = bi;
1459 	bp->bio2.bi_private = bio_split_pool;
1460 
1461 	if (bio_integrity(bi))
1462 		bio_integrity_split(bi, bp, first_sectors);
1463 
1464 	return bp;
1465 }
1466 
1467 /**
1468  *      bio_sector_offset - Find hardware sector offset in bio
1469  *      @bio:           bio to inspect
1470  *      @index:         bio_vec index
1471  *      @offset:        offset in bv_page
1472  *
1473  *      Return the number of hardware sectors between beginning of bio
1474  *      and an end point indicated by a bio_vec index and an offset
1475  *      within that vector's page.
1476  */
bio_sector_offset(struct bio * bio,unsigned short index,unsigned int offset)1477 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1478 			   unsigned int offset)
1479 {
1480 	unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
1481 	struct bio_vec *bv;
1482 	sector_t sectors;
1483 	int i;
1484 
1485 	sectors = 0;
1486 
1487 	if (index >= bio->bi_idx)
1488 		index = bio->bi_vcnt - 1;
1489 
1490 	__bio_for_each_segment(bv, bio, i, 0) {
1491 		if (i == index) {
1492 			if (offset > bv->bv_offset)
1493 				sectors += (offset - bv->bv_offset) / sector_sz;
1494 			break;
1495 		}
1496 
1497 		sectors += bv->bv_len / sector_sz;
1498 	}
1499 
1500 	return sectors;
1501 }
1502 EXPORT_SYMBOL(bio_sector_offset);
1503 
1504 /*
1505  * create memory pools for biovec's in a bio_set.
1506  * use the global biovec slabs created for general use.
1507  */
biovec_create_pools(struct bio_set * bs,int pool_entries)1508 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1509 {
1510 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1511 
1512 	bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1513 	if (!bs->bvec_pool)
1514 		return -ENOMEM;
1515 
1516 	return 0;
1517 }
1518 
biovec_free_pools(struct bio_set * bs)1519 static void biovec_free_pools(struct bio_set *bs)
1520 {
1521 	mempool_destroy(bs->bvec_pool);
1522 }
1523 
bioset_free(struct bio_set * bs)1524 void bioset_free(struct bio_set *bs)
1525 {
1526 	if (bs->bio_pool)
1527 		mempool_destroy(bs->bio_pool);
1528 
1529 	bioset_integrity_free(bs);
1530 	biovec_free_pools(bs);
1531 	bio_put_slab(bs);
1532 
1533 	kfree(bs);
1534 }
1535 
1536 /**
1537  * bioset_create  - Create a bio_set
1538  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1539  * @front_pad:	Number of bytes to allocate in front of the returned bio
1540  *
1541  * Description:
1542  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1543  *    to ask for a number of bytes to be allocated in front of the bio.
1544  *    Front pad allocation is useful for embedding the bio inside
1545  *    another structure, to avoid allocating extra data to go with the bio.
1546  *    Note that the bio must be embedded at the END of that structure always,
1547  *    or things will break badly.
1548  */
bioset_create(unsigned int pool_size,unsigned int front_pad)1549 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1550 {
1551 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1552 	struct bio_set *bs;
1553 
1554 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1555 	if (!bs)
1556 		return NULL;
1557 
1558 	bs->front_pad = front_pad;
1559 
1560 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1561 	if (!bs->bio_slab) {
1562 		kfree(bs);
1563 		return NULL;
1564 	}
1565 
1566 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1567 	if (!bs->bio_pool)
1568 		goto bad;
1569 
1570 	if (bioset_integrity_create(bs, pool_size))
1571 		goto bad;
1572 
1573 	if (!biovec_create_pools(bs, pool_size))
1574 		return bs;
1575 
1576 bad:
1577 	bioset_free(bs);
1578 	return NULL;
1579 }
1580 
biovec_init_slabs(void)1581 static void __init biovec_init_slabs(void)
1582 {
1583 	int i;
1584 
1585 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1586 		int size;
1587 		struct biovec_slab *bvs = bvec_slabs + i;
1588 
1589 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1590 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1591                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1592 	}
1593 }
1594 
init_bio(void)1595 static int __init init_bio(void)
1596 {
1597 	bio_slab_max = 2;
1598 	bio_slab_nr = 0;
1599 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1600 	if (!bio_slabs)
1601 		panic("bio: can't allocate bios\n");
1602 
1603 	bio_integrity_init_slab();
1604 	biovec_init_slabs();
1605 
1606 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1607 	if (!fs_bio_set)
1608 		panic("bio: can't allocate bios\n");
1609 
1610 	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1611 						     sizeof(struct bio_pair));
1612 	if (!bio_split_pool)
1613 		panic("bio: can't create split pool\n");
1614 
1615 	return 0;
1616 }
1617 
1618 subsys_initcall(init_bio);
1619 
1620 EXPORT_SYMBOL(bio_alloc);
1621 EXPORT_SYMBOL(bio_kmalloc);
1622 EXPORT_SYMBOL(bio_put);
1623 EXPORT_SYMBOL(bio_free);
1624 EXPORT_SYMBOL(bio_endio);
1625 EXPORT_SYMBOL(bio_init);
1626 EXPORT_SYMBOL(__bio_clone);
1627 EXPORT_SYMBOL(bio_clone);
1628 EXPORT_SYMBOL(bio_phys_segments);
1629 EXPORT_SYMBOL(bio_add_page);
1630 EXPORT_SYMBOL(bio_add_pc_page);
1631 EXPORT_SYMBOL(bio_get_nr_vecs);
1632 EXPORT_SYMBOL(bio_map_user);
1633 EXPORT_SYMBOL(bio_unmap_user);
1634 EXPORT_SYMBOL(bio_map_kern);
1635 EXPORT_SYMBOL(bio_copy_kern);
1636 EXPORT_SYMBOL(bio_pair_release);
1637 EXPORT_SYMBOL(bio_split);
1638 EXPORT_SYMBOL(bio_copy_user);
1639 EXPORT_SYMBOL(bio_uncopy_user);
1640 EXPORT_SYMBOL(bioset_create);
1641 EXPORT_SYMBOL(bioset_free);
1642 EXPORT_SYMBOL(bio_alloc_bioset);
1643