1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46
47
48 /*
49 * ext_pblock:
50 * combine low and high parts of physical block number into ext4_fsblk_t
51 */
ext_pblock(struct ext4_extent * ex)52 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 ext4_fsblk_t block;
55
56 block = le32_to_cpu(ex->ee_start_lo);
57 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 return block;
59 }
60
61 /*
62 * idx_pblock:
63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 */
idx_pblock(struct ext4_extent_idx * ix)65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 ext4_fsblk_t block;
68
69 block = le32_to_cpu(ix->ei_leaf_lo);
70 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 return block;
72 }
73
74 /*
75 * ext4_ext_store_pblock:
76 * stores a large physical block number into an extent struct,
77 * breaking it into parts
78 */
ext4_ext_store_pblock(struct ext4_extent * ex,ext4_fsblk_t pb)79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84
85 /*
86 * ext4_idx_store_pblock:
87 * stores a large physical block number into an index struct,
88 * breaking it into parts
89 */
ext4_idx_store_pblock(struct ext4_extent_idx * ix,ext4_fsblk_t pb)90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95
ext4_ext_journal_restart(handle_t * handle,int needed)96 static int ext4_ext_journal_restart(handle_t *handle, int needed)
97 {
98 int err;
99
100 if (!ext4_handle_valid(handle))
101 return 0;
102 if (handle->h_buffer_credits > needed)
103 return 0;
104 err = ext4_journal_extend(handle, needed);
105 if (err <= 0)
106 return err;
107 return ext4_journal_restart(handle, needed);
108 }
109
110 /*
111 * could return:
112 * - EROFS
113 * - ENOMEM
114 */
ext4_ext_get_access(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)115 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
116 struct ext4_ext_path *path)
117 {
118 if (path->p_bh) {
119 /* path points to block */
120 return ext4_journal_get_write_access(handle, path->p_bh);
121 }
122 /* path points to leaf/index in inode body */
123 /* we use in-core data, no need to protect them */
124 return 0;
125 }
126
127 /*
128 * could return:
129 * - EROFS
130 * - ENOMEM
131 * - EIO
132 */
ext4_ext_dirty(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)133 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
134 struct ext4_ext_path *path)
135 {
136 int err;
137 if (path->p_bh) {
138 /* path points to block */
139 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
140 } else {
141 /* path points to leaf/index in inode body */
142 err = ext4_mark_inode_dirty(handle, inode);
143 }
144 return err;
145 }
146
ext4_ext_find_goal(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)147 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
148 struct ext4_ext_path *path,
149 ext4_lblk_t block)
150 {
151 struct ext4_inode_info *ei = EXT4_I(inode);
152 ext4_fsblk_t bg_start;
153 ext4_fsblk_t last_block;
154 ext4_grpblk_t colour;
155 int depth;
156
157 if (path) {
158 struct ext4_extent *ex;
159 depth = path->p_depth;
160
161 /* try to predict block placement */
162 ex = path[depth].p_ext;
163 if (ex)
164 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
165
166 /* it looks like index is empty;
167 * try to find starting block from index itself */
168 if (path[depth].p_bh)
169 return path[depth].p_bh->b_blocknr;
170 }
171
172 /* OK. use inode's group */
173 bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
174 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
175 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
176
177 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
178 colour = (current->pid % 16) *
179 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
180 else
181 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
182 return bg_start + colour + block;
183 }
184
185 /*
186 * Allocation for a meta data block
187 */
188 static ext4_fsblk_t
ext4_ext_new_meta_block(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex,int * err)189 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
190 struct ext4_ext_path *path,
191 struct ext4_extent *ex, int *err)
192 {
193 ext4_fsblk_t goal, newblock;
194
195 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
196 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
197 return newblock;
198 }
199
ext4_ext_space_block(struct inode * inode)200 static int ext4_ext_space_block(struct inode *inode)
201 {
202 int size;
203
204 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
205 / sizeof(struct ext4_extent);
206 #ifdef AGGRESSIVE_TEST
207 if (size > 6)
208 size = 6;
209 #endif
210 return size;
211 }
212
ext4_ext_space_block_idx(struct inode * inode)213 static int ext4_ext_space_block_idx(struct inode *inode)
214 {
215 int size;
216
217 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
218 / sizeof(struct ext4_extent_idx);
219 #ifdef AGGRESSIVE_TEST
220 if (size > 5)
221 size = 5;
222 #endif
223 return size;
224 }
225
ext4_ext_space_root(struct inode * inode)226 static int ext4_ext_space_root(struct inode *inode)
227 {
228 int size;
229
230 size = sizeof(EXT4_I(inode)->i_data);
231 size -= sizeof(struct ext4_extent_header);
232 size /= sizeof(struct ext4_extent);
233 #ifdef AGGRESSIVE_TEST
234 if (size > 3)
235 size = 3;
236 #endif
237 return size;
238 }
239
ext4_ext_space_root_idx(struct inode * inode)240 static int ext4_ext_space_root_idx(struct inode *inode)
241 {
242 int size;
243
244 size = sizeof(EXT4_I(inode)->i_data);
245 size -= sizeof(struct ext4_extent_header);
246 size /= sizeof(struct ext4_extent_idx);
247 #ifdef AGGRESSIVE_TEST
248 if (size > 4)
249 size = 4;
250 #endif
251 return size;
252 }
253
254 /*
255 * Calculate the number of metadata blocks needed
256 * to allocate @blocks
257 * Worse case is one block per extent
258 */
ext4_ext_calc_metadata_amount(struct inode * inode,int blocks)259 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
260 {
261 int lcap, icap, rcap, leafs, idxs, num;
262 int newextents = blocks;
263
264 rcap = ext4_ext_space_root_idx(inode);
265 lcap = ext4_ext_space_block(inode);
266 icap = ext4_ext_space_block_idx(inode);
267
268 /* number of new leaf blocks needed */
269 num = leafs = (newextents + lcap - 1) / lcap;
270
271 /*
272 * Worse case, we need separate index block(s)
273 * to link all new leaf blocks
274 */
275 idxs = (leafs + icap - 1) / icap;
276 do {
277 num += idxs;
278 idxs = (idxs + icap - 1) / icap;
279 } while (idxs > rcap);
280
281 return num;
282 }
283
284 static int
ext4_ext_max_entries(struct inode * inode,int depth)285 ext4_ext_max_entries(struct inode *inode, int depth)
286 {
287 int max;
288
289 if (depth == ext_depth(inode)) {
290 if (depth == 0)
291 max = ext4_ext_space_root(inode);
292 else
293 max = ext4_ext_space_root_idx(inode);
294 } else {
295 if (depth == 0)
296 max = ext4_ext_space_block(inode);
297 else
298 max = ext4_ext_space_block_idx(inode);
299 }
300
301 return max;
302 }
303
__ext4_ext_check_header(const char * function,struct inode * inode,struct ext4_extent_header * eh,int depth)304 static int __ext4_ext_check_header(const char *function, struct inode *inode,
305 struct ext4_extent_header *eh,
306 int depth)
307 {
308 const char *error_msg;
309 int max = 0;
310
311 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
312 error_msg = "invalid magic";
313 goto corrupted;
314 }
315 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
316 error_msg = "unexpected eh_depth";
317 goto corrupted;
318 }
319 if (unlikely(eh->eh_max == 0)) {
320 error_msg = "invalid eh_max";
321 goto corrupted;
322 }
323 max = ext4_ext_max_entries(inode, depth);
324 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
325 error_msg = "too large eh_max";
326 goto corrupted;
327 }
328 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
329 error_msg = "invalid eh_entries";
330 goto corrupted;
331 }
332 return 0;
333
334 corrupted:
335 ext4_error(inode->i_sb, function,
336 "bad header in inode #%lu: %s - magic %x, "
337 "entries %u, max %u(%u), depth %u(%u)",
338 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
339 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
340 max, le16_to_cpu(eh->eh_depth), depth);
341
342 return -EIO;
343 }
344
345 #define ext4_ext_check_header(inode, eh, depth) \
346 __ext4_ext_check_header(__func__, inode, eh, depth)
347
348 #ifdef EXT_DEBUG
ext4_ext_show_path(struct inode * inode,struct ext4_ext_path * path)349 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
350 {
351 int k, l = path->p_depth;
352
353 ext_debug("path:");
354 for (k = 0; k <= l; k++, path++) {
355 if (path->p_idx) {
356 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
357 idx_pblock(path->p_idx));
358 } else if (path->p_ext) {
359 ext_debug(" %d:%d:%llu ",
360 le32_to_cpu(path->p_ext->ee_block),
361 ext4_ext_get_actual_len(path->p_ext),
362 ext_pblock(path->p_ext));
363 } else
364 ext_debug(" []");
365 }
366 ext_debug("\n");
367 }
368
ext4_ext_show_leaf(struct inode * inode,struct ext4_ext_path * path)369 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
370 {
371 int depth = ext_depth(inode);
372 struct ext4_extent_header *eh;
373 struct ext4_extent *ex;
374 int i;
375
376 if (!path)
377 return;
378
379 eh = path[depth].p_hdr;
380 ex = EXT_FIRST_EXTENT(eh);
381
382 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
383 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
384 ext4_ext_get_actual_len(ex), ext_pblock(ex));
385 }
386 ext_debug("\n");
387 }
388 #else
389 #define ext4_ext_show_path(inode, path)
390 #define ext4_ext_show_leaf(inode, path)
391 #endif
392
ext4_ext_drop_refs(struct ext4_ext_path * path)393 void ext4_ext_drop_refs(struct ext4_ext_path *path)
394 {
395 int depth = path->p_depth;
396 int i;
397
398 for (i = 0; i <= depth; i++, path++)
399 if (path->p_bh) {
400 brelse(path->p_bh);
401 path->p_bh = NULL;
402 }
403 }
404
405 /*
406 * ext4_ext_binsearch_idx:
407 * binary search for the closest index of the given block
408 * the header must be checked before calling this
409 */
410 static void
ext4_ext_binsearch_idx(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)411 ext4_ext_binsearch_idx(struct inode *inode,
412 struct ext4_ext_path *path, ext4_lblk_t block)
413 {
414 struct ext4_extent_header *eh = path->p_hdr;
415 struct ext4_extent_idx *r, *l, *m;
416
417
418 ext_debug("binsearch for %u(idx): ", block);
419
420 l = EXT_FIRST_INDEX(eh) + 1;
421 r = EXT_LAST_INDEX(eh);
422 while (l <= r) {
423 m = l + (r - l) / 2;
424 if (block < le32_to_cpu(m->ei_block))
425 r = m - 1;
426 else
427 l = m + 1;
428 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
429 m, le32_to_cpu(m->ei_block),
430 r, le32_to_cpu(r->ei_block));
431 }
432
433 path->p_idx = l - 1;
434 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
435 idx_pblock(path->p_idx));
436
437 #ifdef CHECK_BINSEARCH
438 {
439 struct ext4_extent_idx *chix, *ix;
440 int k;
441
442 chix = ix = EXT_FIRST_INDEX(eh);
443 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
444 if (k != 0 &&
445 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
446 printk(KERN_DEBUG "k=%d, ix=0x%p, "
447 "first=0x%p\n", k,
448 ix, EXT_FIRST_INDEX(eh));
449 printk(KERN_DEBUG "%u <= %u\n",
450 le32_to_cpu(ix->ei_block),
451 le32_to_cpu(ix[-1].ei_block));
452 }
453 BUG_ON(k && le32_to_cpu(ix->ei_block)
454 <= le32_to_cpu(ix[-1].ei_block));
455 if (block < le32_to_cpu(ix->ei_block))
456 break;
457 chix = ix;
458 }
459 BUG_ON(chix != path->p_idx);
460 }
461 #endif
462
463 }
464
465 /*
466 * ext4_ext_binsearch:
467 * binary search for closest extent of the given block
468 * the header must be checked before calling this
469 */
470 static void
ext4_ext_binsearch(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)471 ext4_ext_binsearch(struct inode *inode,
472 struct ext4_ext_path *path, ext4_lblk_t block)
473 {
474 struct ext4_extent_header *eh = path->p_hdr;
475 struct ext4_extent *r, *l, *m;
476
477 if (eh->eh_entries == 0) {
478 /*
479 * this leaf is empty:
480 * we get such a leaf in split/add case
481 */
482 return;
483 }
484
485 ext_debug("binsearch for %u: ", block);
486
487 l = EXT_FIRST_EXTENT(eh) + 1;
488 r = EXT_LAST_EXTENT(eh);
489
490 while (l <= r) {
491 m = l + (r - l) / 2;
492 if (block < le32_to_cpu(m->ee_block))
493 r = m - 1;
494 else
495 l = m + 1;
496 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
497 m, le32_to_cpu(m->ee_block),
498 r, le32_to_cpu(r->ee_block));
499 }
500
501 path->p_ext = l - 1;
502 ext_debug(" -> %d:%llu:%d ",
503 le32_to_cpu(path->p_ext->ee_block),
504 ext_pblock(path->p_ext),
505 ext4_ext_get_actual_len(path->p_ext));
506
507 #ifdef CHECK_BINSEARCH
508 {
509 struct ext4_extent *chex, *ex;
510 int k;
511
512 chex = ex = EXT_FIRST_EXTENT(eh);
513 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
514 BUG_ON(k && le32_to_cpu(ex->ee_block)
515 <= le32_to_cpu(ex[-1].ee_block));
516 if (block < le32_to_cpu(ex->ee_block))
517 break;
518 chex = ex;
519 }
520 BUG_ON(chex != path->p_ext);
521 }
522 #endif
523
524 }
525
ext4_ext_tree_init(handle_t * handle,struct inode * inode)526 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
527 {
528 struct ext4_extent_header *eh;
529
530 eh = ext_inode_hdr(inode);
531 eh->eh_depth = 0;
532 eh->eh_entries = 0;
533 eh->eh_magic = EXT4_EXT_MAGIC;
534 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
535 ext4_mark_inode_dirty(handle, inode);
536 ext4_ext_invalidate_cache(inode);
537 return 0;
538 }
539
540 struct ext4_ext_path *
ext4_ext_find_extent(struct inode * inode,ext4_lblk_t block,struct ext4_ext_path * path)541 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
542 struct ext4_ext_path *path)
543 {
544 struct ext4_extent_header *eh;
545 struct buffer_head *bh;
546 short int depth, i, ppos = 0, alloc = 0;
547
548 eh = ext_inode_hdr(inode);
549 depth = ext_depth(inode);
550 if (ext4_ext_check_header(inode, eh, depth))
551 return ERR_PTR(-EIO);
552
553
554 /* account possible depth increase */
555 if (!path) {
556 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
557 GFP_NOFS);
558 if (!path)
559 return ERR_PTR(-ENOMEM);
560 alloc = 1;
561 }
562 path[0].p_hdr = eh;
563 path[0].p_bh = NULL;
564
565 i = depth;
566 /* walk through the tree */
567 while (i) {
568 ext_debug("depth %d: num %d, max %d\n",
569 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
570
571 ext4_ext_binsearch_idx(inode, path + ppos, block);
572 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
573 path[ppos].p_depth = i;
574 path[ppos].p_ext = NULL;
575
576 bh = sb_bread(inode->i_sb, path[ppos].p_block);
577 if (!bh)
578 goto err;
579
580 eh = ext_block_hdr(bh);
581 ppos++;
582 BUG_ON(ppos > depth);
583 path[ppos].p_bh = bh;
584 path[ppos].p_hdr = eh;
585 i--;
586
587 if (ext4_ext_check_header(inode, eh, i))
588 goto err;
589 }
590
591 path[ppos].p_depth = i;
592 path[ppos].p_ext = NULL;
593 path[ppos].p_idx = NULL;
594
595 /* find extent */
596 ext4_ext_binsearch(inode, path + ppos, block);
597 /* if not an empty leaf */
598 if (path[ppos].p_ext)
599 path[ppos].p_block = ext_pblock(path[ppos].p_ext);
600
601 ext4_ext_show_path(inode, path);
602
603 return path;
604
605 err:
606 ext4_ext_drop_refs(path);
607 if (alloc)
608 kfree(path);
609 return ERR_PTR(-EIO);
610 }
611
612 /*
613 * ext4_ext_insert_index:
614 * insert new index [@logical;@ptr] into the block at @curp;
615 * check where to insert: before @curp or after @curp
616 */
ext4_ext_insert_index(handle_t * handle,struct inode * inode,struct ext4_ext_path * curp,int logical,ext4_fsblk_t ptr)617 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
618 struct ext4_ext_path *curp,
619 int logical, ext4_fsblk_t ptr)
620 {
621 struct ext4_extent_idx *ix;
622 int len, err;
623
624 err = ext4_ext_get_access(handle, inode, curp);
625 if (err)
626 return err;
627
628 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
629 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
630 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
631 /* insert after */
632 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
633 len = (len - 1) * sizeof(struct ext4_extent_idx);
634 len = len < 0 ? 0 : len;
635 ext_debug("insert new index %d after: %llu. "
636 "move %d from 0x%p to 0x%p\n",
637 logical, ptr, len,
638 (curp->p_idx + 1), (curp->p_idx + 2));
639 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
640 }
641 ix = curp->p_idx + 1;
642 } else {
643 /* insert before */
644 len = len * sizeof(struct ext4_extent_idx);
645 len = len < 0 ? 0 : len;
646 ext_debug("insert new index %d before: %llu. "
647 "move %d from 0x%p to 0x%p\n",
648 logical, ptr, len,
649 curp->p_idx, (curp->p_idx + 1));
650 memmove(curp->p_idx + 1, curp->p_idx, len);
651 ix = curp->p_idx;
652 }
653
654 ix->ei_block = cpu_to_le32(logical);
655 ext4_idx_store_pblock(ix, ptr);
656 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
657
658 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
659 > le16_to_cpu(curp->p_hdr->eh_max));
660 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
661
662 err = ext4_ext_dirty(handle, inode, curp);
663 ext4_std_error(inode->i_sb, err);
664
665 return err;
666 }
667
668 /*
669 * ext4_ext_split:
670 * inserts new subtree into the path, using free index entry
671 * at depth @at:
672 * - allocates all needed blocks (new leaf and all intermediate index blocks)
673 * - makes decision where to split
674 * - moves remaining extents and index entries (right to the split point)
675 * into the newly allocated blocks
676 * - initializes subtree
677 */
ext4_ext_split(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * newext,int at)678 static int ext4_ext_split(handle_t *handle, struct inode *inode,
679 struct ext4_ext_path *path,
680 struct ext4_extent *newext, int at)
681 {
682 struct buffer_head *bh = NULL;
683 int depth = ext_depth(inode);
684 struct ext4_extent_header *neh;
685 struct ext4_extent_idx *fidx;
686 struct ext4_extent *ex;
687 int i = at, k, m, a;
688 ext4_fsblk_t newblock, oldblock;
689 __le32 border;
690 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
691 int err = 0;
692
693 /* make decision: where to split? */
694 /* FIXME: now decision is simplest: at current extent */
695
696 /* if current leaf will be split, then we should use
697 * border from split point */
698 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
699 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
700 border = path[depth].p_ext[1].ee_block;
701 ext_debug("leaf will be split."
702 " next leaf starts at %d\n",
703 le32_to_cpu(border));
704 } else {
705 border = newext->ee_block;
706 ext_debug("leaf will be added."
707 " next leaf starts at %d\n",
708 le32_to_cpu(border));
709 }
710
711 /*
712 * If error occurs, then we break processing
713 * and mark filesystem read-only. index won't
714 * be inserted and tree will be in consistent
715 * state. Next mount will repair buffers too.
716 */
717
718 /*
719 * Get array to track all allocated blocks.
720 * We need this to handle errors and free blocks
721 * upon them.
722 */
723 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
724 if (!ablocks)
725 return -ENOMEM;
726
727 /* allocate all needed blocks */
728 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
729 for (a = 0; a < depth - at; a++) {
730 newblock = ext4_ext_new_meta_block(handle, inode, path,
731 newext, &err);
732 if (newblock == 0)
733 goto cleanup;
734 ablocks[a] = newblock;
735 }
736
737 /* initialize new leaf */
738 newblock = ablocks[--a];
739 BUG_ON(newblock == 0);
740 bh = sb_getblk(inode->i_sb, newblock);
741 if (!bh) {
742 err = -EIO;
743 goto cleanup;
744 }
745 lock_buffer(bh);
746
747 err = ext4_journal_get_create_access(handle, bh);
748 if (err)
749 goto cleanup;
750
751 neh = ext_block_hdr(bh);
752 neh->eh_entries = 0;
753 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
754 neh->eh_magic = EXT4_EXT_MAGIC;
755 neh->eh_depth = 0;
756 ex = EXT_FIRST_EXTENT(neh);
757
758 /* move remainder of path[depth] to the new leaf */
759 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
760 /* start copy from next extent */
761 /* TODO: we could do it by single memmove */
762 m = 0;
763 path[depth].p_ext++;
764 while (path[depth].p_ext <=
765 EXT_MAX_EXTENT(path[depth].p_hdr)) {
766 ext_debug("move %d:%llu:%d in new leaf %llu\n",
767 le32_to_cpu(path[depth].p_ext->ee_block),
768 ext_pblock(path[depth].p_ext),
769 ext4_ext_get_actual_len(path[depth].p_ext),
770 newblock);
771 /*memmove(ex++, path[depth].p_ext++,
772 sizeof(struct ext4_extent));
773 neh->eh_entries++;*/
774 path[depth].p_ext++;
775 m++;
776 }
777 if (m) {
778 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
779 le16_add_cpu(&neh->eh_entries, m);
780 }
781
782 set_buffer_uptodate(bh);
783 unlock_buffer(bh);
784
785 err = ext4_handle_dirty_metadata(handle, inode, bh);
786 if (err)
787 goto cleanup;
788 brelse(bh);
789 bh = NULL;
790
791 /* correct old leaf */
792 if (m) {
793 err = ext4_ext_get_access(handle, inode, path + depth);
794 if (err)
795 goto cleanup;
796 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
797 err = ext4_ext_dirty(handle, inode, path + depth);
798 if (err)
799 goto cleanup;
800
801 }
802
803 /* create intermediate indexes */
804 k = depth - at - 1;
805 BUG_ON(k < 0);
806 if (k)
807 ext_debug("create %d intermediate indices\n", k);
808 /* insert new index into current index block */
809 /* current depth stored in i var */
810 i = depth - 1;
811 while (k--) {
812 oldblock = newblock;
813 newblock = ablocks[--a];
814 bh = sb_getblk(inode->i_sb, newblock);
815 if (!bh) {
816 err = -EIO;
817 goto cleanup;
818 }
819 lock_buffer(bh);
820
821 err = ext4_journal_get_create_access(handle, bh);
822 if (err)
823 goto cleanup;
824
825 neh = ext_block_hdr(bh);
826 neh->eh_entries = cpu_to_le16(1);
827 neh->eh_magic = EXT4_EXT_MAGIC;
828 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
829 neh->eh_depth = cpu_to_le16(depth - i);
830 fidx = EXT_FIRST_INDEX(neh);
831 fidx->ei_block = border;
832 ext4_idx_store_pblock(fidx, oldblock);
833
834 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
835 i, newblock, le32_to_cpu(border), oldblock);
836 /* copy indexes */
837 m = 0;
838 path[i].p_idx++;
839
840 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
841 EXT_MAX_INDEX(path[i].p_hdr));
842 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
843 EXT_LAST_INDEX(path[i].p_hdr));
844 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
845 ext_debug("%d: move %d:%llu in new index %llu\n", i,
846 le32_to_cpu(path[i].p_idx->ei_block),
847 idx_pblock(path[i].p_idx),
848 newblock);
849 /*memmove(++fidx, path[i].p_idx++,
850 sizeof(struct ext4_extent_idx));
851 neh->eh_entries++;
852 BUG_ON(neh->eh_entries > neh->eh_max);*/
853 path[i].p_idx++;
854 m++;
855 }
856 if (m) {
857 memmove(++fidx, path[i].p_idx - m,
858 sizeof(struct ext4_extent_idx) * m);
859 le16_add_cpu(&neh->eh_entries, m);
860 }
861 set_buffer_uptodate(bh);
862 unlock_buffer(bh);
863
864 err = ext4_handle_dirty_metadata(handle, inode, bh);
865 if (err)
866 goto cleanup;
867 brelse(bh);
868 bh = NULL;
869
870 /* correct old index */
871 if (m) {
872 err = ext4_ext_get_access(handle, inode, path + i);
873 if (err)
874 goto cleanup;
875 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
876 err = ext4_ext_dirty(handle, inode, path + i);
877 if (err)
878 goto cleanup;
879 }
880
881 i--;
882 }
883
884 /* insert new index */
885 err = ext4_ext_insert_index(handle, inode, path + at,
886 le32_to_cpu(border), newblock);
887
888 cleanup:
889 if (bh) {
890 if (buffer_locked(bh))
891 unlock_buffer(bh);
892 brelse(bh);
893 }
894
895 if (err) {
896 /* free all allocated blocks in error case */
897 for (i = 0; i < depth; i++) {
898 if (!ablocks[i])
899 continue;
900 ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
901 }
902 }
903 kfree(ablocks);
904
905 return err;
906 }
907
908 /*
909 * ext4_ext_grow_indepth:
910 * implements tree growing procedure:
911 * - allocates new block
912 * - moves top-level data (index block or leaf) into the new block
913 * - initializes new top-level, creating index that points to the
914 * just created block
915 */
ext4_ext_grow_indepth(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * newext)916 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
917 struct ext4_ext_path *path,
918 struct ext4_extent *newext)
919 {
920 struct ext4_ext_path *curp = path;
921 struct ext4_extent_header *neh;
922 struct ext4_extent_idx *fidx;
923 struct buffer_head *bh;
924 ext4_fsblk_t newblock;
925 int err = 0;
926
927 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
928 if (newblock == 0)
929 return err;
930
931 bh = sb_getblk(inode->i_sb, newblock);
932 if (!bh) {
933 err = -EIO;
934 ext4_std_error(inode->i_sb, err);
935 return err;
936 }
937 lock_buffer(bh);
938
939 err = ext4_journal_get_create_access(handle, bh);
940 if (err) {
941 unlock_buffer(bh);
942 goto out;
943 }
944
945 /* move top-level index/leaf into new block */
946 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
947
948 /* set size of new block */
949 neh = ext_block_hdr(bh);
950 /* old root could have indexes or leaves
951 * so calculate e_max right way */
952 if (ext_depth(inode))
953 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
954 else
955 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
956 neh->eh_magic = EXT4_EXT_MAGIC;
957 set_buffer_uptodate(bh);
958 unlock_buffer(bh);
959
960 err = ext4_handle_dirty_metadata(handle, inode, bh);
961 if (err)
962 goto out;
963
964 /* create index in new top-level index: num,max,pointer */
965 err = ext4_ext_get_access(handle, inode, curp);
966 if (err)
967 goto out;
968
969 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
970 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
971 curp->p_hdr->eh_entries = cpu_to_le16(1);
972 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
973
974 if (path[0].p_hdr->eh_depth)
975 curp->p_idx->ei_block =
976 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
977 else
978 curp->p_idx->ei_block =
979 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
980 ext4_idx_store_pblock(curp->p_idx, newblock);
981
982 neh = ext_inode_hdr(inode);
983 fidx = EXT_FIRST_INDEX(neh);
984 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
985 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
986 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
987
988 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
989 err = ext4_ext_dirty(handle, inode, curp);
990 out:
991 brelse(bh);
992
993 return err;
994 }
995
996 /*
997 * ext4_ext_create_new_leaf:
998 * finds empty index and adds new leaf.
999 * if no free index is found, then it requests in-depth growing.
1000 */
ext4_ext_create_new_leaf(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * newext)1001 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1002 struct ext4_ext_path *path,
1003 struct ext4_extent *newext)
1004 {
1005 struct ext4_ext_path *curp;
1006 int depth, i, err = 0;
1007
1008 repeat:
1009 i = depth = ext_depth(inode);
1010
1011 /* walk up to the tree and look for free index entry */
1012 curp = path + depth;
1013 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1014 i--;
1015 curp--;
1016 }
1017
1018 /* we use already allocated block for index block,
1019 * so subsequent data blocks should be contiguous */
1020 if (EXT_HAS_FREE_INDEX(curp)) {
1021 /* if we found index with free entry, then use that
1022 * entry: create all needed subtree and add new leaf */
1023 err = ext4_ext_split(handle, inode, path, newext, i);
1024 if (err)
1025 goto out;
1026
1027 /* refill path */
1028 ext4_ext_drop_refs(path);
1029 path = ext4_ext_find_extent(inode,
1030 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1031 path);
1032 if (IS_ERR(path))
1033 err = PTR_ERR(path);
1034 } else {
1035 /* tree is full, time to grow in depth */
1036 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1037 if (err)
1038 goto out;
1039
1040 /* refill path */
1041 ext4_ext_drop_refs(path);
1042 path = ext4_ext_find_extent(inode,
1043 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1044 path);
1045 if (IS_ERR(path)) {
1046 err = PTR_ERR(path);
1047 goto out;
1048 }
1049
1050 /*
1051 * only first (depth 0 -> 1) produces free space;
1052 * in all other cases we have to split the grown tree
1053 */
1054 depth = ext_depth(inode);
1055 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1056 /* now we need to split */
1057 goto repeat;
1058 }
1059 }
1060
1061 out:
1062 return err;
1063 }
1064
1065 /*
1066 * search the closest allocated block to the left for *logical
1067 * and returns it at @logical + it's physical address at @phys
1068 * if *logical is the smallest allocated block, the function
1069 * returns 0 at @phys
1070 * return value contains 0 (success) or error code
1071 */
1072 int
ext4_ext_search_left(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys)1073 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1074 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1075 {
1076 struct ext4_extent_idx *ix;
1077 struct ext4_extent *ex;
1078 int depth, ee_len;
1079
1080 BUG_ON(path == NULL);
1081 depth = path->p_depth;
1082 *phys = 0;
1083
1084 if (depth == 0 && path->p_ext == NULL)
1085 return 0;
1086
1087 /* usually extent in the path covers blocks smaller
1088 * then *logical, but it can be that extent is the
1089 * first one in the file */
1090
1091 ex = path[depth].p_ext;
1092 ee_len = ext4_ext_get_actual_len(ex);
1093 if (*logical < le32_to_cpu(ex->ee_block)) {
1094 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1095 while (--depth >= 0) {
1096 ix = path[depth].p_idx;
1097 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1098 }
1099 return 0;
1100 }
1101
1102 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1103
1104 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1105 *phys = ext_pblock(ex) + ee_len - 1;
1106 return 0;
1107 }
1108
1109 /*
1110 * search the closest allocated block to the right for *logical
1111 * and returns it at @logical + it's physical address at @phys
1112 * if *logical is the smallest allocated block, the function
1113 * returns 0 at @phys
1114 * return value contains 0 (success) or error code
1115 */
1116 int
ext4_ext_search_right(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys)1117 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1118 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1119 {
1120 struct buffer_head *bh = NULL;
1121 struct ext4_extent_header *eh;
1122 struct ext4_extent_idx *ix;
1123 struct ext4_extent *ex;
1124 ext4_fsblk_t block;
1125 int depth; /* Note, NOT eh_depth; depth from top of tree */
1126 int ee_len;
1127
1128 BUG_ON(path == NULL);
1129 depth = path->p_depth;
1130 *phys = 0;
1131
1132 if (depth == 0 && path->p_ext == NULL)
1133 return 0;
1134
1135 /* usually extent in the path covers blocks smaller
1136 * then *logical, but it can be that extent is the
1137 * first one in the file */
1138
1139 ex = path[depth].p_ext;
1140 ee_len = ext4_ext_get_actual_len(ex);
1141 if (*logical < le32_to_cpu(ex->ee_block)) {
1142 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1143 while (--depth >= 0) {
1144 ix = path[depth].p_idx;
1145 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1146 }
1147 *logical = le32_to_cpu(ex->ee_block);
1148 *phys = ext_pblock(ex);
1149 return 0;
1150 }
1151
1152 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1153
1154 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1155 /* next allocated block in this leaf */
1156 ex++;
1157 *logical = le32_to_cpu(ex->ee_block);
1158 *phys = ext_pblock(ex);
1159 return 0;
1160 }
1161
1162 /* go up and search for index to the right */
1163 while (--depth >= 0) {
1164 ix = path[depth].p_idx;
1165 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1166 goto got_index;
1167 }
1168
1169 /* we've gone up to the root and found no index to the right */
1170 return 0;
1171
1172 got_index:
1173 /* we've found index to the right, let's
1174 * follow it and find the closest allocated
1175 * block to the right */
1176 ix++;
1177 block = idx_pblock(ix);
1178 while (++depth < path->p_depth) {
1179 bh = sb_bread(inode->i_sb, block);
1180 if (bh == NULL)
1181 return -EIO;
1182 eh = ext_block_hdr(bh);
1183 /* subtract from p_depth to get proper eh_depth */
1184 if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) {
1185 put_bh(bh);
1186 return -EIO;
1187 }
1188 ix = EXT_FIRST_INDEX(eh);
1189 block = idx_pblock(ix);
1190 put_bh(bh);
1191 }
1192
1193 bh = sb_bread(inode->i_sb, block);
1194 if (bh == NULL)
1195 return -EIO;
1196 eh = ext_block_hdr(bh);
1197 if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) {
1198 put_bh(bh);
1199 return -EIO;
1200 }
1201 ex = EXT_FIRST_EXTENT(eh);
1202 *logical = le32_to_cpu(ex->ee_block);
1203 *phys = ext_pblock(ex);
1204 put_bh(bh);
1205 return 0;
1206 }
1207
1208 /*
1209 * ext4_ext_next_allocated_block:
1210 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1211 * NOTE: it considers block number from index entry as
1212 * allocated block. Thus, index entries have to be consistent
1213 * with leaves.
1214 */
1215 static ext4_lblk_t
ext4_ext_next_allocated_block(struct ext4_ext_path * path)1216 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1217 {
1218 int depth;
1219
1220 BUG_ON(path == NULL);
1221 depth = path->p_depth;
1222
1223 if (depth == 0 && path->p_ext == NULL)
1224 return EXT_MAX_BLOCK;
1225
1226 while (depth >= 0) {
1227 if (depth == path->p_depth) {
1228 /* leaf */
1229 if (path[depth].p_ext !=
1230 EXT_LAST_EXTENT(path[depth].p_hdr))
1231 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1232 } else {
1233 /* index */
1234 if (path[depth].p_idx !=
1235 EXT_LAST_INDEX(path[depth].p_hdr))
1236 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1237 }
1238 depth--;
1239 }
1240
1241 return EXT_MAX_BLOCK;
1242 }
1243
1244 /*
1245 * ext4_ext_next_leaf_block:
1246 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1247 */
ext4_ext_next_leaf_block(struct inode * inode,struct ext4_ext_path * path)1248 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1249 struct ext4_ext_path *path)
1250 {
1251 int depth;
1252
1253 BUG_ON(path == NULL);
1254 depth = path->p_depth;
1255
1256 /* zero-tree has no leaf blocks at all */
1257 if (depth == 0)
1258 return EXT_MAX_BLOCK;
1259
1260 /* go to index block */
1261 depth--;
1262
1263 while (depth >= 0) {
1264 if (path[depth].p_idx !=
1265 EXT_LAST_INDEX(path[depth].p_hdr))
1266 return (ext4_lblk_t)
1267 le32_to_cpu(path[depth].p_idx[1].ei_block);
1268 depth--;
1269 }
1270
1271 return EXT_MAX_BLOCK;
1272 }
1273
1274 /*
1275 * ext4_ext_correct_indexes:
1276 * if leaf gets modified and modified extent is first in the leaf,
1277 * then we have to correct all indexes above.
1278 * TODO: do we need to correct tree in all cases?
1279 */
ext4_ext_correct_indexes(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)1280 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1281 struct ext4_ext_path *path)
1282 {
1283 struct ext4_extent_header *eh;
1284 int depth = ext_depth(inode);
1285 struct ext4_extent *ex;
1286 __le32 border;
1287 int k, err = 0;
1288
1289 eh = path[depth].p_hdr;
1290 ex = path[depth].p_ext;
1291 BUG_ON(ex == NULL);
1292 BUG_ON(eh == NULL);
1293
1294 if (depth == 0) {
1295 /* there is no tree at all */
1296 return 0;
1297 }
1298
1299 if (ex != EXT_FIRST_EXTENT(eh)) {
1300 /* we correct tree if first leaf got modified only */
1301 return 0;
1302 }
1303
1304 /*
1305 * TODO: we need correction if border is smaller than current one
1306 */
1307 k = depth - 1;
1308 border = path[depth].p_ext->ee_block;
1309 err = ext4_ext_get_access(handle, inode, path + k);
1310 if (err)
1311 return err;
1312 path[k].p_idx->ei_block = border;
1313 err = ext4_ext_dirty(handle, inode, path + k);
1314 if (err)
1315 return err;
1316
1317 while (k--) {
1318 /* change all left-side indexes */
1319 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1320 break;
1321 err = ext4_ext_get_access(handle, inode, path + k);
1322 if (err)
1323 break;
1324 path[k].p_idx->ei_block = border;
1325 err = ext4_ext_dirty(handle, inode, path + k);
1326 if (err)
1327 break;
1328 }
1329
1330 return err;
1331 }
1332
1333 static int
ext4_can_extents_be_merged(struct inode * inode,struct ext4_extent * ex1,struct ext4_extent * ex2)1334 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1335 struct ext4_extent *ex2)
1336 {
1337 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1338
1339 /*
1340 * Make sure that either both extents are uninitialized, or
1341 * both are _not_.
1342 */
1343 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1344 return 0;
1345
1346 if (ext4_ext_is_uninitialized(ex1))
1347 max_len = EXT_UNINIT_MAX_LEN;
1348 else
1349 max_len = EXT_INIT_MAX_LEN;
1350
1351 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1352 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1353
1354 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1355 le32_to_cpu(ex2->ee_block))
1356 return 0;
1357
1358 /*
1359 * To allow future support for preallocated extents to be added
1360 * as an RO_COMPAT feature, refuse to merge to extents if
1361 * this can result in the top bit of ee_len being set.
1362 */
1363 if (ext1_ee_len + ext2_ee_len > max_len)
1364 return 0;
1365 #ifdef AGGRESSIVE_TEST
1366 if (ext1_ee_len >= 4)
1367 return 0;
1368 #endif
1369
1370 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1371 return 1;
1372 return 0;
1373 }
1374
1375 /*
1376 * This function tries to merge the "ex" extent to the next extent in the tree.
1377 * It always tries to merge towards right. If you want to merge towards
1378 * left, pass "ex - 1" as argument instead of "ex".
1379 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1380 * 1 if they got merged.
1381 */
ext4_ext_try_to_merge(struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1382 int ext4_ext_try_to_merge(struct inode *inode,
1383 struct ext4_ext_path *path,
1384 struct ext4_extent *ex)
1385 {
1386 struct ext4_extent_header *eh;
1387 unsigned int depth, len;
1388 int merge_done = 0;
1389 int uninitialized = 0;
1390
1391 depth = ext_depth(inode);
1392 BUG_ON(path[depth].p_hdr == NULL);
1393 eh = path[depth].p_hdr;
1394
1395 while (ex < EXT_LAST_EXTENT(eh)) {
1396 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1397 break;
1398 /* merge with next extent! */
1399 if (ext4_ext_is_uninitialized(ex))
1400 uninitialized = 1;
1401 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1402 + ext4_ext_get_actual_len(ex + 1));
1403 if (uninitialized)
1404 ext4_ext_mark_uninitialized(ex);
1405
1406 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1407 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1408 * sizeof(struct ext4_extent);
1409 memmove(ex + 1, ex + 2, len);
1410 }
1411 le16_add_cpu(&eh->eh_entries, -1);
1412 merge_done = 1;
1413 WARN_ON(eh->eh_entries == 0);
1414 if (!eh->eh_entries)
1415 ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1416 "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1417 }
1418
1419 return merge_done;
1420 }
1421
1422 /*
1423 * check if a portion of the "newext" extent overlaps with an
1424 * existing extent.
1425 *
1426 * If there is an overlap discovered, it updates the length of the newext
1427 * such that there will be no overlap, and then returns 1.
1428 * If there is no overlap found, it returns 0.
1429 */
ext4_ext_check_overlap(struct inode * inode,struct ext4_extent * newext,struct ext4_ext_path * path)1430 unsigned int ext4_ext_check_overlap(struct inode *inode,
1431 struct ext4_extent *newext,
1432 struct ext4_ext_path *path)
1433 {
1434 ext4_lblk_t b1, b2;
1435 unsigned int depth, len1;
1436 unsigned int ret = 0;
1437
1438 b1 = le32_to_cpu(newext->ee_block);
1439 len1 = ext4_ext_get_actual_len(newext);
1440 depth = ext_depth(inode);
1441 if (!path[depth].p_ext)
1442 goto out;
1443 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1444
1445 /*
1446 * get the next allocated block if the extent in the path
1447 * is before the requested block(s)
1448 */
1449 if (b2 < b1) {
1450 b2 = ext4_ext_next_allocated_block(path);
1451 if (b2 == EXT_MAX_BLOCK)
1452 goto out;
1453 }
1454
1455 /* check for wrap through zero on extent logical start block*/
1456 if (b1 + len1 < b1) {
1457 len1 = EXT_MAX_BLOCK - b1;
1458 newext->ee_len = cpu_to_le16(len1);
1459 ret = 1;
1460 }
1461
1462 /* check for overlap */
1463 if (b1 + len1 > b2) {
1464 newext->ee_len = cpu_to_le16(b2 - b1);
1465 ret = 1;
1466 }
1467 out:
1468 return ret;
1469 }
1470
1471 /*
1472 * ext4_ext_insert_extent:
1473 * tries to merge requsted extent into the existing extent or
1474 * inserts requested extent as new one into the tree,
1475 * creating new leaf in the no-space case.
1476 */
ext4_ext_insert_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * newext)1477 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1478 struct ext4_ext_path *path,
1479 struct ext4_extent *newext)
1480 {
1481 struct ext4_extent_header *eh;
1482 struct ext4_extent *ex, *fex;
1483 struct ext4_extent *nearex; /* nearest extent */
1484 struct ext4_ext_path *npath = NULL;
1485 int depth, len, err;
1486 ext4_lblk_t next;
1487 unsigned uninitialized = 0;
1488
1489 BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1490 depth = ext_depth(inode);
1491 ex = path[depth].p_ext;
1492 BUG_ON(path[depth].p_hdr == NULL);
1493
1494 /* try to insert block into found extent and return */
1495 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1496 ext_debug("append %d block to %d:%d (from %llu)\n",
1497 ext4_ext_get_actual_len(newext),
1498 le32_to_cpu(ex->ee_block),
1499 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1500 err = ext4_ext_get_access(handle, inode, path + depth);
1501 if (err)
1502 return err;
1503
1504 /*
1505 * ext4_can_extents_be_merged should have checked that either
1506 * both extents are uninitialized, or both aren't. Thus we
1507 * need to check only one of them here.
1508 */
1509 if (ext4_ext_is_uninitialized(ex))
1510 uninitialized = 1;
1511 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1512 + ext4_ext_get_actual_len(newext));
1513 if (uninitialized)
1514 ext4_ext_mark_uninitialized(ex);
1515 eh = path[depth].p_hdr;
1516 nearex = ex;
1517 goto merge;
1518 }
1519
1520 repeat:
1521 depth = ext_depth(inode);
1522 eh = path[depth].p_hdr;
1523 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1524 goto has_space;
1525
1526 /* probably next leaf has space for us? */
1527 fex = EXT_LAST_EXTENT(eh);
1528 next = ext4_ext_next_leaf_block(inode, path);
1529 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1530 && next != EXT_MAX_BLOCK) {
1531 ext_debug("next leaf block - %d\n", next);
1532 BUG_ON(npath != NULL);
1533 npath = ext4_ext_find_extent(inode, next, NULL);
1534 if (IS_ERR(npath))
1535 return PTR_ERR(npath);
1536 BUG_ON(npath->p_depth != path->p_depth);
1537 eh = npath[depth].p_hdr;
1538 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1539 ext_debug("next leaf isnt full(%d)\n",
1540 le16_to_cpu(eh->eh_entries));
1541 path = npath;
1542 goto repeat;
1543 }
1544 ext_debug("next leaf has no free space(%d,%d)\n",
1545 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1546 }
1547
1548 /*
1549 * There is no free space in the found leaf.
1550 * We're gonna add a new leaf in the tree.
1551 */
1552 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1553 if (err)
1554 goto cleanup;
1555 depth = ext_depth(inode);
1556 eh = path[depth].p_hdr;
1557
1558 has_space:
1559 nearex = path[depth].p_ext;
1560
1561 err = ext4_ext_get_access(handle, inode, path + depth);
1562 if (err)
1563 goto cleanup;
1564
1565 if (!nearex) {
1566 /* there is no extent in this leaf, create first one */
1567 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1568 le32_to_cpu(newext->ee_block),
1569 ext_pblock(newext),
1570 ext4_ext_get_actual_len(newext));
1571 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1572 } else if (le32_to_cpu(newext->ee_block)
1573 > le32_to_cpu(nearex->ee_block)) {
1574 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1575 if (nearex != EXT_LAST_EXTENT(eh)) {
1576 len = EXT_MAX_EXTENT(eh) - nearex;
1577 len = (len - 1) * sizeof(struct ext4_extent);
1578 len = len < 0 ? 0 : len;
1579 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1580 "move %d from 0x%p to 0x%p\n",
1581 le32_to_cpu(newext->ee_block),
1582 ext_pblock(newext),
1583 ext4_ext_get_actual_len(newext),
1584 nearex, len, nearex + 1, nearex + 2);
1585 memmove(nearex + 2, nearex + 1, len);
1586 }
1587 path[depth].p_ext = nearex + 1;
1588 } else {
1589 BUG_ON(newext->ee_block == nearex->ee_block);
1590 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1591 len = len < 0 ? 0 : len;
1592 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1593 "move %d from 0x%p to 0x%p\n",
1594 le32_to_cpu(newext->ee_block),
1595 ext_pblock(newext),
1596 ext4_ext_get_actual_len(newext),
1597 nearex, len, nearex + 1, nearex + 2);
1598 memmove(nearex + 1, nearex, len);
1599 path[depth].p_ext = nearex;
1600 }
1601
1602 le16_add_cpu(&eh->eh_entries, 1);
1603 nearex = path[depth].p_ext;
1604 nearex->ee_block = newext->ee_block;
1605 ext4_ext_store_pblock(nearex, ext_pblock(newext));
1606 nearex->ee_len = newext->ee_len;
1607
1608 merge:
1609 /* try to merge extents to the right */
1610 ext4_ext_try_to_merge(inode, path, nearex);
1611
1612 /* try to merge extents to the left */
1613
1614 /* time to correct all indexes above */
1615 err = ext4_ext_correct_indexes(handle, inode, path);
1616 if (err)
1617 goto cleanup;
1618
1619 err = ext4_ext_dirty(handle, inode, path + depth);
1620
1621 cleanup:
1622 if (npath) {
1623 ext4_ext_drop_refs(npath);
1624 kfree(npath);
1625 }
1626 ext4_ext_invalidate_cache(inode);
1627 return err;
1628 }
1629
ext4_ext_walk_space(struct inode * inode,ext4_lblk_t block,ext4_lblk_t num,ext_prepare_callback func,void * cbdata)1630 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1631 ext4_lblk_t num, ext_prepare_callback func,
1632 void *cbdata)
1633 {
1634 struct ext4_ext_path *path = NULL;
1635 struct ext4_ext_cache cbex;
1636 struct ext4_extent *ex;
1637 ext4_lblk_t next, start = 0, end = 0;
1638 ext4_lblk_t last = block + num;
1639 int depth, exists, err = 0;
1640
1641 BUG_ON(func == NULL);
1642 BUG_ON(inode == NULL);
1643
1644 while (block < last && block != EXT_MAX_BLOCK) {
1645 num = last - block;
1646 /* find extent for this block */
1647 path = ext4_ext_find_extent(inode, block, path);
1648 if (IS_ERR(path)) {
1649 err = PTR_ERR(path);
1650 path = NULL;
1651 break;
1652 }
1653
1654 depth = ext_depth(inode);
1655 BUG_ON(path[depth].p_hdr == NULL);
1656 ex = path[depth].p_ext;
1657 next = ext4_ext_next_allocated_block(path);
1658
1659 exists = 0;
1660 if (!ex) {
1661 /* there is no extent yet, so try to allocate
1662 * all requested space */
1663 start = block;
1664 end = block + num;
1665 } else if (le32_to_cpu(ex->ee_block) > block) {
1666 /* need to allocate space before found extent */
1667 start = block;
1668 end = le32_to_cpu(ex->ee_block);
1669 if (block + num < end)
1670 end = block + num;
1671 } else if (block >= le32_to_cpu(ex->ee_block)
1672 + ext4_ext_get_actual_len(ex)) {
1673 /* need to allocate space after found extent */
1674 start = block;
1675 end = block + num;
1676 if (end >= next)
1677 end = next;
1678 } else if (block >= le32_to_cpu(ex->ee_block)) {
1679 /*
1680 * some part of requested space is covered
1681 * by found extent
1682 */
1683 start = block;
1684 end = le32_to_cpu(ex->ee_block)
1685 + ext4_ext_get_actual_len(ex);
1686 if (block + num < end)
1687 end = block + num;
1688 exists = 1;
1689 } else {
1690 BUG();
1691 }
1692 BUG_ON(end <= start);
1693
1694 if (!exists) {
1695 cbex.ec_block = start;
1696 cbex.ec_len = end - start;
1697 cbex.ec_start = 0;
1698 cbex.ec_type = EXT4_EXT_CACHE_GAP;
1699 } else {
1700 cbex.ec_block = le32_to_cpu(ex->ee_block);
1701 cbex.ec_len = ext4_ext_get_actual_len(ex);
1702 cbex.ec_start = ext_pblock(ex);
1703 cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1704 }
1705
1706 BUG_ON(cbex.ec_len == 0);
1707 err = func(inode, path, &cbex, ex, cbdata);
1708 ext4_ext_drop_refs(path);
1709
1710 if (err < 0)
1711 break;
1712
1713 if (err == EXT_REPEAT)
1714 continue;
1715 else if (err == EXT_BREAK) {
1716 err = 0;
1717 break;
1718 }
1719
1720 if (ext_depth(inode) != depth) {
1721 /* depth was changed. we have to realloc path */
1722 kfree(path);
1723 path = NULL;
1724 }
1725
1726 block = cbex.ec_block + cbex.ec_len;
1727 }
1728
1729 if (path) {
1730 ext4_ext_drop_refs(path);
1731 kfree(path);
1732 }
1733
1734 return err;
1735 }
1736
1737 static void
ext4_ext_put_in_cache(struct inode * inode,ext4_lblk_t block,__u32 len,ext4_fsblk_t start,int type)1738 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1739 __u32 len, ext4_fsblk_t start, int type)
1740 {
1741 struct ext4_ext_cache *cex;
1742 BUG_ON(len == 0);
1743 cex = &EXT4_I(inode)->i_cached_extent;
1744 cex->ec_type = type;
1745 cex->ec_block = block;
1746 cex->ec_len = len;
1747 cex->ec_start = start;
1748 }
1749
1750 /*
1751 * ext4_ext_put_gap_in_cache:
1752 * calculate boundaries of the gap that the requested block fits into
1753 * and cache this gap
1754 */
1755 static void
ext4_ext_put_gap_in_cache(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)1756 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1757 ext4_lblk_t block)
1758 {
1759 int depth = ext_depth(inode);
1760 unsigned long len;
1761 ext4_lblk_t lblock;
1762 struct ext4_extent *ex;
1763
1764 ex = path[depth].p_ext;
1765 if (ex == NULL) {
1766 /* there is no extent yet, so gap is [0;-] */
1767 lblock = 0;
1768 len = EXT_MAX_BLOCK;
1769 ext_debug("cache gap(whole file):");
1770 } else if (block < le32_to_cpu(ex->ee_block)) {
1771 lblock = block;
1772 len = le32_to_cpu(ex->ee_block) - block;
1773 ext_debug("cache gap(before): %u [%u:%u]",
1774 block,
1775 le32_to_cpu(ex->ee_block),
1776 ext4_ext_get_actual_len(ex));
1777 } else if (block >= le32_to_cpu(ex->ee_block)
1778 + ext4_ext_get_actual_len(ex)) {
1779 ext4_lblk_t next;
1780 lblock = le32_to_cpu(ex->ee_block)
1781 + ext4_ext_get_actual_len(ex);
1782
1783 next = ext4_ext_next_allocated_block(path);
1784 ext_debug("cache gap(after): [%u:%u] %u",
1785 le32_to_cpu(ex->ee_block),
1786 ext4_ext_get_actual_len(ex),
1787 block);
1788 BUG_ON(next == lblock);
1789 len = next - lblock;
1790 } else {
1791 lblock = len = 0;
1792 BUG();
1793 }
1794
1795 ext_debug(" -> %u:%lu\n", lblock, len);
1796 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1797 }
1798
1799 static int
ext4_ext_in_cache(struct inode * inode,ext4_lblk_t block,struct ext4_extent * ex)1800 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1801 struct ext4_extent *ex)
1802 {
1803 struct ext4_ext_cache *cex;
1804
1805 cex = &EXT4_I(inode)->i_cached_extent;
1806
1807 /* has cache valid data? */
1808 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1809 return EXT4_EXT_CACHE_NO;
1810
1811 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1812 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1813 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1814 ex->ee_block = cpu_to_le32(cex->ec_block);
1815 ext4_ext_store_pblock(ex, cex->ec_start);
1816 ex->ee_len = cpu_to_le16(cex->ec_len);
1817 ext_debug("%u cached by %u:%u:%llu\n",
1818 block,
1819 cex->ec_block, cex->ec_len, cex->ec_start);
1820 return cex->ec_type;
1821 }
1822
1823 /* not in cache */
1824 return EXT4_EXT_CACHE_NO;
1825 }
1826
1827 /*
1828 * ext4_ext_rm_idx:
1829 * removes index from the index block.
1830 * It's used in truncate case only, thus all requests are for
1831 * last index in the block only.
1832 */
ext4_ext_rm_idx(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)1833 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1834 struct ext4_ext_path *path)
1835 {
1836 struct buffer_head *bh;
1837 int err;
1838 ext4_fsblk_t leaf;
1839
1840 /* free index block */
1841 path--;
1842 leaf = idx_pblock(path->p_idx);
1843 BUG_ON(path->p_hdr->eh_entries == 0);
1844 err = ext4_ext_get_access(handle, inode, path);
1845 if (err)
1846 return err;
1847 le16_add_cpu(&path->p_hdr->eh_entries, -1);
1848 err = ext4_ext_dirty(handle, inode, path);
1849 if (err)
1850 return err;
1851 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1852 bh = sb_find_get_block(inode->i_sb, leaf);
1853 ext4_forget(handle, 1, inode, bh, leaf);
1854 ext4_free_blocks(handle, inode, leaf, 1, 1);
1855 return err;
1856 }
1857
1858 /*
1859 * ext4_ext_calc_credits_for_single_extent:
1860 * This routine returns max. credits that needed to insert an extent
1861 * to the extent tree.
1862 * When pass the actual path, the caller should calculate credits
1863 * under i_data_sem.
1864 */
ext4_ext_calc_credits_for_single_extent(struct inode * inode,int nrblocks,struct ext4_ext_path * path)1865 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1866 struct ext4_ext_path *path)
1867 {
1868 if (path) {
1869 int depth = ext_depth(inode);
1870 int ret = 0;
1871
1872 /* probably there is space in leaf? */
1873 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1874 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
1875
1876 /*
1877 * There are some space in the leaf tree, no
1878 * need to account for leaf block credit
1879 *
1880 * bitmaps and block group descriptor blocks
1881 * and other metadat blocks still need to be
1882 * accounted.
1883 */
1884 /* 1 bitmap, 1 block group descriptor */
1885 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1886 }
1887 }
1888
1889 return ext4_chunk_trans_blocks(inode, nrblocks);
1890 }
1891
1892 /*
1893 * How many index/leaf blocks need to change/allocate to modify nrblocks?
1894 *
1895 * if nrblocks are fit in a single extent (chunk flag is 1), then
1896 * in the worse case, each tree level index/leaf need to be changed
1897 * if the tree split due to insert a new extent, then the old tree
1898 * index/leaf need to be updated too
1899 *
1900 * If the nrblocks are discontiguous, they could cause
1901 * the whole tree split more than once, but this is really rare.
1902 */
ext4_ext_index_trans_blocks(struct inode * inode,int nrblocks,int chunk)1903 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
1904 {
1905 int index;
1906 int depth = ext_depth(inode);
1907
1908 if (chunk)
1909 index = depth * 2;
1910 else
1911 index = depth * 3;
1912
1913 return index;
1914 }
1915
ext4_remove_blocks(handle_t * handle,struct inode * inode,struct ext4_extent * ex,ext4_lblk_t from,ext4_lblk_t to)1916 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1917 struct ext4_extent *ex,
1918 ext4_lblk_t from, ext4_lblk_t to)
1919 {
1920 struct buffer_head *bh;
1921 unsigned short ee_len = ext4_ext_get_actual_len(ex);
1922 int i, metadata = 0;
1923
1924 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1925 metadata = 1;
1926 #ifdef EXTENTS_STATS
1927 {
1928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1929 spin_lock(&sbi->s_ext_stats_lock);
1930 sbi->s_ext_blocks += ee_len;
1931 sbi->s_ext_extents++;
1932 if (ee_len < sbi->s_ext_min)
1933 sbi->s_ext_min = ee_len;
1934 if (ee_len > sbi->s_ext_max)
1935 sbi->s_ext_max = ee_len;
1936 if (ext_depth(inode) > sbi->s_depth_max)
1937 sbi->s_depth_max = ext_depth(inode);
1938 spin_unlock(&sbi->s_ext_stats_lock);
1939 }
1940 #endif
1941 if (from >= le32_to_cpu(ex->ee_block)
1942 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1943 /* tail removal */
1944 ext4_lblk_t num;
1945 ext4_fsblk_t start;
1946
1947 num = le32_to_cpu(ex->ee_block) + ee_len - from;
1948 start = ext_pblock(ex) + ee_len - num;
1949 ext_debug("free last %u blocks starting %llu\n", num, start);
1950 for (i = 0; i < num; i++) {
1951 bh = sb_find_get_block(inode->i_sb, start + i);
1952 ext4_forget(handle, 0, inode, bh, start + i);
1953 }
1954 ext4_free_blocks(handle, inode, start, num, metadata);
1955 } else if (from == le32_to_cpu(ex->ee_block)
1956 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1957 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
1958 from, to, le32_to_cpu(ex->ee_block), ee_len);
1959 } else {
1960 printk(KERN_INFO "strange request: removal(2) "
1961 "%u-%u from %u:%u\n",
1962 from, to, le32_to_cpu(ex->ee_block), ee_len);
1963 }
1964 return 0;
1965 }
1966
1967 static int
ext4_ext_rm_leaf(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t start)1968 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1969 struct ext4_ext_path *path, ext4_lblk_t start)
1970 {
1971 int err = 0, correct_index = 0;
1972 int depth = ext_depth(inode), credits;
1973 struct ext4_extent_header *eh;
1974 ext4_lblk_t a, b, block;
1975 unsigned num;
1976 ext4_lblk_t ex_ee_block;
1977 unsigned short ex_ee_len;
1978 unsigned uninitialized = 0;
1979 struct ext4_extent *ex;
1980
1981 /* the header must be checked already in ext4_ext_remove_space() */
1982 ext_debug("truncate since %u in leaf\n", start);
1983 if (!path[depth].p_hdr)
1984 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1985 eh = path[depth].p_hdr;
1986 BUG_ON(eh == NULL);
1987
1988 /* find where to start removing */
1989 ex = EXT_LAST_EXTENT(eh);
1990
1991 ex_ee_block = le32_to_cpu(ex->ee_block);
1992 if (ext4_ext_is_uninitialized(ex))
1993 uninitialized = 1;
1994 ex_ee_len = ext4_ext_get_actual_len(ex);
1995
1996 while (ex >= EXT_FIRST_EXTENT(eh) &&
1997 ex_ee_block + ex_ee_len > start) {
1998 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1999 path[depth].p_ext = ex;
2000
2001 a = ex_ee_block > start ? ex_ee_block : start;
2002 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2003 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2004
2005 ext_debug(" border %u:%u\n", a, b);
2006
2007 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2008 block = 0;
2009 num = 0;
2010 BUG();
2011 } else if (a != ex_ee_block) {
2012 /* remove tail of the extent */
2013 block = ex_ee_block;
2014 num = a - block;
2015 } else if (b != ex_ee_block + ex_ee_len - 1) {
2016 /* remove head of the extent */
2017 block = a;
2018 num = b - a;
2019 /* there is no "make a hole" API yet */
2020 BUG();
2021 } else {
2022 /* remove whole extent: excellent! */
2023 block = ex_ee_block;
2024 num = 0;
2025 BUG_ON(a != ex_ee_block);
2026 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2027 }
2028
2029 /*
2030 * 3 for leaf, sb, and inode plus 2 (bmap and group
2031 * descriptor) for each block group; assume two block
2032 * groups plus ex_ee_len/blocks_per_block_group for
2033 * the worst case
2034 */
2035 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2036 if (ex == EXT_FIRST_EXTENT(eh)) {
2037 correct_index = 1;
2038 credits += (ext_depth(inode)) + 1;
2039 }
2040 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2041
2042 err = ext4_ext_journal_restart(handle, credits);
2043 if (err)
2044 goto out;
2045
2046 err = ext4_ext_get_access(handle, inode, path + depth);
2047 if (err)
2048 goto out;
2049
2050 err = ext4_remove_blocks(handle, inode, ex, a, b);
2051 if (err)
2052 goto out;
2053
2054 if (num == 0) {
2055 /* this extent is removed; mark slot entirely unused */
2056 ext4_ext_store_pblock(ex, 0);
2057 le16_add_cpu(&eh->eh_entries, -1);
2058 }
2059
2060 ex->ee_block = cpu_to_le32(block);
2061 ex->ee_len = cpu_to_le16(num);
2062 /*
2063 * Do not mark uninitialized if all the blocks in the
2064 * extent have been removed.
2065 */
2066 if (uninitialized && num)
2067 ext4_ext_mark_uninitialized(ex);
2068
2069 err = ext4_ext_dirty(handle, inode, path + depth);
2070 if (err)
2071 goto out;
2072
2073 ext_debug("new extent: %u:%u:%llu\n", block, num,
2074 ext_pblock(ex));
2075 ex--;
2076 ex_ee_block = le32_to_cpu(ex->ee_block);
2077 ex_ee_len = ext4_ext_get_actual_len(ex);
2078 }
2079
2080 if (correct_index && eh->eh_entries)
2081 err = ext4_ext_correct_indexes(handle, inode, path);
2082
2083 /* if this leaf is free, then we should
2084 * remove it from index block above */
2085 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2086 err = ext4_ext_rm_idx(handle, inode, path + depth);
2087
2088 out:
2089 return err;
2090 }
2091
2092 /*
2093 * ext4_ext_more_to_rm:
2094 * returns 1 if current index has to be freed (even partial)
2095 */
2096 static int
ext4_ext_more_to_rm(struct ext4_ext_path * path)2097 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2098 {
2099 BUG_ON(path->p_idx == NULL);
2100
2101 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2102 return 0;
2103
2104 /*
2105 * if truncate on deeper level happened, it wasn't partial,
2106 * so we have to consider current index for truncation
2107 */
2108 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2109 return 0;
2110 return 1;
2111 }
2112
ext4_ext_remove_space(struct inode * inode,ext4_lblk_t start)2113 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2114 {
2115 struct super_block *sb = inode->i_sb;
2116 int depth = ext_depth(inode);
2117 struct ext4_ext_path *path;
2118 handle_t *handle;
2119 int i = 0, err = 0;
2120
2121 ext_debug("truncate since %u\n", start);
2122
2123 /* probably first extent we're gonna free will be last in block */
2124 handle = ext4_journal_start(inode, depth + 1);
2125 if (IS_ERR(handle))
2126 return PTR_ERR(handle);
2127
2128 ext4_ext_invalidate_cache(inode);
2129
2130 /*
2131 * We start scanning from right side, freeing all the blocks
2132 * after i_size and walking into the tree depth-wise.
2133 */
2134 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2135 if (path == NULL) {
2136 ext4_journal_stop(handle);
2137 return -ENOMEM;
2138 }
2139 path[0].p_hdr = ext_inode_hdr(inode);
2140 if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
2141 err = -EIO;
2142 goto out;
2143 }
2144 path[0].p_depth = depth;
2145
2146 while (i >= 0 && err == 0) {
2147 if (i == depth) {
2148 /* this is leaf block */
2149 err = ext4_ext_rm_leaf(handle, inode, path, start);
2150 /* root level has p_bh == NULL, brelse() eats this */
2151 brelse(path[i].p_bh);
2152 path[i].p_bh = NULL;
2153 i--;
2154 continue;
2155 }
2156
2157 /* this is index block */
2158 if (!path[i].p_hdr) {
2159 ext_debug("initialize header\n");
2160 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2161 }
2162
2163 if (!path[i].p_idx) {
2164 /* this level hasn't been touched yet */
2165 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2166 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2167 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2168 path[i].p_hdr,
2169 le16_to_cpu(path[i].p_hdr->eh_entries));
2170 } else {
2171 /* we were already here, see at next index */
2172 path[i].p_idx--;
2173 }
2174
2175 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2176 i, EXT_FIRST_INDEX(path[i].p_hdr),
2177 path[i].p_idx);
2178 if (ext4_ext_more_to_rm(path + i)) {
2179 struct buffer_head *bh;
2180 /* go to the next level */
2181 ext_debug("move to level %d (block %llu)\n",
2182 i + 1, idx_pblock(path[i].p_idx));
2183 memset(path + i + 1, 0, sizeof(*path));
2184 bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2185 if (!bh) {
2186 /* should we reset i_size? */
2187 err = -EIO;
2188 break;
2189 }
2190 if (WARN_ON(i + 1 > depth)) {
2191 err = -EIO;
2192 break;
2193 }
2194 if (ext4_ext_check_header(inode, ext_block_hdr(bh),
2195 depth - i - 1)) {
2196 err = -EIO;
2197 break;
2198 }
2199 path[i + 1].p_bh = bh;
2200
2201 /* save actual number of indexes since this
2202 * number is changed at the next iteration */
2203 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2204 i++;
2205 } else {
2206 /* we finished processing this index, go up */
2207 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2208 /* index is empty, remove it;
2209 * handle must be already prepared by the
2210 * truncatei_leaf() */
2211 err = ext4_ext_rm_idx(handle, inode, path + i);
2212 }
2213 /* root level has p_bh == NULL, brelse() eats this */
2214 brelse(path[i].p_bh);
2215 path[i].p_bh = NULL;
2216 i--;
2217 ext_debug("return to level %d\n", i);
2218 }
2219 }
2220
2221 /* TODO: flexible tree reduction should be here */
2222 if (path->p_hdr->eh_entries == 0) {
2223 /*
2224 * truncate to zero freed all the tree,
2225 * so we need to correct eh_depth
2226 */
2227 err = ext4_ext_get_access(handle, inode, path);
2228 if (err == 0) {
2229 ext_inode_hdr(inode)->eh_depth = 0;
2230 ext_inode_hdr(inode)->eh_max =
2231 cpu_to_le16(ext4_ext_space_root(inode));
2232 err = ext4_ext_dirty(handle, inode, path);
2233 }
2234 }
2235 out:
2236 ext4_ext_drop_refs(path);
2237 kfree(path);
2238 ext4_journal_stop(handle);
2239
2240 return err;
2241 }
2242
2243 /*
2244 * called at mount time
2245 */
ext4_ext_init(struct super_block * sb)2246 void ext4_ext_init(struct super_block *sb)
2247 {
2248 /*
2249 * possible initialization would be here
2250 */
2251
2252 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2253 printk(KERN_INFO "EXT4-fs: file extents enabled");
2254 #ifdef AGGRESSIVE_TEST
2255 printk(", aggressive tests");
2256 #endif
2257 #ifdef CHECK_BINSEARCH
2258 printk(", check binsearch");
2259 #endif
2260 #ifdef EXTENTS_STATS
2261 printk(", stats");
2262 #endif
2263 printk("\n");
2264 #ifdef EXTENTS_STATS
2265 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2266 EXT4_SB(sb)->s_ext_min = 1 << 30;
2267 EXT4_SB(sb)->s_ext_max = 0;
2268 #endif
2269 }
2270 }
2271
2272 /*
2273 * called at umount time
2274 */
ext4_ext_release(struct super_block * sb)2275 void ext4_ext_release(struct super_block *sb)
2276 {
2277 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2278 return;
2279
2280 #ifdef EXTENTS_STATS
2281 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2282 struct ext4_sb_info *sbi = EXT4_SB(sb);
2283 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2284 sbi->s_ext_blocks, sbi->s_ext_extents,
2285 sbi->s_ext_blocks / sbi->s_ext_extents);
2286 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2287 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2288 }
2289 #endif
2290 }
2291
bi_complete(struct bio * bio,int error)2292 static void bi_complete(struct bio *bio, int error)
2293 {
2294 complete((struct completion *)bio->bi_private);
2295 }
2296
2297 /* FIXME!! we need to try to merge to left or right after zero-out */
ext4_ext_zeroout(struct inode * inode,struct ext4_extent * ex)2298 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2299 {
2300 int ret = -EIO;
2301 struct bio *bio;
2302 int blkbits, blocksize;
2303 sector_t ee_pblock;
2304 struct completion event;
2305 unsigned int ee_len, len, done, offset;
2306
2307
2308 blkbits = inode->i_blkbits;
2309 blocksize = inode->i_sb->s_blocksize;
2310 ee_len = ext4_ext_get_actual_len(ex);
2311 ee_pblock = ext_pblock(ex);
2312
2313 /* convert ee_pblock to 512 byte sectors */
2314 ee_pblock = ee_pblock << (blkbits - 9);
2315
2316 while (ee_len > 0) {
2317
2318 if (ee_len > BIO_MAX_PAGES)
2319 len = BIO_MAX_PAGES;
2320 else
2321 len = ee_len;
2322
2323 bio = bio_alloc(GFP_NOIO, len);
2324 if (!bio)
2325 return -ENOMEM;
2326 bio->bi_sector = ee_pblock;
2327 bio->bi_bdev = inode->i_sb->s_bdev;
2328
2329 done = 0;
2330 offset = 0;
2331 while (done < len) {
2332 ret = bio_add_page(bio, ZERO_PAGE(0),
2333 blocksize, offset);
2334 if (ret != blocksize) {
2335 /*
2336 * We can't add any more pages because of
2337 * hardware limitations. Start a new bio.
2338 */
2339 break;
2340 }
2341 done++;
2342 offset += blocksize;
2343 if (offset >= PAGE_CACHE_SIZE)
2344 offset = 0;
2345 }
2346
2347 init_completion(&event);
2348 bio->bi_private = &event;
2349 bio->bi_end_io = bi_complete;
2350 submit_bio(WRITE, bio);
2351 wait_for_completion(&event);
2352
2353 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2354 ret = 0;
2355 else {
2356 ret = -EIO;
2357 break;
2358 }
2359 bio_put(bio);
2360 ee_len -= done;
2361 ee_pblock += done << (blkbits - 9);
2362 }
2363 return ret;
2364 }
2365
2366 #define EXT4_EXT_ZERO_LEN 7
2367
2368 /*
2369 * This function is called by ext4_ext_get_blocks() if someone tries to write
2370 * to an uninitialized extent. It may result in splitting the uninitialized
2371 * extent into multiple extents (upto three - one initialized and two
2372 * uninitialized).
2373 * There are three possibilities:
2374 * a> There is no split required: Entire extent should be initialized
2375 * b> Splits in two extents: Write is happening at either end of the extent
2376 * c> Splits in three extents: Somone is writing in middle of the extent
2377 */
ext4_ext_convert_to_initialized(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t iblock,unsigned int max_blocks)2378 static int ext4_ext_convert_to_initialized(handle_t *handle,
2379 struct inode *inode,
2380 struct ext4_ext_path *path,
2381 ext4_lblk_t iblock,
2382 unsigned int max_blocks)
2383 {
2384 struct ext4_extent *ex, newex, orig_ex;
2385 struct ext4_extent *ex1 = NULL;
2386 struct ext4_extent *ex2 = NULL;
2387 struct ext4_extent *ex3 = NULL;
2388 struct ext4_extent_header *eh;
2389 ext4_lblk_t ee_block;
2390 unsigned int allocated, ee_len, depth;
2391 ext4_fsblk_t newblock;
2392 int err = 0;
2393 int ret = 0;
2394
2395 depth = ext_depth(inode);
2396 eh = path[depth].p_hdr;
2397 ex = path[depth].p_ext;
2398 ee_block = le32_to_cpu(ex->ee_block);
2399 ee_len = ext4_ext_get_actual_len(ex);
2400 allocated = ee_len - (iblock - ee_block);
2401 newblock = iblock - ee_block + ext_pblock(ex);
2402 ex2 = ex;
2403 orig_ex.ee_block = ex->ee_block;
2404 orig_ex.ee_len = cpu_to_le16(ee_len);
2405 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2406
2407 err = ext4_ext_get_access(handle, inode, path + depth);
2408 if (err)
2409 goto out;
2410 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2411 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2412 err = ext4_ext_zeroout(inode, &orig_ex);
2413 if (err)
2414 goto fix_extent_len;
2415 /* update the extent length and mark as initialized */
2416 ex->ee_block = orig_ex.ee_block;
2417 ex->ee_len = orig_ex.ee_len;
2418 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2419 ext4_ext_dirty(handle, inode, path + depth);
2420 /* zeroed the full extent */
2421 return allocated;
2422 }
2423
2424 /* ex1: ee_block to iblock - 1 : uninitialized */
2425 if (iblock > ee_block) {
2426 ex1 = ex;
2427 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2428 ext4_ext_mark_uninitialized(ex1);
2429 ex2 = &newex;
2430 }
2431 /*
2432 * for sanity, update the length of the ex2 extent before
2433 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2434 * overlap of blocks.
2435 */
2436 if (!ex1 && allocated > max_blocks)
2437 ex2->ee_len = cpu_to_le16(max_blocks);
2438 /* ex3: to ee_block + ee_len : uninitialised */
2439 if (allocated > max_blocks) {
2440 unsigned int newdepth;
2441 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2442 if (allocated <= EXT4_EXT_ZERO_LEN) {
2443 /*
2444 * iblock == ee_block is handled by the zerouout
2445 * at the beginning.
2446 * Mark first half uninitialized.
2447 * Mark second half initialized and zero out the
2448 * initialized extent
2449 */
2450 ex->ee_block = orig_ex.ee_block;
2451 ex->ee_len = cpu_to_le16(ee_len - allocated);
2452 ext4_ext_mark_uninitialized(ex);
2453 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2454 ext4_ext_dirty(handle, inode, path + depth);
2455
2456 ex3 = &newex;
2457 ex3->ee_block = cpu_to_le32(iblock);
2458 ext4_ext_store_pblock(ex3, newblock);
2459 ex3->ee_len = cpu_to_le16(allocated);
2460 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2461 if (err == -ENOSPC) {
2462 err = ext4_ext_zeroout(inode, &orig_ex);
2463 if (err)
2464 goto fix_extent_len;
2465 ex->ee_block = orig_ex.ee_block;
2466 ex->ee_len = orig_ex.ee_len;
2467 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2468 ext4_ext_dirty(handle, inode, path + depth);
2469 /* blocks available from iblock */
2470 return allocated;
2471
2472 } else if (err)
2473 goto fix_extent_len;
2474
2475 /*
2476 * We need to zero out the second half because
2477 * an fallocate request can update file size and
2478 * converting the second half to initialized extent
2479 * implies that we can leak some junk data to user
2480 * space.
2481 */
2482 err = ext4_ext_zeroout(inode, ex3);
2483 if (err) {
2484 /*
2485 * We should actually mark the
2486 * second half as uninit and return error
2487 * Insert would have changed the extent
2488 */
2489 depth = ext_depth(inode);
2490 ext4_ext_drop_refs(path);
2491 path = ext4_ext_find_extent(inode,
2492 iblock, path);
2493 if (IS_ERR(path)) {
2494 err = PTR_ERR(path);
2495 return err;
2496 }
2497 /* get the second half extent details */
2498 ex = path[depth].p_ext;
2499 err = ext4_ext_get_access(handle, inode,
2500 path + depth);
2501 if (err)
2502 return err;
2503 ext4_ext_mark_uninitialized(ex);
2504 ext4_ext_dirty(handle, inode, path + depth);
2505 return err;
2506 }
2507
2508 /* zeroed the second half */
2509 return allocated;
2510 }
2511 ex3 = &newex;
2512 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2513 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2514 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2515 ext4_ext_mark_uninitialized(ex3);
2516 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2517 if (err == -ENOSPC) {
2518 err = ext4_ext_zeroout(inode, &orig_ex);
2519 if (err)
2520 goto fix_extent_len;
2521 /* update the extent length and mark as initialized */
2522 ex->ee_block = orig_ex.ee_block;
2523 ex->ee_len = orig_ex.ee_len;
2524 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2525 ext4_ext_dirty(handle, inode, path + depth);
2526 /* zeroed the full extent */
2527 /* blocks available from iblock */
2528 return allocated;
2529
2530 } else if (err)
2531 goto fix_extent_len;
2532 /*
2533 * The depth, and hence eh & ex might change
2534 * as part of the insert above.
2535 */
2536 newdepth = ext_depth(inode);
2537 /*
2538 * update the extent length after successful insert of the
2539 * split extent
2540 */
2541 orig_ex.ee_len = cpu_to_le16(ee_len -
2542 ext4_ext_get_actual_len(ex3));
2543 depth = newdepth;
2544 ext4_ext_drop_refs(path);
2545 path = ext4_ext_find_extent(inode, iblock, path);
2546 if (IS_ERR(path)) {
2547 err = PTR_ERR(path);
2548 goto out;
2549 }
2550 eh = path[depth].p_hdr;
2551 ex = path[depth].p_ext;
2552 if (ex2 != &newex)
2553 ex2 = ex;
2554
2555 err = ext4_ext_get_access(handle, inode, path + depth);
2556 if (err)
2557 goto out;
2558
2559 allocated = max_blocks;
2560
2561 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2562 * to insert a extent in the middle zerout directly
2563 * otherwise give the extent a chance to merge to left
2564 */
2565 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2566 iblock != ee_block) {
2567 err = ext4_ext_zeroout(inode, &orig_ex);
2568 if (err)
2569 goto fix_extent_len;
2570 /* update the extent length and mark as initialized */
2571 ex->ee_block = orig_ex.ee_block;
2572 ex->ee_len = orig_ex.ee_len;
2573 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2574 ext4_ext_dirty(handle, inode, path + depth);
2575 /* zero out the first half */
2576 /* blocks available from iblock */
2577 return allocated;
2578 }
2579 }
2580 /*
2581 * If there was a change of depth as part of the
2582 * insertion of ex3 above, we need to update the length
2583 * of the ex1 extent again here
2584 */
2585 if (ex1 && ex1 != ex) {
2586 ex1 = ex;
2587 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2588 ext4_ext_mark_uninitialized(ex1);
2589 ex2 = &newex;
2590 }
2591 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2592 ex2->ee_block = cpu_to_le32(iblock);
2593 ext4_ext_store_pblock(ex2, newblock);
2594 ex2->ee_len = cpu_to_le16(allocated);
2595 if (ex2 != ex)
2596 goto insert;
2597 /*
2598 * New (initialized) extent starts from the first block
2599 * in the current extent. i.e., ex2 == ex
2600 * We have to see if it can be merged with the extent
2601 * on the left.
2602 */
2603 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2604 /*
2605 * To merge left, pass "ex2 - 1" to try_to_merge(),
2606 * since it merges towards right _only_.
2607 */
2608 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2609 if (ret) {
2610 err = ext4_ext_correct_indexes(handle, inode, path);
2611 if (err)
2612 goto out;
2613 depth = ext_depth(inode);
2614 ex2--;
2615 }
2616 }
2617 /*
2618 * Try to Merge towards right. This might be required
2619 * only when the whole extent is being written to.
2620 * i.e. ex2 == ex and ex3 == NULL.
2621 */
2622 if (!ex3) {
2623 ret = ext4_ext_try_to_merge(inode, path, ex2);
2624 if (ret) {
2625 err = ext4_ext_correct_indexes(handle, inode, path);
2626 if (err)
2627 goto out;
2628 }
2629 }
2630 /* Mark modified extent as dirty */
2631 err = ext4_ext_dirty(handle, inode, path + depth);
2632 goto out;
2633 insert:
2634 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2635 if (err == -ENOSPC) {
2636 err = ext4_ext_zeroout(inode, &orig_ex);
2637 if (err)
2638 goto fix_extent_len;
2639 /* update the extent length and mark as initialized */
2640 ex->ee_block = orig_ex.ee_block;
2641 ex->ee_len = orig_ex.ee_len;
2642 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2643 ext4_ext_dirty(handle, inode, path + depth);
2644 /* zero out the first half */
2645 return allocated;
2646 } else if (err)
2647 goto fix_extent_len;
2648 out:
2649 return err ? err : allocated;
2650
2651 fix_extent_len:
2652 ex->ee_block = orig_ex.ee_block;
2653 ex->ee_len = orig_ex.ee_len;
2654 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2655 ext4_ext_mark_uninitialized(ex);
2656 ext4_ext_dirty(handle, inode, path + depth);
2657 return err;
2658 }
2659
2660 /*
2661 * Block allocation/map/preallocation routine for extents based files
2662 *
2663 *
2664 * Need to be called with
2665 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2666 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2667 *
2668 * return > 0, number of of blocks already mapped/allocated
2669 * if create == 0 and these are pre-allocated blocks
2670 * buffer head is unmapped
2671 * otherwise blocks are mapped
2672 *
2673 * return = 0, if plain look up failed (blocks have not been allocated)
2674 * buffer head is unmapped
2675 *
2676 * return < 0, error case.
2677 */
ext4_ext_get_blocks(handle_t * handle,struct inode * inode,ext4_lblk_t iblock,unsigned int max_blocks,struct buffer_head * bh_result,int create,int extend_disksize)2678 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2679 ext4_lblk_t iblock,
2680 unsigned int max_blocks, struct buffer_head *bh_result,
2681 int create, int extend_disksize)
2682 {
2683 struct ext4_ext_path *path = NULL;
2684 struct ext4_extent_header *eh;
2685 struct ext4_extent newex, *ex;
2686 ext4_fsblk_t newblock;
2687 int err = 0, depth, ret, cache_type;
2688 unsigned int allocated = 0;
2689 struct ext4_allocation_request ar;
2690 loff_t disksize;
2691
2692 __clear_bit(BH_New, &bh_result->b_state);
2693 ext_debug("blocks %u/%u requested for inode %u\n",
2694 iblock, max_blocks, inode->i_ino);
2695
2696 /* check in cache */
2697 cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2698 if (cache_type) {
2699 if (cache_type == EXT4_EXT_CACHE_GAP) {
2700 if (!create) {
2701 /*
2702 * block isn't allocated yet and
2703 * user doesn't want to allocate it
2704 */
2705 goto out2;
2706 }
2707 /* we should allocate requested block */
2708 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2709 /* block is already allocated */
2710 newblock = iblock
2711 - le32_to_cpu(newex.ee_block)
2712 + ext_pblock(&newex);
2713 /* number of remaining blocks in the extent */
2714 allocated = ext4_ext_get_actual_len(&newex) -
2715 (iblock - le32_to_cpu(newex.ee_block));
2716 goto out;
2717 } else {
2718 BUG();
2719 }
2720 }
2721
2722 /* find extent for this block */
2723 path = ext4_ext_find_extent(inode, iblock, NULL);
2724 if (IS_ERR(path)) {
2725 err = PTR_ERR(path);
2726 path = NULL;
2727 goto out2;
2728 }
2729
2730 depth = ext_depth(inode);
2731
2732 /*
2733 * consistent leaf must not be empty;
2734 * this situation is possible, though, _during_ tree modification;
2735 * this is why assert can't be put in ext4_ext_find_extent()
2736 */
2737 BUG_ON(path[depth].p_ext == NULL && depth != 0);
2738 eh = path[depth].p_hdr;
2739
2740 ex = path[depth].p_ext;
2741 if (ex) {
2742 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2743 ext4_fsblk_t ee_start = ext_pblock(ex);
2744 unsigned short ee_len;
2745
2746 /*
2747 * Uninitialized extents are treated as holes, except that
2748 * we split out initialized portions during a write.
2749 */
2750 ee_len = ext4_ext_get_actual_len(ex);
2751 /* if found extent covers block, simply return it */
2752 if (iblock >= ee_block && iblock < ee_block + ee_len) {
2753 newblock = iblock - ee_block + ee_start;
2754 /* number of remaining blocks in the extent */
2755 allocated = ee_len - (iblock - ee_block);
2756 ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2757 ee_block, ee_len, newblock);
2758
2759 /* Do not put uninitialized extent in the cache */
2760 if (!ext4_ext_is_uninitialized(ex)) {
2761 ext4_ext_put_in_cache(inode, ee_block,
2762 ee_len, ee_start,
2763 EXT4_EXT_CACHE_EXTENT);
2764 goto out;
2765 }
2766 if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2767 goto out;
2768 if (!create) {
2769 /*
2770 * We have blocks reserved already. We
2771 * return allocated blocks so that delalloc
2772 * won't do block reservation for us. But
2773 * the buffer head will be unmapped so that
2774 * a read from the block returns 0s.
2775 */
2776 if (allocated > max_blocks)
2777 allocated = max_blocks;
2778 set_buffer_unwritten(bh_result);
2779 goto out2;
2780 }
2781
2782 ret = ext4_ext_convert_to_initialized(handle, inode,
2783 path, iblock,
2784 max_blocks);
2785 if (ret <= 0) {
2786 err = ret;
2787 goto out2;
2788 } else
2789 allocated = ret;
2790 goto outnew;
2791 }
2792 }
2793
2794 /*
2795 * requested block isn't allocated yet;
2796 * we couldn't try to create block if create flag is zero
2797 */
2798 if (!create) {
2799 /*
2800 * put just found gap into cache to speed up
2801 * subsequent requests
2802 */
2803 ext4_ext_put_gap_in_cache(inode, path, iblock);
2804 goto out2;
2805 }
2806 /*
2807 * Okay, we need to do block allocation.
2808 */
2809
2810 /* find neighbour allocated blocks */
2811 ar.lleft = iblock;
2812 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2813 if (err)
2814 goto out2;
2815 ar.lright = iblock;
2816 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2817 if (err)
2818 goto out2;
2819
2820 /*
2821 * See if request is beyond maximum number of blocks we can have in
2822 * a single extent. For an initialized extent this limit is
2823 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2824 * EXT_UNINIT_MAX_LEN.
2825 */
2826 if (max_blocks > EXT_INIT_MAX_LEN &&
2827 create != EXT4_CREATE_UNINITIALIZED_EXT)
2828 max_blocks = EXT_INIT_MAX_LEN;
2829 else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2830 create == EXT4_CREATE_UNINITIALIZED_EXT)
2831 max_blocks = EXT_UNINIT_MAX_LEN;
2832
2833 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2834 newex.ee_block = cpu_to_le32(iblock);
2835 newex.ee_len = cpu_to_le16(max_blocks);
2836 err = ext4_ext_check_overlap(inode, &newex, path);
2837 if (err)
2838 allocated = ext4_ext_get_actual_len(&newex);
2839 else
2840 allocated = max_blocks;
2841
2842 /* allocate new block */
2843 ar.inode = inode;
2844 ar.goal = ext4_ext_find_goal(inode, path, iblock);
2845 ar.logical = iblock;
2846 ar.len = allocated;
2847 if (S_ISREG(inode->i_mode))
2848 ar.flags = EXT4_MB_HINT_DATA;
2849 else
2850 /* disable in-core preallocation for non-regular files */
2851 ar.flags = 0;
2852 newblock = ext4_mb_new_blocks(handle, &ar, &err);
2853 if (!newblock)
2854 goto out2;
2855 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2856 ar.goal, newblock, allocated);
2857
2858 /* try to insert new extent into found leaf and return */
2859 ext4_ext_store_pblock(&newex, newblock);
2860 newex.ee_len = cpu_to_le16(ar.len);
2861 if (create == EXT4_CREATE_UNINITIALIZED_EXT) /* Mark uninitialized */
2862 ext4_ext_mark_uninitialized(&newex);
2863 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2864 if (err) {
2865 /* free data blocks we just allocated */
2866 /* not a good idea to call discard here directly,
2867 * but otherwise we'd need to call it every free() */
2868 ext4_discard_preallocations(inode);
2869 ext4_free_blocks(handle, inode, ext_pblock(&newex),
2870 ext4_ext_get_actual_len(&newex), 0);
2871 goto out2;
2872 }
2873
2874 /* previous routine could use block we allocated */
2875 newblock = ext_pblock(&newex);
2876 allocated = ext4_ext_get_actual_len(&newex);
2877 outnew:
2878 if (extend_disksize) {
2879 disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2880 if (disksize > i_size_read(inode))
2881 disksize = i_size_read(inode);
2882 if (disksize > EXT4_I(inode)->i_disksize)
2883 EXT4_I(inode)->i_disksize = disksize;
2884 }
2885
2886 set_buffer_new(bh_result);
2887
2888 /* Cache only when it is _not_ an uninitialized extent */
2889 if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2890 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2891 EXT4_EXT_CACHE_EXTENT);
2892 out:
2893 if (allocated > max_blocks)
2894 allocated = max_blocks;
2895 ext4_ext_show_leaf(inode, path);
2896 set_buffer_mapped(bh_result);
2897 bh_result->b_bdev = inode->i_sb->s_bdev;
2898 bh_result->b_blocknr = newblock;
2899 out2:
2900 if (path) {
2901 ext4_ext_drop_refs(path);
2902 kfree(path);
2903 }
2904 return err ? err : allocated;
2905 }
2906
ext4_ext_truncate(struct inode * inode)2907 void ext4_ext_truncate(struct inode *inode)
2908 {
2909 struct address_space *mapping = inode->i_mapping;
2910 struct super_block *sb = inode->i_sb;
2911 ext4_lblk_t last_block;
2912 handle_t *handle;
2913 int err = 0;
2914
2915 /*
2916 * probably first extent we're gonna free will be last in block
2917 */
2918 err = ext4_writepage_trans_blocks(inode);
2919 handle = ext4_journal_start(inode, err);
2920 if (IS_ERR(handle))
2921 return;
2922
2923 if (inode->i_size & (sb->s_blocksize - 1))
2924 ext4_block_truncate_page(handle, mapping, inode->i_size);
2925
2926 if (ext4_orphan_add(handle, inode))
2927 goto out_stop;
2928
2929 down_write(&EXT4_I(inode)->i_data_sem);
2930 ext4_ext_invalidate_cache(inode);
2931
2932 ext4_discard_preallocations(inode);
2933
2934 /*
2935 * TODO: optimization is possible here.
2936 * Probably we need not scan at all,
2937 * because page truncation is enough.
2938 */
2939
2940 /* we have to know where to truncate from in crash case */
2941 EXT4_I(inode)->i_disksize = inode->i_size;
2942 ext4_mark_inode_dirty(handle, inode);
2943
2944 last_block = (inode->i_size + sb->s_blocksize - 1)
2945 >> EXT4_BLOCK_SIZE_BITS(sb);
2946 err = ext4_ext_remove_space(inode, last_block);
2947
2948 /* In a multi-transaction truncate, we only make the final
2949 * transaction synchronous.
2950 */
2951 if (IS_SYNC(inode))
2952 ext4_handle_sync(handle);
2953
2954 out_stop:
2955 up_write(&EXT4_I(inode)->i_data_sem);
2956 /*
2957 * If this was a simple ftruncate() and the file will remain alive,
2958 * then we need to clear up the orphan record which we created above.
2959 * However, if this was a real unlink then we were called by
2960 * ext4_delete_inode(), and we allow that function to clean up the
2961 * orphan info for us.
2962 */
2963 if (inode->i_nlink)
2964 ext4_orphan_del(handle, inode);
2965
2966 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2967 ext4_mark_inode_dirty(handle, inode);
2968 ext4_journal_stop(handle);
2969 }
2970
ext4_falloc_update_inode(struct inode * inode,int mode,loff_t new_size,int update_ctime)2971 static void ext4_falloc_update_inode(struct inode *inode,
2972 int mode, loff_t new_size, int update_ctime)
2973 {
2974 struct timespec now;
2975
2976 if (update_ctime) {
2977 now = current_fs_time(inode->i_sb);
2978 if (!timespec_equal(&inode->i_ctime, &now))
2979 inode->i_ctime = now;
2980 }
2981 /*
2982 * Update only when preallocation was requested beyond
2983 * the file size.
2984 */
2985 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2986 if (new_size > i_size_read(inode))
2987 i_size_write(inode, new_size);
2988 if (new_size > EXT4_I(inode)->i_disksize)
2989 ext4_update_i_disksize(inode, new_size);
2990 }
2991
2992 }
2993
2994 /*
2995 * preallocate space for a file. This implements ext4's fallocate inode
2996 * operation, which gets called from sys_fallocate system call.
2997 * For block-mapped files, posix_fallocate should fall back to the method
2998 * of writing zeroes to the required new blocks (the same behavior which is
2999 * expected for file systems which do not support fallocate() system call).
3000 */
ext4_fallocate(struct inode * inode,int mode,loff_t offset,loff_t len)3001 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3002 {
3003 handle_t *handle;
3004 ext4_lblk_t block;
3005 loff_t new_size;
3006 unsigned int max_blocks;
3007 int ret = 0;
3008 int ret2 = 0;
3009 int retries = 0;
3010 struct buffer_head map_bh;
3011 unsigned int credits, blkbits = inode->i_blkbits;
3012
3013 /*
3014 * currently supporting (pre)allocate mode for extent-based
3015 * files _only_
3016 */
3017 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3018 return -EOPNOTSUPP;
3019
3020 /* preallocation to directories is currently not supported */
3021 if (S_ISDIR(inode->i_mode))
3022 return -ENODEV;
3023
3024 block = offset >> blkbits;
3025 /*
3026 * We can't just convert len to max_blocks because
3027 * If blocksize = 4096 offset = 3072 and len = 2048
3028 */
3029 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3030 - block;
3031 /*
3032 * credits to insert 1 extent into extent tree
3033 */
3034 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3035 mutex_lock(&inode->i_mutex);
3036 retry:
3037 while (ret >= 0 && ret < max_blocks) {
3038 block = block + ret;
3039 max_blocks = max_blocks - ret;
3040 handle = ext4_journal_start(inode, credits);
3041 if (IS_ERR(handle)) {
3042 ret = PTR_ERR(handle);
3043 break;
3044 }
3045 ret = ext4_get_blocks_wrap(handle, inode, block,
3046 max_blocks, &map_bh,
3047 EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
3048 if (ret <= 0) {
3049 #ifdef EXT4FS_DEBUG
3050 WARN_ON(ret <= 0);
3051 printk(KERN_ERR "%s: ext4_ext_get_blocks "
3052 "returned error inode#%lu, block=%u, "
3053 "max_blocks=%u", __func__,
3054 inode->i_ino, block, max_blocks);
3055 #endif
3056 ext4_mark_inode_dirty(handle, inode);
3057 ret2 = ext4_journal_stop(handle);
3058 break;
3059 }
3060 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3061 blkbits) >> blkbits))
3062 new_size = offset + len;
3063 else
3064 new_size = (block + ret) << blkbits;
3065
3066 ext4_falloc_update_inode(inode, mode, new_size,
3067 buffer_new(&map_bh));
3068 ext4_mark_inode_dirty(handle, inode);
3069 ret2 = ext4_journal_stop(handle);
3070 if (ret2)
3071 break;
3072 }
3073 if (ret == -ENOSPC &&
3074 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3075 ret = 0;
3076 goto retry;
3077 }
3078 mutex_unlock(&inode->i_mutex);
3079 return ret > 0 ? ret2 : ret;
3080 }
3081
3082 /*
3083 * Callback function called for each extent to gather FIEMAP information.
3084 */
ext4_ext_fiemap_cb(struct inode * inode,struct ext4_ext_path * path,struct ext4_ext_cache * newex,struct ext4_extent * ex,void * data)3085 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3086 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3087 void *data)
3088 {
3089 struct fiemap_extent_info *fieinfo = data;
3090 unsigned long blksize_bits = inode->i_sb->s_blocksize_bits;
3091 __u64 logical;
3092 __u64 physical;
3093 __u64 length;
3094 __u32 flags = 0;
3095 int error;
3096
3097 logical = (__u64)newex->ec_block << blksize_bits;
3098
3099 if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3100 pgoff_t offset;
3101 struct page *page;
3102 struct buffer_head *bh = NULL;
3103
3104 offset = logical >> PAGE_SHIFT;
3105 page = find_get_page(inode->i_mapping, offset);
3106 if (!page || !page_has_buffers(page))
3107 return EXT_CONTINUE;
3108
3109 bh = page_buffers(page);
3110
3111 if (!bh)
3112 return EXT_CONTINUE;
3113
3114 if (buffer_delay(bh)) {
3115 flags |= FIEMAP_EXTENT_DELALLOC;
3116 page_cache_release(page);
3117 } else {
3118 page_cache_release(page);
3119 return EXT_CONTINUE;
3120 }
3121 }
3122
3123 physical = (__u64)newex->ec_start << blksize_bits;
3124 length = (__u64)newex->ec_len << blksize_bits;
3125
3126 if (ex && ext4_ext_is_uninitialized(ex))
3127 flags |= FIEMAP_EXTENT_UNWRITTEN;
3128
3129 /*
3130 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3131 *
3132 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3133 * this also indicates no more allocated blocks.
3134 *
3135 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3136 */
3137 if (logical + length - 1 == EXT_MAX_BLOCK ||
3138 ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK)
3139 flags |= FIEMAP_EXTENT_LAST;
3140
3141 error = fiemap_fill_next_extent(fieinfo, logical, physical,
3142 length, flags);
3143 if (error < 0)
3144 return error;
3145 if (error == 1)
3146 return EXT_BREAK;
3147
3148 return EXT_CONTINUE;
3149 }
3150
3151 /* fiemap flags we can handle specified here */
3152 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3153
ext4_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)3154 static int ext4_xattr_fiemap(struct inode *inode,
3155 struct fiemap_extent_info *fieinfo)
3156 {
3157 __u64 physical = 0;
3158 __u64 length;
3159 __u32 flags = FIEMAP_EXTENT_LAST;
3160 int blockbits = inode->i_sb->s_blocksize_bits;
3161 int error = 0;
3162
3163 /* in-inode? */
3164 if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3165 struct ext4_iloc iloc;
3166 int offset; /* offset of xattr in inode */
3167
3168 error = ext4_get_inode_loc(inode, &iloc);
3169 if (error)
3170 return error;
3171 physical = iloc.bh->b_blocknr << blockbits;
3172 offset = EXT4_GOOD_OLD_INODE_SIZE +
3173 EXT4_I(inode)->i_extra_isize;
3174 physical += offset;
3175 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3176 flags |= FIEMAP_EXTENT_DATA_INLINE;
3177 } else { /* external block */
3178 physical = EXT4_I(inode)->i_file_acl << blockbits;
3179 length = inode->i_sb->s_blocksize;
3180 }
3181
3182 if (physical)
3183 error = fiemap_fill_next_extent(fieinfo, 0, physical,
3184 length, flags);
3185 return (error < 0 ? error : 0);
3186 }
3187
ext4_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)3188 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3189 __u64 start, __u64 len)
3190 {
3191 ext4_lblk_t start_blk;
3192 ext4_lblk_t len_blks;
3193 int error = 0;
3194
3195 /* fallback to generic here if not in extents fmt */
3196 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3197 return generic_block_fiemap(inode, fieinfo, start, len,
3198 ext4_get_block);
3199
3200 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3201 return -EBADR;
3202
3203 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3204 error = ext4_xattr_fiemap(inode, fieinfo);
3205 } else {
3206 start_blk = start >> inode->i_sb->s_blocksize_bits;
3207 len_blks = len >> inode->i_sb->s_blocksize_bits;
3208
3209 /*
3210 * Walk the extent tree gathering extent information.
3211 * ext4_ext_fiemap_cb will push extents back to user.
3212 */
3213 down_write(&EXT4_I(inode)->i_data_sem);
3214 error = ext4_ext_walk_space(inode, start_blk, len_blks,
3215 ext4_ext_fiemap_cb, fieinfo);
3216 up_write(&EXT4_I(inode)->i_data_sem);
3217 }
3218
3219 return error;
3220 }
3221
3222