• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2000-2007 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 #include <linux/module.h>
10 #include <asm/sn/nodepda.h>
11 #include <asm/sn/addrs.h>
12 #include <asm/sn/arch.h>
13 #include <asm/sn/sn_cpuid.h>
14 #include <asm/sn/pda.h>
15 #include <asm/sn/shubio.h>
16 #include <asm/nodedata.h>
17 #include <asm/delay.h>
18 
19 #include <linux/bootmem.h>
20 #include <linux/string.h>
21 #include <linux/sched.h>
22 
23 #include <asm/sn/bte.h>
24 
25 #ifndef L1_CACHE_MASK
26 #define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
27 #endif
28 
29 /* two interfaces on two btes */
30 #define MAX_INTERFACES_TO_TRY		4
31 #define MAX_NODES_TO_TRY		2
32 
bte_if_on_node(nasid_t nasid,int interface)33 static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
34 {
35 	nodepda_t *tmp_nodepda;
36 
37 	if (nasid_to_cnodeid(nasid) == -1)
38 		return (struct bteinfo_s *)NULL;
39 
40 	tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
41 	return &tmp_nodepda->bte_if[interface];
42 
43 }
44 
bte_start_transfer(struct bteinfo_s * bte,u64 len,u64 mode)45 static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
46 {
47 	if (is_shub2()) {
48 		BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
49 	} else {
50 		BTE_LNSTAT_STORE(bte, len);
51 		BTE_CTRL_STORE(bte, mode);
52 	}
53 }
54 
55 /************************************************************************
56  * Block Transfer Engine copy related functions.
57  *
58  ***********************************************************************/
59 
60 /*
61  * bte_copy(src, dest, len, mode, notification)
62  *
63  * Use the block transfer engine to move kernel memory from src to dest
64  * using the assigned mode.
65  *
66  * Parameters:
67  *   src - physical address of the transfer source.
68  *   dest - physical address of the transfer destination.
69  *   len - number of bytes to transfer from source to dest.
70  *   mode - hardware defined.  See reference information
71  *          for IBCT0/1 in the SHUB Programmers Reference
72  *   notification - kernel virtual address of the notification cache
73  *                  line.  If NULL, the default is used and
74  *                  the bte_copy is synchronous.
75  *
76  * NOTE:  This function requires src, dest, and len to
77  * be cacheline aligned.
78  */
bte_copy(u64 src,u64 dest,u64 len,u64 mode,void * notification)79 bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
80 {
81 	u64 transfer_size;
82 	u64 transfer_stat;
83 	u64 notif_phys_addr;
84 	struct bteinfo_s *bte;
85 	bte_result_t bte_status;
86 	unsigned long irq_flags;
87 	unsigned long itc_end = 0;
88 	int nasid_to_try[MAX_NODES_TO_TRY];
89 	int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
90 	int bte_if_index, nasid_index;
91 	int bte_first, btes_per_node = BTES_PER_NODE;
92 
93 	BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
94 		    src, dest, len, mode, notification));
95 
96 	if (len == 0) {
97 		return BTE_SUCCESS;
98 	}
99 
100 	BUG_ON(len & L1_CACHE_MASK);
101 	BUG_ON(src & L1_CACHE_MASK);
102 	BUG_ON(dest & L1_CACHE_MASK);
103 	BUG_ON(len > BTE_MAX_XFER);
104 
105 	/*
106 	 * Start with interface corresponding to cpu number
107 	 */
108 	bte_first = raw_smp_processor_id() % btes_per_node;
109 
110 	if (mode & BTE_USE_DEST) {
111 		/* try remote then local */
112 		nasid_to_try[0] = NASID_GET(dest);
113 		if (mode & BTE_USE_ANY) {
114 			nasid_to_try[1] = my_nasid;
115 		} else {
116 			nasid_to_try[1] = (int)NULL;
117 		}
118 	} else {
119 		/* try local then remote */
120 		nasid_to_try[0] = my_nasid;
121 		if (mode & BTE_USE_ANY) {
122 			nasid_to_try[1] = NASID_GET(dest);
123 		} else {
124 			nasid_to_try[1] = (int)NULL;
125 		}
126 	}
127 
128 retry_bteop:
129 	do {
130 		local_irq_save(irq_flags);
131 
132 		bte_if_index = bte_first;
133 		nasid_index = 0;
134 
135 		/* Attempt to lock one of the BTE interfaces. */
136 		while (nasid_index < MAX_NODES_TO_TRY) {
137 			bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
138 
139 			if (bte == NULL) {
140 				nasid_index++;
141 				continue;
142 			}
143 
144 			if (spin_trylock(&bte->spinlock)) {
145 				if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
146 				    (BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
147 					/* Got the lock but BTE still busy */
148 					spin_unlock(&bte->spinlock);
149 				} else {
150 					/* we got the lock and it's not busy */
151 					break;
152 				}
153 			}
154 
155 			bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
156 			if (bte_if_index == bte_first) {
157 				/*
158 				 * We've tried all interfaces on this node
159 				 */
160 				nasid_index++;
161 			}
162 
163 			bte = NULL;
164 		}
165 
166 		if (bte != NULL) {
167 			break;
168 		}
169 
170 		local_irq_restore(irq_flags);
171 
172 		if (!(mode & BTE_WACQUIRE)) {
173 			return BTEFAIL_NOTAVAIL;
174 		}
175 	} while (1);
176 
177 	if (notification == NULL) {
178 		/* User does not want to be notified. */
179 		bte->most_rcnt_na = &bte->notify;
180 	} else {
181 		bte->most_rcnt_na = notification;
182 	}
183 
184 	/* Calculate the number of cache lines to transfer. */
185 	transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
186 
187 	/* Initialize the notification to a known value. */
188 	*bte->most_rcnt_na = BTE_WORD_BUSY;
189 	notif_phys_addr = (u64)bte->most_rcnt_na;
190 
191 	/* Set the source and destination registers */
192 	BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
193 	BTE_SRC_STORE(bte, src);
194 	BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
195 	BTE_DEST_STORE(bte, dest);
196 
197 	/* Set the notification register */
198 	BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
199 	BTE_NOTIF_STORE(bte, notif_phys_addr);
200 
201 	/* Initiate the transfer */
202 	BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
203 	bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
204 
205 	itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
206 
207 	spin_unlock_irqrestore(&bte->spinlock, irq_flags);
208 
209 	if (notification != NULL) {
210 		return BTE_SUCCESS;
211 	}
212 
213 	while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
214 		cpu_relax();
215 		if (ia64_get_itc() > itc_end) {
216 			BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
217 				NASID_GET(bte->bte_base_addr), bte->bte_num,
218 				BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
219 			bte->bte_error_count++;
220 			bte->bh_error = IBLS_ERROR;
221 			bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
222 			*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
223 			goto retry_bteop;
224 		}
225 	}
226 
227 	BTE_PRINTKV((" Delay Done.  IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
228 		     BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
229 
230 	if (transfer_stat & IBLS_ERROR) {
231 		bte_status = BTE_GET_ERROR_STATUS(transfer_stat);
232 	} else {
233 		bte_status = BTE_SUCCESS;
234 	}
235 	*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
236 
237 	BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
238 		    BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
239 
240 	return bte_status;
241 }
242 
243 EXPORT_SYMBOL(bte_copy);
244 
245 /*
246  * bte_unaligned_copy(src, dest, len, mode)
247  *
248  * use the block transfer engine to move kernel
249  * memory from src to dest using the assigned mode.
250  *
251  * Parameters:
252  *   src - physical address of the transfer source.
253  *   dest - physical address of the transfer destination.
254  *   len - number of bytes to transfer from source to dest.
255  *   mode - hardware defined.  See reference information
256  *          for IBCT0/1 in the SGI documentation.
257  *
258  * NOTE: If the source, dest, and len are all cache line aligned,
259  * then it would be _FAR_ preferable to use bte_copy instead.
260  */
bte_unaligned_copy(u64 src,u64 dest,u64 len,u64 mode)261 bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
262 {
263 	int destFirstCacheOffset;
264 	u64 headBteSource;
265 	u64 headBteLen;
266 	u64 headBcopySrcOffset;
267 	u64 headBcopyDest;
268 	u64 headBcopyLen;
269 	u64 footBteSource;
270 	u64 footBteLen;
271 	u64 footBcopyDest;
272 	u64 footBcopyLen;
273 	bte_result_t rv;
274 	char *bteBlock, *bteBlock_unaligned;
275 
276 	if (len == 0) {
277 		return BTE_SUCCESS;
278 	}
279 
280 	/* temporary buffer used during unaligned transfers */
281 	bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES, GFP_KERNEL);
282 	if (bteBlock_unaligned == NULL) {
283 		return BTEFAIL_NOTAVAIL;
284 	}
285 	bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
286 
287 	headBcopySrcOffset = src & L1_CACHE_MASK;
288 	destFirstCacheOffset = dest & L1_CACHE_MASK;
289 
290 	/*
291 	 * At this point, the transfer is broken into
292 	 * (up to) three sections.  The first section is
293 	 * from the start address to the first physical
294 	 * cache line, the second is from the first physical
295 	 * cache line to the last complete cache line,
296 	 * and the third is from the last cache line to the
297 	 * end of the buffer.  The first and third sections
298 	 * are handled by bte copying into a temporary buffer
299 	 * and then bcopy'ing the necessary section into the
300 	 * final location.  The middle section is handled with
301 	 * a standard bte copy.
302 	 *
303 	 * One nasty exception to the above rule is when the
304 	 * source and destination are not symmetrically
305 	 * mis-aligned.  If the source offset from the first
306 	 * cache line is different from the destination offset,
307 	 * we make the first section be the entire transfer
308 	 * and the bcopy the entire block into place.
309 	 */
310 	if (headBcopySrcOffset == destFirstCacheOffset) {
311 
312 		/*
313 		 * Both the source and destination are the same
314 		 * distance from a cache line boundary so we can
315 		 * use the bte to transfer the bulk of the
316 		 * data.
317 		 */
318 		headBteSource = src & ~L1_CACHE_MASK;
319 		headBcopyDest = dest;
320 		if (headBcopySrcOffset) {
321 			headBcopyLen =
322 			    (len >
323 			     (L1_CACHE_BYTES -
324 			      headBcopySrcOffset) ? L1_CACHE_BYTES
325 			     - headBcopySrcOffset : len);
326 			headBteLen = L1_CACHE_BYTES;
327 		} else {
328 			headBcopyLen = 0;
329 			headBteLen = 0;
330 		}
331 
332 		if (len > headBcopyLen) {
333 			footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
334 			footBteLen = L1_CACHE_BYTES;
335 
336 			footBteSource = src + len - footBcopyLen;
337 			footBcopyDest = dest + len - footBcopyLen;
338 
339 			if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
340 				/*
341 				 * We have two contiguous bcopy
342 				 * blocks.  Merge them.
343 				 */
344 				headBcopyLen += footBcopyLen;
345 				headBteLen += footBteLen;
346 			} else if (footBcopyLen > 0) {
347 				rv = bte_copy(footBteSource,
348 					      ia64_tpa((unsigned long)bteBlock),
349 					      footBteLen, mode, NULL);
350 				if (rv != BTE_SUCCESS) {
351 					kfree(bteBlock_unaligned);
352 					return rv;
353 				}
354 
355 				memcpy(__va(footBcopyDest),
356 				       (char *)bteBlock, footBcopyLen);
357 			}
358 		} else {
359 			footBcopyLen = 0;
360 			footBteLen = 0;
361 		}
362 
363 		if (len > (headBcopyLen + footBcopyLen)) {
364 			/* now transfer the middle. */
365 			rv = bte_copy((src + headBcopyLen),
366 				      (dest +
367 				       headBcopyLen),
368 				      (len - headBcopyLen -
369 				       footBcopyLen), mode, NULL);
370 			if (rv != BTE_SUCCESS) {
371 				kfree(bteBlock_unaligned);
372 				return rv;
373 			}
374 
375 		}
376 	} else {
377 
378 		/*
379 		 * The transfer is not symmetric, we will
380 		 * allocate a buffer large enough for all the
381 		 * data, bte_copy into that buffer and then
382 		 * bcopy to the destination.
383 		 */
384 
385 		headBcopySrcOffset = src & L1_CACHE_MASK;
386 		headBcopyDest = dest;
387 		headBcopyLen = len;
388 
389 		headBteSource = src - headBcopySrcOffset;
390 		/* Add the leading and trailing bytes from source */
391 		headBteLen = L1_CACHE_ALIGN(len + headBcopySrcOffset);
392 	}
393 
394 	if (headBcopyLen > 0) {
395 		rv = bte_copy(headBteSource,
396 			      ia64_tpa((unsigned long)bteBlock), headBteLen,
397 			      mode, NULL);
398 		if (rv != BTE_SUCCESS) {
399 			kfree(bteBlock_unaligned);
400 			return rv;
401 		}
402 
403 		memcpy(__va(headBcopyDest), ((char *)bteBlock +
404 					     headBcopySrcOffset), headBcopyLen);
405 	}
406 	kfree(bteBlock_unaligned);
407 	return BTE_SUCCESS;
408 }
409 
410 EXPORT_SYMBOL(bte_unaligned_copy);
411 
412 /************************************************************************
413  * Block Transfer Engine initialization functions.
414  *
415  ***********************************************************************/
416 
417 /*
418  * bte_init_node(nodepda, cnode)
419  *
420  * Initialize the nodepda structure with BTE base addresses and
421  * spinlocks.
422  */
bte_init_node(nodepda_t * mynodepda,cnodeid_t cnode)423 void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
424 {
425 	int i;
426 
427 	/*
428 	 * Indicate that all the block transfer engines on this node
429 	 * are available.
430 	 */
431 
432 	/*
433 	 * Allocate one bte_recover_t structure per node.  It holds
434 	 * the recovery lock for node.  All the bte interface structures
435 	 * will point at this one bte_recover structure to get the lock.
436 	 */
437 	spin_lock_init(&mynodepda->bte_recovery_lock);
438 	init_timer(&mynodepda->bte_recovery_timer);
439 	mynodepda->bte_recovery_timer.function = bte_error_handler;
440 	mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
441 
442 	for (i = 0; i < BTES_PER_NODE; i++) {
443 		u64 *base_addr;
444 
445 		/* Which link status register should we use? */
446 		base_addr = (u64 *)
447 		    REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
448 		mynodepda->bte_if[i].bte_base_addr = base_addr;
449 		mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
450 		mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
451 		mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
452 		mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
453 
454 		/*
455 		 * Initialize the notification and spinlock
456 		 * so the first transfer can occur.
457 		 */
458 		mynodepda->bte_if[i].most_rcnt_na =
459 		    &(mynodepda->bte_if[i].notify);
460 		mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
461 		spin_lock_init(&mynodepda->bte_if[i].spinlock);
462 
463 		mynodepda->bte_if[i].bte_cnode = cnode;
464 		mynodepda->bte_if[i].bte_error_count = 0;
465 		mynodepda->bte_if[i].bte_num = i;
466 		mynodepda->bte_if[i].cleanup_active = 0;
467 		mynodepda->bte_if[i].bh_error = 0;
468 	}
469 
470 }
471